Energy Audit Report

K. R. Mangalam University Sohna Road, Gurugram, Haryana 122103

Audit Date - 04 and 05 March, 2019

Audit Conducted by:

M/S Samarth Consultants 212, Bhera Enclave, Paschim Vihar, New Delhi, Delhi, 110087. Registrar K.R. Mangalam University Schna Road, Gurugram, (Haryana)

Energy Audit Report - K.R. Mangalam University

CERTIFICATE OF EXCELLENCE

THIS IS CERTIFY THAT	K. R. MANGALAM UNIVERSITY
	HAS SUCCESSFULLY
COMPLETED THE	ENERGY
	AUDIT PROGRAM
CONDUCTED ON	04-05 MARCH 2019

CERTIFICATE NO. SMPL/2019/C-0013

DATE OF ISSUE 15-03-2019

For SAMARTH MANAGEMENT
PRIVATE LIMITED

Somorth Swi

Authorized Signatory

AUTHORISED SIGNATORY

CONDUCTED BY

www.samarthconsultants.com 212, Bhera Enclave, Paschim Vihar, New Delhi - 110087

Thrift Registrar K.R. Mangalam University Johna Road, Gurugram, (Hauven

Acknowledgement

Samarth Consultants is thankful to K.R. Mangalam University for providing us the opportunity to conduct an Energy Audit of their esteemed University. We are grateful to the Management, officers, and staff of K.R. Mangalam University for showing keen interest in the study and for the help and cooperation extended to the Samarth Consultants team during the study.

We do hope that you will find the recommendations given in this report useful in helping you save energy. While we have made every attempt to adhere to high quality standards, in both data collection and analysis, as well as in presentation through the report, we would welcome any suggestions from your side as to how we can improve further.

Registrar K.R. Mangalam Universit

K.R. Mangalam University Sohna Ruad, Gurugram, (Haryana)

For SAMARTH MANAGEMENT

Table of Contents

1.	Introduction	6
	 Summary of Energy Conservation Measures 	7
2.	Approach and Methodology	7
	• Approach	7
	• Methodology	8
	 Instruments Used for Energy Audit 	8
3.	University description and energy sources	9
	About University	9
	Energy Sources and Cost	9
4.	Observation and analysis	10
	4.1 Electricity Supply and Network	10
	4.2 Analysis of Electricity Bills: Feb. 2018- Jan.19	12
	4.3 Solar Power System	16
	4.4 Transformer	19
5.	Observations Based on Recordings	21
6.	Electrical Load Distribution	23
7.	Air Conditioning and Ventilation:	25
8.	Water Pumps	26
9.	Lighting system	28
10.	Computer and Other power Devices	30
11.	DG Performance	30
12.	General Tips for Energy Conservation in Different Utilities	31

Registrar
K.R. Mangalam University
Sohna Road, Gurugram, (Haryana)

List of tables

Table 1. Sumi	mary of Energy Conservation Measures	7
Table 2. Energ	gy cost component of energy sources	10
Table 3. Total	Cost of Energy Consumed by University in Year Feb. 2018- Jan. 19	11
Table 4. Distr	ibution of Energy Types in the University in the Last 12 Months	12
Table 5. Mont	th wise electrical energy consumption (12 Months data)	13
Table 6. Mont	th-wise Solar Generated Units	17
Table 7. TR R	ated Details	19
Table 8. TR-1	2000 kVA Load Measurement Data	19
Table 9. Trans	sformer loading	23
Table 10.	Distribution of Load in the University	23
Table 11.	Chiller Performance 300 TR Hitachi	25
Table 12.	Chiller Performance 300 TR Hitachi	25
Table 13.	Chiller Performance 150 TR Blue Star	26
Table 14.	Performance Analysis of water pumps.	27
Table 15.	LED Consumption in the University	28
Table 16.	Details of measured lux in the University	29
Table 17.	Sample Log Sheet for DG Performance Monitoring	31

K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

List of Figur	res	
Figure 1.	Methodology	8
Figure 2.	Share of Energy Consumption (Graph)	11
Figure 3.	Share of Energy Cost (Graph)	12
Figure 4.	Electrical Energy Consumption	15
Figure 5.	Billed Amount in Feb. 2018- Jan.19	15
Figure 6.	Power Factor Variation	16
Figure 7.	Solar Generated Unit (KWH)	18
Figure 8.	Transformer loading Vs Efficiency	22
Figure 9.	Load Distribution – Facilities-wise	24
Figure 10.	Load Distribution – Block-wise	24
Figure 11.	Lighting Consumption in the University	28
Figure 12.	Awareness Posters	40

Registrar K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

For SAMARTH MANAGEMENT PRIVATE LIMITED Authoriz

List of Abbreviations

SEC - Specific Energy Consumption

List of Units

°C - Degree Celsius

CFM - Cubic Feet per Minute

CMH - Cubic Meter per Hour

LPM - Liters Per Minute

Kg/cm² - Kilogram per centimeter square

kW - Kilo watt

kWh - Kilowatt hour

KOE - Kg of Oil equivalent

m³/hr - Meter cube per hour

Nm³/hr - Normal Meter cube per hour

MW - Mega Watt

MWh - Megawatt Hour

Registrar K.R. Mangalam University Sehna Ruad, Gurugram, (maryana) For SAMARTH MANAGEMENT
PRIVATE IMITED

Authorized Signatory

1. Introduction

The working details of assignment are as follows:

Project

Energy Audit

Client

K.R. Mangalam University

Industry

Educational University

Contact

Registrar and Dr. Vineet Dahiya

(8800697002) (9811911970)

Site

K.R. Mangalam University Sohna Road, Gurugram, Haryana

122103

Consultant

Samarth Consultants

Duration

03-04-2019 to 04-04-2019

Project Scope

Examination of detailed energy audit in the utility and process to assess

the loss in the system.

Report

This document gives recommendations, details of findings and the way

forward

Consultants

R. Vaidyanathan B. E. (Electrical) Accredited Energy Auditor (B.E.E.)

involved

Atul Suri B.E (Electrical), MBA (Operation Research) Energy Auditor

(B.E.E.)

Seema Suri B.E (Electrical), Energy Auditor (B.E.E.)

Sunil Yadav Dip. (Electrical).

