

SCHOOL OF BASIC AND APPLIED SCIENCES

Department of Physics

PROGRAMME HANDBOOK

Physics Four year Under-Graduate(UG) Program Framed according to the National Education Policy (NEP 2020) (Academic Year 2023-27)

S.No.	Contents Particulars	Page No
D •110•		
	Preamble	3
	University Vision and Mission	
1	1.1 Vision	4
	1.2 Mission School Basic And Applied Sciences (SBAS)	
2	2.1 About the School of Basic And Applied Sciences	4
	School Vision and Mission	
3	3.1 School Vision	5
	3.2 School Mission	
4	Introduction to Bachelor of Science (H) in Physics Programme 4.1. Bachelor of Science (H) in Physics Programme	5
4	4.1. Bachelor of Science (H) in Physics Programme 4.2. Aims of Bachelor of Science (H) in Physics Programme	5
5	Learning Outcome-based Curriculum Framework	6
6	Graduate Attributes of Bachelor of Science (H) in Physics	7
7	Qualification Descriptors for Bachelor of Science (H) in Physics	7
8	Programme Educational Objectives (PEO)	8
9	Programme Outcomes (PO)	9
10	Programme Specific Outcomes (PSO)	9
11	Programme Duration	10
12	Career Avenues	10
13	Eligibility Criteria	10
14	Class Timings	11
15	Teaching-Learning Process	11
16	Assessment Methods	11
17	Minimum Acceptable Level of Academic Standards	11
18	Programme Structure	12
19	Syllabi with Course Mapping	
20	Annexures (Scheme of Studies, Sample Course Handout)	

Preamble

The objective of any programme at Higher Education Institute is to prepare their students for the society at large. The K. R. Mangalam University visualizes all its programmes in the best interest of their students and in this endeavour; it offers a new vision to all its Under-

Graduate cours. The department of physics presented four year under graduate programme B.Sc (H) physics with research according to the New Education Policy-2020. We have designed a flexible choice-based credit system, multidisciplinary approach, and multiple entry and exit options for the duration of 2023-2027.

We are following Curriculum and Credit Framework for Undergraduate Programmes (CCFUP)" incorporating a flexible choice-based credit system, multidisciplinary approach, and multiple entry and exit options. This will facilitate students to pursue their career path by choosing the subject/field of their interest.

The curriculum is aligned with the needs of the industry and the job market and is flexible enough to adapt to changing trends and technologies. It integrates cross-cutting issues relevant to professional ethics, gender, human values, environment and Sustainable Development Goals (SDGs). All academic programmes offered by the University focus on employability, entrepreneurship and skill development and their course syllabi are adequately revised to incorporate contemporary requirements based on feedback received from students, alumni, faculty, parents, employers, industry and academic experts

We are committed to implementing the National Education Policy (NEP) 2020 in its entirety, and to creating a more inclusive, holistic, and relevant education system that will prepare our students for the challenges of the 21st century. With the focus on Outcome-Based Education (OBE), our university is continuously evolving an innovative, flexible, and multidisciplinary curriculum, allowing students to explore a creative combination of credit-based courses in variegated disciplines along with value-addition courses, Indian Knowledge Systems, vocational courses, projects in community engagement and service, value education, environmental education, and acquiring skill sets, thereby designing their own learning trajectory.

All the courses are having defined objectives and Learning Outcomes, which will help prospective students in choosing the elective courses to broaden their skills in the field of Physics and interdisciplinary areas. The courses will train students with sound theoretical and experimental knowledge that suits the need of academics and industry. The courses also offer ample skills to pursue research as career in the field of physics. The K. R. Mangalam University hopes the NEP-2020 approach of this four year under graduate programme B.Sc (H) physics with research will help students in making an informed decision regarding the goals that they wish to pursue in further education and life, at large.

1. UNIVERSITY VISION AND MISSION

K.R. Mangalam University located on Sohna Road, Gurugram, is one of the fastest growing and most promising upcoming universities in India. It is a State Private University established in 2013 by an act of the legislature of the Haryana Government under Haryana Private Universities Act (Amendment) 8 of 2013. It is recognized by the UGC under Section 2f of the UGC Act, 1956. The primary aim of the University is to promote excellence in basic and professional education while upholding moral values.