Registrar K.R. Mangalam University

Sohna Road, Gurugram, (Haryana)

For SAMARTH MANAGEMENT PRIVATE LOUTED

Authorized S

Summary of Energy Conservation Measures

Table 1. Summary of Energy Conservation Measures

S. No	Energy Conservation Measure		nual rings tricity	Investment	Payback	
		kWh	Rs. Lakhs	Rs. Lakhs	Month	
	Payback	Period				
1	It is recommended to reduce contract demand to 1200 KVA from 2000 KVA as maximum demand is not more than 1200 KVA. In one month only MDI was 1192	-	12.8	Nil	0	
2	2 Improvement in Power Factor by installation of Capacitor Bank		4.75	1.0	1	
	Total	47312	17.55	1.0	1 month	

2. Approach and Methodology

Approach

A team of 4 engineers were involved in carrying out the study, the general scope of which was as follows:

- Identify areas of opportunity for energy saving and recommend an action plan to bring down total energy cost
- Conduct energy performance evaluation and process optimization study
- Conduct efficiency test of equipment and make recommendations for replacement (if required) by more efficient equipment with projected benefits
- Suggest improved operation & maintenance practices.
- Provide details of investment for all the proposals for improvement
- Evaluate benefits that accrue through investment and payback period
- Analyse various energy conservation measures and to prioritize based on the A
 maximum energy saving & investment i.e. short, medium and long term.

Prioritization	Payback Period
Short Term Project	Less than 6 months
Medium Term Project	Between 6 to 12 months
Long Term Project	More than 12 months

• Discuss with the plant personnel, the individual Energy Saving Projects (ESPs) for agreement for implementation.

Methodology

The general methodology followed is captured in the following figure –

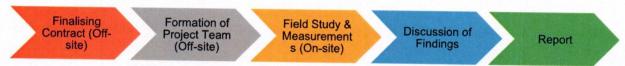


Figure 1. Methodology

The study was conducted in 3 stages:

- Stage 1: Walk through audit to understand process energy drivers, measurability and formulation of audit plan
- Stage 2: Detailed Energy audit
- Stage 3: Off-site work for data analysis and report preparation

Instruments Used for Energy Audit

The following portable instruments were used for data measurement:

- 3 phase Power Analyzer
- Single phase Power Analyzer
- Ultrasonic Water Flow Meter
- Anemometer
- Hygrometer
- Sling Hygrometer
- Digital Thermometer

Registrar K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

For SAMARTH MANAS 104 Senent
PRIVATE LIMITED
Authorized Signatory

- Infrared Thermometer
- Pressure gauge
- Thermal Imager
- Flue Gas Analyzer
- Lux Meter

3. University description and energy sources

About University

K.R. Mangalam University is the fastest-growing higher education University in Gurugram, India. Since its inception in 2013, the University has been striving to fulfil its prime objective of transforming young lives through ground-breaking pedagogy, global collaborations, and world-class infrastructure.

K.R. Mangalam University aspires to become an internationally recognized institution of higher learning through excellence in interdisciplinary education, research and innovation, preparing socially responsible life-long learners contributing to nation building.

- Foster employability and entrepreneurship through futuristic curriculum and progressive pedagogy with cutting-edge technology
- Install notion of lifelong learning through stimulating research, Outcomesbased education and innovative thinking
- Integrate global needs and expectations through collaborative programs with premier universities, research centres, industries and professional bodies
- Enhance leadership qualities among the youth having understanding of ethical values and environmental realities

Energy Sources and Cost

Electricity, Solar & fuel (Diesel) are major energy sources of the University.

- Electricity is supplied from DHBVN (Dakshin Haryana Bijli Vitran Nigam)
- The Diesel as a thermal energy source is used mainly in DG Sets of 1X625 KVA, 1X380 KVA and 1X250 KVA
- The University has a solar power generating system of 310 KW on the rooftop
 of the academic building A, B, C blocks, DG room and the hostel building. The
 solar system is wheeled to the grid.

• Authorized Signatory

The energy cost from various sources of energy is given below:

Table 2. Energy cost component of energy sources

Source of energy	Unit	Cost	
Electricity (Grid)	INR /kWh	10.04	
Diesel	INR/Liter.	69.49	

4. Observation and Analysis

4.1 Electricity Supply and Network

Electricity & fuel (Diesel) are major energy sources of the University. Electricity is supplied from DHBVN (Dakshin Haryana Bijli Vitran Nigam).

Total Consumption of Electricity from Grid in the period of Feb 18 to Jan 19 was

Total KWH: 16,02,248

Electricity Charges: Rs. 1,60,91,179/-

The Diesel as a thermal energy source is used mainly in DG Sets of 1X625 KVA, 1X380 KVA and 1X250 KVA

Total Consumption of Diesel in the period of Feb 18 to Jan 19 was

Total Diesel in Ltr. 12,664

Cost of Diesel @ Rs. 69.49/Ltr.= Rs. 880021.36/-

The University has a solar power generating system of 310 KW on the rooftop of the academic building A, B, C blocks, DG room and the hostel building. The solar system is wheeled to the grid.

- Total Solar Generated Electricity Generated by University: 14,61,288 KWH
- Total Solar Generated Electricity Exported by University: 38,472 KWH
- Total Solar Generated Electricity Used by University: 14,22,816 KWH
- Rebate on Solar Usage from the DHBNV: 1,35,612

Registrar K.R. Mangalam University Sohna Road, Gutugaan PRIVATE LIMITED
PRIVATE LIMITED
Authorized Signatory

Table 3. Total Cost of Energy Consumed by University in Year Feb. 2018-Jan. 19

Electricity	Diesel (INR)	Total Cost of	% of	% of
(INR)	Diesei (IIVK)	Energy	electricity	Diesel
16091179	880021.4	16971200	94.81	5.19

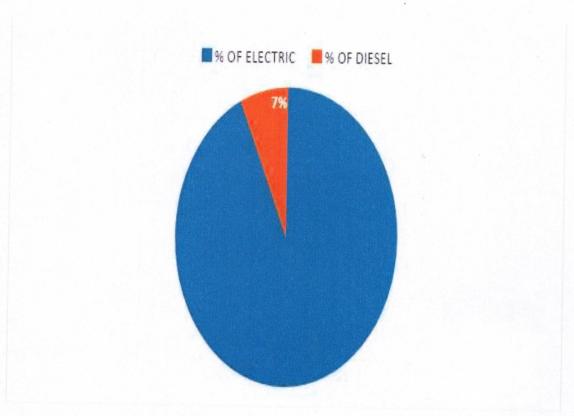


Figure 2. Share of Energy Consumption (Graph)

Registrar
K.R. Mangalam University
Sohna Road, Gurugram, Communication

For S. MARTH MANAGEMENT
PRIVATE LIMITED
Authorized Signatory

Table 4. Distribution of Energy Types in the University in the Last 12

Months

ELECT RICIT Y	DIES EL	IN	IN TJ		% OF ELECTRICI TY	% OF DIESEL
160224 8	12664	5.768093	0.433	6.201093	93.01736	6.98264

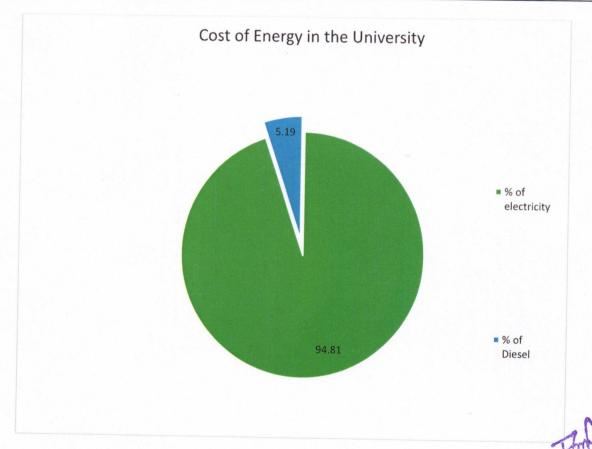


Figure 3. Share of Energy Cost (Graph)

Registrar
K.R. Mangalam University
Sohna Road, Gurugram, (Haryana)

4.2 Analysis of Electricity Bills: Feb. 2018- Jan.19

K.R. Mangalam University has only one electrical connection with a total contract demand of 2000 KVA. Power Supply is received from DHBVN (Dakshin Haryana Bijli Vitran Nigam). Monthly Electricity Billing has been studied for a period of one year. All parameters have been studied & tabulated Nin Table 15.

Table 5.

Month wise electrical energy consumption (12 Months data)

Tota 1 Bill, Rs.	6520	1099	1816	2296 276	1633	1466 223	2302
Elect ricity Duty (Rs.)	4592	10736	21940	26198	17012	15124	89696
Panel Dema nd charg e (Rs.)/ Fuel Surch arge Adjus	16990	39723	81178.	96932. 6	62944.	55958. 8	97191
Ene rgy Cha rge (Rs.	310	729	152 906 4	185 314 5	988	107 514 0	185
Sundry Charges/ Arrears	0	0	0	0	34051	0	0
Re bat e	0	0	135	0	0	0	0
Fix ed Cha rge (Rs)	320	320	320	320	320	320	320
Sur - cha rge	971	163	269	340	238	217	341
M	0 4	11 90	111	10	98	95	10
Ave rage P.F.	1.00	0.99	96.0	0.95	96.0	0.95	0.95
Net Bille d Unit s	00	108	128	274 540	177	159	275
Expo rt Solar Gene rated	0	0	292	140	120	140	160
Solar Gene rated	0	0	12644	26996	17504	15674	27108
Units Cons umed, kVA H	46000	10802	12896	27468	17788	15942	27556
Units Cons umed, kWh	45920	10736	12341	26208	17020	15130	26268
Sancti oned Load, KWV/ CD	2000	2000	2000	2000	2000	2000	2000
Billin g Mont h	18	Mar- 18	Apr- 18	May-	Jun- 18	Jul- 18	Aug-

Registrar
K.R. Mangalam University
R. C. Carrigann, ((Haryana))

ed Signatory

Energy Audit Report - K.R. Mangalam University 13 | Page

410	1862	1405 578	5162	4623	5779	1609
	20464	14572	3122	2396	2376	
9	75716.	53916	11551	8865	8791.2	
895	585	101	181	131	315	
	0	0	0	0	102452	
	0	0	0	0	0	
000	320	320	320	320	320	
42	276 24	208	92	689	863	
80	1 8	10	35	12	4 8	11 8
	0.95	96.0	0.99	1.00	1.00	96.0
400	214 200	150	269	194	213	160 224 8
	740	1180	11220	13140	11340	38472.
0	21062	14886	37720	32360	32460	
0	21494	15186	38120 37720 11220	32560	32720 32460 11340	15774 16407 14612 74 20 88
0	20512	14640 15186 14886 0 0 0	37880	32520 32560 32360 13140	32600	15774
	2000	2000	2000	2000	2000	
18	Sep- 18	Oct-	Nov- 18	Dec-	Jan- 19	Sum/ Avg.

Sonna Road, Gurugram University (Haryana)

Energy Audit Report - K.R. Mangalam University 14 | Page

torized Signatory

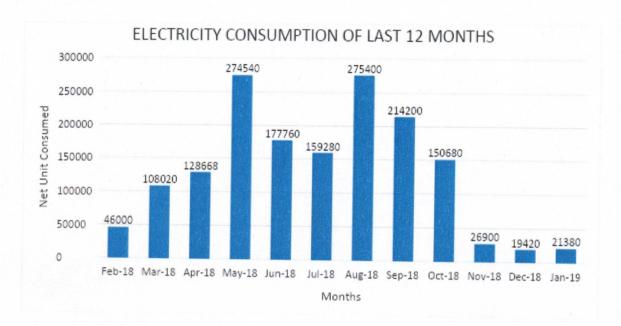


Figure 4. Electrical Energy Consumption

It can be seen from figure 1, that electricity consumption in the month of May 18' is the highest.

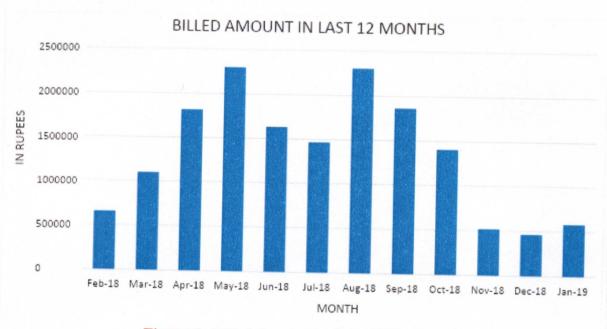


Figure 5. Billed Amount in Feb. 2018- Jan. 19

Registrar
K.R. Mangalam University
Sohna Road, Gurugram, (Haryana)

ASIAVILE LIMITED

PERSONALE LIMITED

PERSONALE LIMITED

PERSONALE LIMITED

PERSONALE LIMITED

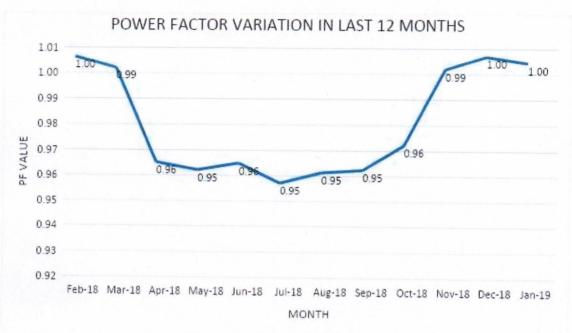


Figure 6. Power Factor Variation

- It can be seen from figure 3, that Recorded Highest Power Factor is 1.00 on Dec 18 and Lowest is 0.95 in July 2018. Average Power Factor in the last 12 months is 0.96.
- It is recommended to have a regular check on the Power Factor to maintain it.
 Capacitors shall be tested every quarter and replaced if not meeting specifications.
- By installing the Automatic Power Factor controller (APFC) University can save approximately 4.75 Lakhs rs. With an investment of Rs 1.0 Lakh.