KRMU offers sixty-eight Undergraduate, Postgraduate and Doctoral Degree programs across different disciplines. The group of educational units in the University promote education in the areas of Engineering& Technology, Legal Studies, Basic and Applied Sciences, Management Sciences, Commerce, Journalism and Mass Communication, Hotel Management and Catering Technology, Medical and Allied Sciences, Architecture and Planning, Agriculture, Fashion Designing, Humanities and Education. All the disciplines follow a well-defined curriculum design keeping in view the guidelines of UGC/AICTE and appropriate regulatory bodies like Council of Architecture (COA), Bar Council of India (BCI), Pharmacy Council of India (PCI), National Council for Teachers Education (NCTE) etc., wherever applicable. All courses are semester and credit based.

K.R. Mangalam University is the fastest-growing higher education institute in Gurugram, India. The University has been striving to fulfil its prime objective of transforming young lives through ground-breaking pedagogy, global collaborations, and world-class infrastructure. Recognized for its virtues of quality, equality, inclusiveness, sustainability, and professional ethics, KRMU is synonymous with academic excellence and innovation.

1.1. VISION

K.R Mangalam University aspires to become an internationally recognized institution of higher learning through excellence in inter-disciplinary education, research and innovation, preparing socially responsible life-long learners contributing to nation-building.

1.2 MISSION

1. Foster employability and entrepreneurship through futuristic curriculum and progressive pedagogy with cutting-edge technology.

2. Instill notion of lifelong learning through stimulating research, outcomes-based education and innovative thinking.

3. Integrate global needs and expectations through collaborative programs with premier universities, research centers, industries and professional bodies.

4. Enhance leadership qualities among the youth having understanding of ethical values and environmental realities.

2. SCHOOL OF BASIC AND APPLIED SCIENCES (SBAS)

2.1 About The School Basic and Applied Sciences

The SBAS imparts both teaching and research through its three Departments of Physics, Chemistry Mathematics and Forensic science.

SBAS imparts students disciplinary knowledge, enhances their skills and ability, motivating them to think ingeniously, helping them to act independently and take decisions accordingly in all their scientific pursuits and other endeavors. It strives to empower its students and faculty members to contribute for the development of society and Nation.

The faculty is in constant touch with various experts in the relevant fields and is willing to experiment with latest ideas in teaching and research.

3. SCHOOL VISION AND MISSION

3.1 School Vision

School of Basic and Applied Sciences intends for continuum growth as centre of advanced learning, research and innovation by disseminating analytical and scientific knowledge in the areas of basic and applied sciences by promoting interdisciplinary research and scientific acumen.

3.2 School Mission:

- 1. Enable students to be scientists/ academicians /entrepreneurs by accomplishing fundamental and advanced research in diverse areas of basic and applied sciences
- 2. Build strong associations with academic organizations/industries for knowledge creation, advancement, and application of scientific fervor
- 3. Create conducive environment for lifelong learning
- 4. Empower students to be socially responsible and ethically strong individuals through value-based science education
- 5. The school offers programmes in physics, mathematics, chemistry and forensic sciences.

4. INTRODUCTION TO THE BACHELOR OF SCIENCE (H) IN PHYSICS (B.SC.(H) PHYSICS)

The Bachelor of Science (Honors) in Physics (B.Sc.(H) Physics) is an undergraduate academic program designed to provide students with a comprehensive foundation in the fascinating world of physics. This program offers a rigorous and engaging curriculum that covers diverse areas such as classical mechanics, electromagnetism, quantum mechanics,

thermodynamics, and more. Students enrolled in this program will explore the fundamental principles that govern the universe, delve into complex problem-solving, and develop strong analytical and critical thinking skills. Through hands-on laboratory work and theoretical learning, students will gain practical experience and a deep understanding of scientific research methodologies. The B.Sc.(H) Physics program prepares students for exciting career opportunities in scientific research, technology, education, and various other fields that require a strong grasp of physics principles and applications

4.1. Nature of B.Sc.(H) Physics Programme

Taking the NEP-2020 as an opportunity to review our existing academic programs and redesign them for a more holistic, multidisciplinary and inclusive education, SBAS, K.R. Mangalam University is transforming its academic structure in a phased manner. Department of Physics is offering Four Year Undergraduate Degree programme B.Sc (H) physics with research with Multiple Entry- Multiple Exit option from the academic session 2023-24. Through multiple entry/exit option, students will be able to enter and exit the program at various stages. This course emphasized hands on practice, innovative thought process and project-based learning

4.2. Aims of B.Sc.(H) Physics Programme

The aims of the Bachelor of Science (Honors) in Physics (B.Sc.(H) Physics) program, in accordance with the National Education Policy (NEP), are multifaceted and comprehensive. The program aims to cultivate a strong foundation in physics principles and foster a deep understanding of the subject. It seeks to promote critical thinking, analytical skills, and problem-solving abilities among students, enabling them to address real-world challenges effectively. The B.Sc.(H) Physics program also encourages research-oriented thinking and provides opportunities for students to engage in scientific inquiry and exploration. By emphasizing hands-on laboratory work and practical applications, the program aims to equip students with the necessary skills for conducting experiments and analyzing data. Moreover, the program seeks to foster an interdisciplinary approach, enabling students to connect physics with other scientific disciplines and societal issues. Overall, the B.Sc.(H) Physics program aspires to produce well-rounded graduates with a passion for learning and a strong foundation in physics, ready to make significant contributions to the scientific community and society at large.