4.3 Solar Power System

The University has a solar power generating system of 310 KW on the rooftop of the academic building A, B, C blocks, DG room and the hostel building. The solar system is wheeled to the grid.

	Data for Solar Panels								
Sr. No	Building	No. of Panels	Total no. of solar panels	Capacity	Total capacity	Rebate			
1	Α	157	004	310	41850				
2	В	375	984	Kw/day	units/month	0.25			

Energy Audit Report - K.R. Mangalam University

K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

3	С	204
4	DG	120
5	Hostel	128

Table 6. **Month-wise Solar Generated Units**

Sr. No.	Billing Month	Solar Generated KWH
1	Feb-18	0
2	Mar-18	0
3	Apr-18	126448
4	May-18	269960
5	Jun-18	175040
6	Jul-18	156740
7	Aug-18	271080
8	Sep-18	210620
9	Oct-18	148860
10	Nov-18	37720
11	Dec-18	32360
12	Jan-19	32460
Si	um/Avg.	1461288

- In various months from Apr-18 to Oct-18 the recorded solar generated unit exceeds the total capacity of the Solar Plant. Data taken from last 12 months electricity bills from DHBVN.
- Meter needs to be checked by the official personnel.

Energy Audit Report - K.R. Mangalam University Sohna Road, Gurugram,

Authorized Signatory

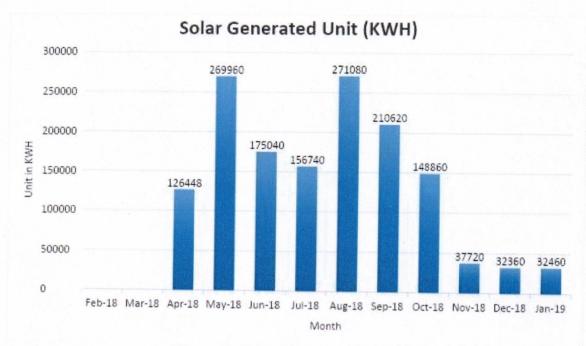


Figure 7. Solar Generated Unit (KWH)

Average Sunshine data of Gurugram

Month	Temperature	Average Sunshine (Hours)
January	13.5	8.3
February	17	9.4
March	22.8	10.6
April	29.4	11.5
May	33.1	12.1
June	33.4	11.8
July	30.2	9.6
August	29	9.1
September	28.2	9.4
October	25.8	10.1
November	20.8	9.6
December	15.5	8.9

Energy Audit Report - K.R. Mangalam University

K.R. Mangalam, (13)

Sohna Road, Gurugram, (13)

Transformer

K. R. Mangalam University draws power from DHBVN (Dakshin Haryana Bijli Vitran Nigam) at 11 KV. Subsequently, the voltage is stepped down by one (1) transformer of 2000 kVA from 11 kV to 0.433 kV. Transformer rated specifications are shown below.

Transformer Rated Details

Table 7. **TR Rated Details**

Sr. No.	Particulars	TR#1
1	Make	NA
2	KVA	2000
3	Volts at HV/LV	11000/415
4	Phases	3
5	Frequency	50

Transformer Load Survey (TR 2000 kVA)

During the site visit, a 24-hour log of Transformer (2000 kVA) (3th March to 4th March 2019) was made to record the load profile of Transformer, which includes the variations in the voltage, current, power factor, kW, kVA, Vthd, Ithd etc. Details of the load profile are provided in the below table and figure.

Table 8. TR-1 2000 kVA Load Measurement Data

Main Incomer	LT Side	Transformer (2000 kVA
Particulars	Phase	Average Measured Values
	Phase "R"	410
Voltage (Volts) (L-L)	Phase "Y"	417
•	Phase "B"	420
	Phase "R"	1156
Current (Amps)	Phase "Y"	1002
current (rimps)	Phase "B"	986
	Neutral	12
Load (KW)	Phase "R"	264.89
2000 (1217)	Phase "Y"	229.18
	N	viotsneil besitothuA

19 | Page Audit Report - K.R. Mangalam University Registrar

K.R. Mangalam Univer-184 Sohna Road, Garcyram, (Ha

FOR SAMARTH MANAGEMENT

Main Incomer l	LT Side	Transformer (2000 kVA
Particulars	Phase	Average Measured Values
	Phase "B"	229.54
	Total	723.61
	Phase "R"	273.65
Apparent Power (KVA)	Phase "Y"	241.24
	Phase "B"	239.10
	Total	753.99
	Phase "R"	0.968
Power Factor (P.F.)	Phase "Y"	0.95
	Phase "B"	0.96
	Phase "R"	3.1
Voltage THD %	Phase "Y"	3.2
	Phase "B"	3.1
	Phase "R"	8.1
Current THD %	Phase "Y"	6.9
	Phase "B"	6.8

Registrar

Registrar

K.R. Mangalam University

Sohna Road, Gurugram, (Haryan Aboseusis pozitoquny

Energy Audit Report - K.R. Mangalam University

5. Observations Based on Recordings

- The measurement taken at the transformers includes data logging for every 5 seconds for 24 hours and during the logging period it was found that the average Voltage (L-L) for the transformer is 420, which is slightly on the higher side. Therefore, it is suggested to maintain the Voltage level at 400 ± 10 by changing the tap position of the transformer.
- The average P.F. is **0.96**, which is on the lower side. This can be increased up to 0.99 by adding or replacing de-rated capacitors with the new capacitors.

Effects Of High and Low Voltage

- Wide Voltage fluctuation is a common phenomenon all over the country. Generally, the voltage is very low during the daytime and high during night hours. Therefore, Industrial Units running round the clock, face the problem of both Low and High Input Voltage. Also, voltage fluctuation is a seasonal phenomenon and increases in the summer season. Moreover, on holidays, peak hours, rainy days and when the agricultural load is switched off, the voltage rises sharply in the feeder lines. There are few consumers of electricity, during such days, leading to comparatively lower voltage drop in the feeder lines; as a result consumers suffer from high voltage which is more dangerous.
- Most electrical equipment is designed for 230 volts (single-phase) or 410 volts (3-phase) and operates with optimum efficiency at its rated voltage. 50% of industrial load consists of motors. Due to continuously varying voltage and especially during peaks, electric motors draw considerably high current at high voltage which increases energy consumption, increases MDI and reduces power factor etc. These excessive power losses of motors generated at higher voltage results in premature failure of electrical equipment.
- Similar is the case with single-phase equipment such as bulbs and tubes, when voltage increases above 230 volts. For example, at 270 volts, the power consumption of 60 W bulb increase by almost 40% and the life of the bulb

nergy Audit Report - K.R. Mangalam University

INCEMENT

Registrar

K.R. Mangalam University

Sohna Road, Gurugram, (Har

reduces from normal 1000 Hours to mere 100 Hours only (as per analysis report of ISI marked bulb manufacturers)

Transformer Loading and Efficiency

The efficiency of the transformers not only depends on the design but also, on the effective operating load. The variable losses depend on the effective operating load on the transformer. The maximum efficiency of the transformer occurs at a condition when the constant loss is equal to variable loss. For distribution transformers, the core loss is 15 to 20% of full load copper loss. Hence, the maximum efficiency of the distribution transformers occurs at a loading between 40 - 60%. For power transformers, the core loss is 25 to 30% of full load copper loss. Hence, the maximum efficiency of the power transformers occurs at a loading between 40 - 60%.

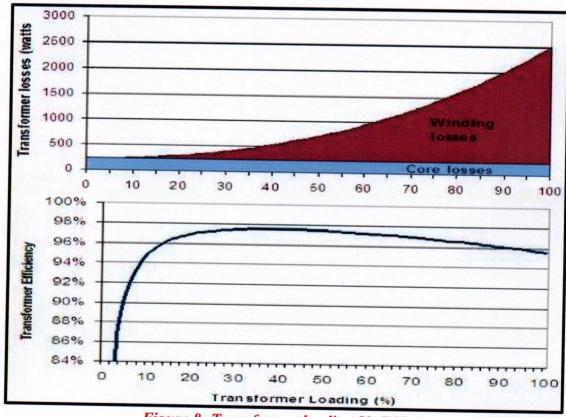


Figure 8. Transformer loading Vs Efficiency

Energy Audit Report - K.R. Mangalam University

Authorized Signatory

K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

All the electrical parameters required evaluating percentage loading & losses of Transformers were recorded for old building transformers.

No load and full load losses of the transformers are obtained from standards to calculate the transformer losses as follows.

Note: Total loss = No load loss + Full load loss*(% Loading 2)

The efficiency of the transformers not only depends on the design but also, on the effective operating load. The variable losses depend on the effective operating load on the transformer.

Table 9. Transformer loading

Description	Transformer Capacity kVA	Power factor	Maximum Apparent power kVA	Average Apparent Power kVA	Max Loading	Average Loading
				NVA	70	%
TR1	2000	0.97	854	753.99	42.7	37.69

6. Electrical Load Distribution

The University has facilities of HVAC, Lighting system, Fans, Lifts and Fire Fighting System in the Block A, Block B, Block C and Hostel of the University.

Table 10. Distribution of Load in the University

Load (KW) Distribution in the University								
	Block							
Facility Operated	Block - A	Block - B	Block - C	HOST EL	Tota	%age		
AC	35	37.2	39.1	18.2	129. 5	26.34		
LIGHTING	11.23	8.6	9.73	11.04	40.6	8.26		
FAN	49.1	49.6	48	10.8	157. 5	32.04		
LIFT AND FIRE SYSTEM	0	0	144	0	144	29.29		
COMPUTER & LAPTOP	6	6	8	0	20	4.07		
Total	101.33	101.4	248.83	40.04	491.	100.00		
%age	20.61	20,63	50.62	8.14 1018	ngis bəsino			

23 | Page

Registral worshy

Registrar K.R. Mangalam University Sohna Road, Gurugram, (Haryana) AS 10 A

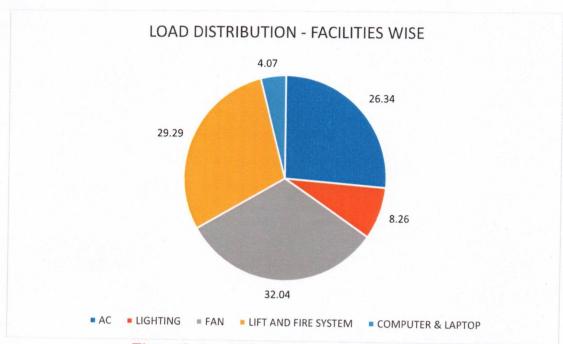


Figure 9. Load Distribution - Facilities-wise

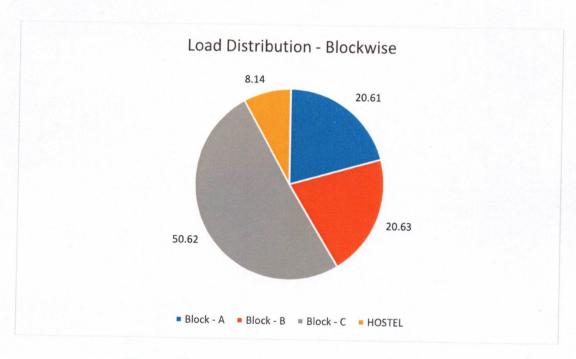


Figure 10. Load Distribution – Block-wise

• Observation: Block C consumption is 51% of the total consumption. S pozitioning

Energy Audit Report - K.R. Mangalam University

K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

7. Air Conditioning and Ventilation

KRMU has installed 5 Air cooled Chillers on the terrace for fulfilling the requirement of Air conditioning of the space.

2 Nos 300 TR Hitachi

2 Nos. 150 TR Blue Star

3 No. 150 TR Hitachi

At a time 600TR to 750 TR load is required depending upon weather conditions. The performance of the chillers was evaluated:

Table 11. Chiller Performance 300 TR Hitachi

Phase	Volt	Ampere	PF	Power
R	226	310	0.86	60.26
Y	238		0.74	59.8
В	239	322.4	0.96	73.97
Total				194.03
Cooling effect		248.6	TR	171.05
COP in kW/TR		0.78	kW/TR	
The COP is sati	sfactory			
Considering the	whole system			
COSP in kW/T		0.88		
Coefficient of S	ystem Performan			

Table 12. Chiller Performance 300 TR Hitachi

Phase	Volt	Ampere	PF	Power
R	225		0.96	68.26
Y	7 240		0.84	65.72
В	232		0.95	68.85
Total				202.83
Cooling effect	·	268.6	TR	202.03
COP in kW/TR		0.75	kW/TR	
Considering the	e whole system			
COSP in kW/T			0.88	
Coefficient of S	System Performa	ince is good	3.00	

Ant

FOR SAMARTH MANAGEMENT

TRIVATE LIMITED

Authorized Signatory

25 | Page

K.R. Mangalan Frenzy Audit Report - K.R. Mangalam University
Sohna Road, Gurugram, (Mary 1997)

Table 13. Chiller Performance 150 TR Blue Star

Phase	Volt	Ampere	PF	Power
R	225		0.76	26.67
Y	240	126	0.89	26.91
В	232		0.90	42.26
Total				95.84
Cooling effect		128.6	TR	
COP in kW/TF	3	0.745	kW/TR	
Considering th	e whole system			
COSP in kW/T	R		0.78	
Coefficient of	System Performa	nce is good		

8. Water Pumps

There are 5 Primary pumps of 18KW each and 5 Secondary pumps of 11 kW each Pumps are running as per the air-conditioning load requirement. The detailed operating parameters of these pumps were measured to analyze the performance and it is given below.

The following parameters have been measured / recorded to assess the performance of pumps:

- 1. Suction pressure
- 2. Discharge pressure
- 3. Power consumption
- 4. Flow rate

Registrar

K.R. Mangalam University

Sohna Road, Gurugram, (Haryand)

Viotengi2 boxirontuA

LNEWED 26 Plaigienves to

Energy Audit Report - K.R. Mangalam University

Table 14. Performance Analysis of water pumps.

		Water Pi	umps			
Description	UO M	Pump 1	Pump 2	Pump 3	Pump 4	Pump 5
Design						
Make		Kirloskar	Kirloska r	Kirloskar	Kirloskar	Kirloskar
Model		K9957675 1P119030 001	K99576 751P111 9030002	K9957675 1P111903 0010	K9957675 1P111903 0030	K9957675 1P111903 0030
Capacity	m ³ / hr	150	150	150	150	150
Head	M	30	30	30	30	30
Power	K W	18	18	18	18	18
Operating Paramete	er					
Suction head	m	12.5	12.5	12.5	12.5	12.5
Discharge head	m	28	28	28	28	28
Flow rate	m ³ / hr	96.76	106.76	100.08	116.26	106.72
Power consumption	kW	18.8	18.2	16.6	15.2	18.1
Combined efficiency	%	51%	61%	55%	65%	65%
Pump Efficiency (ŋ Motor=91%)	%	59%	67%	63%	70%	70%

Pump performance found satisfactory.

	B9957675	B995767	B9957675	B9957675	B9957675
	1P119030	51P1119	1P111903	1P111903	1P111903
	001	030002	0010	0030	0030
$m^3/$		120	120	120	120
hr	120				120
M	25	25	25	25	25
K		11	11	11	11
W	11			•	11
r					
m	10.5	9.5	11.0	10.8	10.0
m	32	32			31.8
$m^3/$				Violengie	Dezilouna -
hr	96.76	106.76	100.08		106.72
kW	14.8	14.2	14.6	15.2	100.72
	M K W r m m m ³ / hr	1P119030 001 m ³ /	1P119030 51P1119 030002 m ³ / hr 120 120	1P119030 51P1119 1P111903 0010 m ³ / hr 120 120 120 M 25 25 25 K 11 11 T m 10.5 9.5 11.0 m 32 32 33 hr 96.76 106.76 100.08	1P119030 51P1119 1P111903 1P111903 001 030002 0010 0030 m³/ hr 120 120 120 M 25 25 25 25 K W 11 11 11 11 r m 10.5 9.5 11.0 10.8 m 32 32 33 31.8 m³/ hr 96.76 106.76 100.08 116.26

Energy Audit Report - K.R. Mangalam University

Registrar K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

Combined efficiency	%	54.5%	63%	69%	70%	68%
Pump Efficiency (ŋ Motor=91%)	%	59%	67%	63%	70%	70%

Pump performance found satisfactory.

9. Lighting system

The University has already implemented energy efficient measures in lighting area at different places. All conventional lamps are replaced by LED Lamps.

Table 15. LED Consumption in the University

Blocks	LED Consumption (Kwh)	%age
A - Block	5.06	12.12
B - Block	1.79	4.29
C - Block	11.89	28.48
Hostel	12.97	31.07
Outer Area	10.04	24.05
Total Consumption (KWH)	41.75	

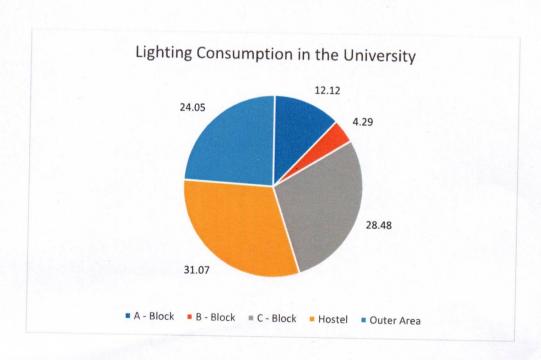


Figure 11. Lighting Consumption in the University Pazinoumy

Registrar K.R. Mangalam University

Sohna Road, Gurugram, (Han, 2008)

Observation:

- University has opted for the latest LED technology for lighting.
- Maximum consumption of light is in the hostel block.
- It is recommended to install occupancy sensors ex. restroom, offices, lobby, staircases, panel room etc.
- Lux level is found satisfactory in many palaces but at some places, it is different from standard. It can be maintained as per the University requirement.
- Students' awareness for energy consumption shall be increased through training programmes.

Recommended value of illumination given as per National Building Code of India, 2005 clause 4.1.3, 4.1.3.2, 4.3.2 and 4.3.2.1

Table 16. Details of measured lux in the University

S.NO.	LOCATION NAME	MIN LUX	MAX LUX	Recommendat on
1	Ground Floor – A-Block	121	126	100-200
2	Basement - C-Block	103	115	100-200
3	DG Room - Terrace	280	350	200-300
4	Classrooms – C-block	310	450	300
5	Lecture rooms (including Demonstration areas)	310	450	300
6	Reading rooms	250	450	300-500
7	Laboratories	650	700	500-750
8	Corridors	150	170	150
9	Libraries	210	295	300
10	Moot court	245	450	300-500
11	Stage area	125	325	300
12	Canteen	80	120	100
13	Staff Room	155	185	150
	And .		horized Signatory	my O

Energy Audit Report - K.R. Mangalam University
Registral
University
LACINIOVANIM HEAVINGS AND

K.R. Mangalam University
Sohna Road, Gurugram, (Haryana)

8

10. **Computers and Other Power Devices**

University is using approximately 350 nos. of computer and other power electronic devices.

An average desktop computer uses between 60 and 300 watts. It is very difficult to know exactly how much computers use on average because there are so many different hardware configurations. We estimate that an average modern desktop PC will use approximately 100 watts of power per day approximately 4-6 hrs. working per day.

Total consumption of electricity for 350 computers per day = 38.5 KWH= 770 KWH per month

Considering 250 days of working power consumption = 250 X 38.5 = 9625 KWH Which is a substantial consumption.

To save energy, turn off the computer when it is not being used or enable power saving features such as hibernate, standby or sleep mode. Power saving modes will allow you to turn on a computer quickly when you need to use it. Sleep mode typically uses only 1-5 watts of power and can be set to turn on automatically after a set time of inactivity.

11. **DG** Performance

- Three DG installed of ratings 625, 380 and 250 KVA
- DGs were running for power cuts. No major power cuts were observed
- Total diesel consumed = 12,664 Litres.

Observations:

Logbooks for DG were not maintained in a prescribed format by the University. It is recommended to maintain a prescribed monthly format of says

Authorized Signatory

Energy Audit Report - K.R. Mangalam University

K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

logbook for DG sets. This will help them to evaluate the specific power generation i:e kWH/ltr of DG sets on a periodic basis.

Sample Log Sheet for DG performance monitoring is shown in below table:

Table 17. Sample Log Sheet for DG Performance Monitoring

Date	Time Start	Tim e Stop	Runnin g Hours	Power Generate d (Kwh)	Fuel Tank			Specific Power Consumptio n
					Initia l Dip (mm)	Final Dip (mm)	Diesel Consume d (Ltr)	(Kwh/ltr)
			3					

12. General Tips for Energy Conservation in Different Utilities

Electricity

- Schedule your operations to maintain a high load factor.
- Minimize maximum demand by tripping loads through a demand controller.
- Use standby electric generation equipment for on-peak high load periods.
- Correct power factor to at least 0.99 under rated load conditions.
- Set transformer taps to optimum settings.
- Shut off unnecessary computers, printers, and copiers at night.

Registrar

K.R. Mangal Energy Audit Report - K.R. Mangalam University

Authorized Signatory

Sohna Road, Gurugram, (Hunya)

Motors

- Properly size to the load for optimum efficiency.
- (High efficiency motors offer of 4 5% higher efficiency than standard motors)
- · Check alignment.
- Provide proper ventilation.
- For every 10°C increase in motor operating temperature over recommended peak, the motor life is estimated to be halved.
- Check for under-voltage and overvoltage conditions.
- Balance the three-phase power supply.
- An Imbalanced voltage can reduce 3 5% in motor input power.
- Demand efficiency restoration after motor rewinding.

Drives

- Use variable-speed drives for large variable loads.
- Use high-efficiency gear sets.
- Use precision alignment.
- Check belt tension regularly.
- Eliminate variable-pitch pulleys.
- Use flat belts as alternatives to v-belts.
- Use synthetic lubricants for large gearboxes.
- Eliminate eddy current couplings.
- Shut them off when not needed.

Fans

- Use smooth, well-rounded air inlet cones for fan air intakes.
- Avoid poor flow distribution at the fan inlet.
- Minimize fan inlet and outlet obstructions.
- Clean screens, filters, and fan blades regularly.
- Use aerofoil-shaped fan blades.
- Minimize fan speed.
- Use low-slip or flat belts.

Registrar

K.R. Mangalam University

Sohna Road, Gurugram, (Haryana)

ALLINITY ALLIANDIA

ALLIANDANAM 32 Place 6

ALLIANDANA

Energy Audit Report - K.R. Mangalam University

- Check belt tension regularly.
- Eliminate variable pitch pulleys.
- Use variable speed drives for large variable fan loads.
- Use energy-efficient motors for continuous or near-continuous operation
- Eliminate leaks in ductwork.
- Minimize bends in ductwork
- Turn fans off when not needed.

Blowers

- Use smooth, well-rounded air inlet ducts or cones for air intakes.
- Minimize blower inlet and outlet obstructions.
- Clean screens and filters regularly.
- Minimize blower speed.
- Use low-slip or no-slip belts.
- Check belt tension regularly.
- Eliminate variable pitch pulleys.
- Use variable speed drives for large variable blower loads.
- Use energy-efficient motors for continuous or near-continuous operation.
- Eliminate ductwork leaks.
- Turn blowers off when they are not needed.

Pumps

- Operate pumping near best efficiency point.
- Modify pumping to minimize throttling.
- Adapt to wide load variation with variable speed drives or sequenced control of smaller units.
- Stop running both pumps -- add an auto-start for an on-line spare or add a booster pump in the problem area.
- Use booster pumps for small loads requiring higher pressures.

 Alogendic pozitioning
- Increase fluid temperature differentials to reduce pumping rates.
- Repair seals and packing to minimize water waste.

hergy Audit Report - K.R. Mangalam University

Registral

K.R. Mangalam University

Sohna Road, Gurugram, (Haryana)

B

- Balance the system to minimize flows and reduce pump power requirements.
- Use siphon effect to advantage: don't waste pumping head with a free-fall (gravity) return.

Chillers

- Increase the chilled water temperature set point if possible.
- Use the lowest temperature condenser water available that the chiller can handle.
- Reducing condensing temperature by 5.5°C, results in a 20 25% decrease in compressor power consumption.
- Increase the evaporator temperature
- 5.5°C increase in evaporator temperature reduces compressor power consumption by 20 - 25%.
- Clean heat exchangers when fouled.
- 1 mm scale build-up on condenser tubes can increase energy consumption by 40%.
- Optimize condenser water flow rate and refrigerated water flow rate.
- Use water-cooled rather than air-cooled chiller condensers.
- Use energy-efficient motors for continuous or near-continuous operation.
- Specify appropriate fouling factors for condensers.
- Do not overcharge oil.
- Install a control system to coordinate multiple chillers.
- Study part-load characteristics and cycling costs to determine the most-efficient mode for operating multiple chillers.
- Run the chillers with the lowest operating costs to serve base load.
- Avoid oversizing -- match the connected load.
- Isolate off-line chillers and cooling towers.
- Establish a chiller efficiency-maintenance program. Start with an energy audit and follow-up, then make a chiller efficiency-maintenance program a part of your continuous energy management program.

Energy Audit Report + K.R. Mangalam University

K.R. Mangalam University

Sohna Road, Gurugram, Fish

HVAC (Heating / Ventilation / Air Conditioning)

- Tune up the HVAC control system.
- Consider installing a Plant automation system (BAS) or energy management system (EMS) or restoring an out-of-service one.
- Balance the system to minimize flows and reduce blower/fan/pump power requirements.
- Eliminate or reduce reheat whenever possible.
- Use appropriate HVAC thermostat setback.
- Use Plant thermal lag to minimize HVAC equipment operating time.
- In winter during unoccupied periods, allow temperatures to fall as low as possible without freezing water lines or damaging stored materials.
- In summer during unoccupied periods, allow temperatures to rise as high as possible without damaging stored materials.
- Improve control and utilization of outside air.
- Use air-to-air heat exchangers to reduce energy requirements for heating and cooling of outside air.
- Reduce HVAC system operating hours (e.g. -- night, weekend).
- Optimize ventilation.
- Ventilate only when necessary. To allow some areas to be shut down when unoccupied, install dedicated HVAC systems on continuous loads (e.g. -computer rooms).
- Provide dedicated outside air supply to kitchens, cleaning rooms, combustion equipment, etc. to avoid excessive exhausting of conditioned air.
- Use evaporative cooling in dry climates.
- Clean HVAC unit coils periodically and comb mashed fins.
- Upgrade filter banks to reduce pressure drop and thus lower fan power requirements.

• Check HVAC filters on a schedule (at least monthly) and clean/change if appropriate.

35 | Page

Energy Audit Report - K.R. Mangalam University VIVYS 40.4

K.R. Mangalam University Sohna Road, Gurugram, (Har) 300

- Check pneumatic controls air compressors for proper operation, cycling, and maintenance.
- Isolate air conditioned loading dock areas and cool storage areas using highspeed doors or clear PVC strip curtains.
- Install ceiling fans to minimize thermal stratification in high-bay areas.
- Relocate air diffusers to optimum heights in areas with high ceilings.
- Consider reducing ceiling heights.
- Eliminate obstructions in front of radiators, baseboard heaters, etc.
- Check reflectors on infrared heaters for cleanliness and proper beam direction.
- Use professionally-designed industrial ventilation hoods for dust and vapor control.
- Use local infrared heat for personnel rather than heating the entire area.
- Use spot cooling and heating (e.g. -- use ceiling fans for personnel rather than cooling the entire area).

Lighting

- Reduce excessive illumination levels to standard levels using switching, delamping, etc. (Know the electrical effects before doing de-lamping.)
- Aggressively control lighting with clock timers, delay timers, photocells, and/or occupancy sensors.
- Install efficient alternatives to incandescent lighting, mercury vapor lighting, etc. Efficiency (lumens/watt) of various technologies range from best to worst approximately as follows: low pressure sodium, high pressure sodium, metal halide, fluorescent, mercury vapor, incandescent.
- Select ballasts and lamps carefully with high power factor and long-term efficiency in mind.
- Upgrade obsolete fluorescent systems to Compact fluorescents and electronic

Sohna Road, Guru

Change exit signs from incandescent to LED.

DG sets

Optimize loading.

Coreusis pezuoumy

Liniversity

Audit Report - K.R. Mangalam University

- Use waste heat to generate steam/hot water /power an absorption chiller or preheat process or utility feeds.
- Use jacket and head cooling water for process needs.
- Clean air filters regularly.
- Insulate exhaust pipes to reduce DG set room temperatures.
- Use cheaper heavy fuel oil for capacities more than 1MW.

Plants

- Seal exterior cracks/openings/gaps with caulk, gasketing, weather stripping, etc.
- Consider new thermal doors, thermal windows, roofing insulation, etc.
- Install windbreaks near exterior doors.
- Replace single-pane glass with insulating glass.
- Consider covering some window and skylight areas with insulated wall panels inside the Plant.
- If visibility is not required but light is required, consider replacing exterior windows with insulated glass block.
- Consider tinted glass, reflective glass, coatings, awnings, overhangs, draperies, blinds, and shades for sunlit exterior windows.
- Use landscaping to advantage.
- Add vestibules or revolving doors to primary exterior personnel doors.
- Consider automatic doors, air curtains, strip doors, etc. at high-traffic passages between conditioned and non-conditioned spaces. Use self-closing doors if possible.
- Use intermediate doors in stairways and vertical passages to minimize Plant stack effect.
- Use dock seals at shipping and receiving doors.
- Bring cleaning personnel in during the working day or as soon after as possible to minimize lighting and HVAC costs.

Water & Wastewater

margy Audit Report - K.R. Mangalam University

K.R. Mangalam University
Sohna Road, Gurugram, (Haryara)

- Recycle water, particularly for uses with less-critical quality requirements.
- Recycle water, especially if sewer costs are based on water consumption.
- Balance closed systems to minimize flows and reduce pump power requirements.
- Eliminate once-through cooling with water.
- Use the least expensive type of water that will satisfy the requirement.
- Fix water leaks.
- Test for underground water leaks. (It's easy to do over a holiday shutdown.)
- Check water overflow pipes for proper operating level.
- Automate blowdown to minimize it.
- Provide proper tools for wash down -- especially self-closing nozzles.
- Install efficient irrigation.
- Reduce flows at water sampling stations.
- Eliminate continuous overflow at water tanks.
- Promptly repair leaking toilets and faucets.
- Use water restrictors on faucets, showers, etc.
- Use self-closing type faucets in restrooms.
- Use the lowest possible hot water temperature.
- Do not use a heating system hot water boiler to provide service hot water during the cooling season -- install a smaller, more-efficient system for the cooling season service hot water.
- If water must be heated electrically, consider accumulation in a large insulated storage tank to minimize heating at on-peak electric rates.
- Use multiple, distributed, small water heaters to minimize thermal losses in large piping systems.
- Use freeze protection valves rather than manual bleeding of lines.

Miscellaneous

• Meter any unmetered utilities. Know what is normal efficient use. Track down causes of deviations.

REFEY Audit Report - K.R. Mangalam University

K.R. Mangalam University Sohna Road, Gurugram, (Haryana)

- Shut down spare, idling, or unneeded equipment.
- Make sure that all of the utilities to redundant areas are turned off -- including utilities like compressed air and cooling water.
- Install automatic control to efficiently coordinate multiple air compressors, chillers, cooling tower cells, boilers, etc.
- Minimize use of flow bypasses and minimize bypass flow rates.
- Provide restriction orifices in purges (nitrogen, steam, etc.).
- Eliminate unnecessary flow measurement orifices.
- Consider alternatives to high-pressure drops across valves.
- Turn off winter heat tracing that is on in summer.

K.R. Mangalam University

Authorized Signator

Sohna Road, Gurray Audit Report - K.R. Mangalam University

Saving Energy Poster



Figure 12. Awareness Posters

Registrar

K.R. Mangalam University

K.R. Mangalam University

Sohna Road, Guingrey Audit Report - K.R. Mangalam University