5. LEARNING OUTCOME-BASED CURRICULUM FRAMEWORK IN BACHELOR OF PHYSICS (H) PROGRAMME (B.Sc.(H) Physics)

The Learning Outcome-Based Curriculum Framework in the Bachelor of Physics (H) Programme (B.Sc.(H) Physics) is designed to provide students with a comprehensive understanding of the fundamental principles and advanced concepts in physics. This framework is tailored to equip students with the necessary knowledge, skills, and abilities to excel in their academic pursuits and future careers in various scientific and technical fields. The curriculum focuses on achieving specific learning outcomes that are aligned with the

program's goals and objectives. These learning outcomes are aimed at fostering critical thinking, problem-solving skills, and analytical reasoning among students.

6. GRADUATE ATTRIBUTES

GA1: To demonstrate competence in discipline specific theoretical and practical Knowledge

GA2: To develop creativity and innovation

GA3: To enhance communication and interpersonal skills

GA4: To enable critical & logical thinking and investigative research attitude amongst students

GA5: To develop ethical values, teamwork and lifelong learning approach

7. QUALIFICATION DESCRIPTORS AND PROGRAMME DURATION

Year	Objectives	Nature of Courses	Outcome
1st year – (1 st & 2 nd Semesters) After one year 1	Understanding and Exploration Exit option with C	 Discipline based CoreCourses Minor Discipline Value added course Open Elective Ability Enhancement Compulsory Courses Skill Enhancement 	 Understanding of Disciplines Language Competency Gaining perspective of context/Generic skills Basic skills related to handling and working with the instruments to pursue any vocation related to Lab Assistant
2 nd Year - (3 rd & 4 th Semesters)	Focus and Immersion	 Discipline based CoreCourses Discipline specific elective Courses Minor Discipline Open Elective Skill Enhancement Ability Enhancement Value added course Internship 	disciplines Gaining
After T	wo years Exit Opt	tion with Diploma	

3rd Year (5th & 6th Semesters)		 [1] Major Discipline Core [2] Discipline specific elective Courses [3] Minor Discipline [4] Skill Enhancement [5] Value added course [6] Internship 	In depth learning of major and minor disciplines, Skill sets foremployability. Exposure to discipline beyondthe chosen Subject Experiential learning/ Research.
Exit o	ption with Bachelo	r Degree	
4th Year –	Deeper Concentration	 [1] Major Discipline Core [2] Minor Discipline [3] Research/ Project 	Deeper and Advanced Learning of Major Discipline Foundation to pursue Doctoral Studies &

	L.	3] Research/	Project	pursue Doctoral Studies
(7th &8th		Work	with	Developing Research
Semesters)		Dissertation		competencies
Bachelo	or Degree Honours	with Research		

8. PROGRAM EDUCATIONAL OBJECTIVES

PEO-1: Graduate will have significant prospects in the various fields like academics, industry, research organization, consultancy, defense and entrepreneurial pursuit at national and international level.

PEO-2: Graduate will achieve peer recognition as an individual or team member having specialized knowledge and expertise to identify, formulate, investigate, analyze and implement on the problems in physical sciences.

PEO-3: Graduate will have a solid foundation for academic excellence and quality leadership to meet the challenges in interdisciplinary and multi-disciplinary environment

PEO-4: Graduate will have ability to adopt, absorb and develop innovative and new technology in physical sciences and related areas through lifelong learning process.

PEO-5: Graduate will inculcate value system and work ethically in a multidisciplinary environment, to enhance the advancement in physics in general and contribute significantly through their critical thinking and scientific competence.

9. PROGRAM OUTCOMES (PO)

The B.Sc. (H) graduates should be able to:

PO1: Acquire fundamental understanding and conceptual knowledge of physics.

PO2: Understand application of basic concepts of physics.

PO3: Link Physics with related disciplines.

PO4: Acquire procedural knowledge for professional subjects.

PO5: Develop skills in related field of specialization.

PO6: Develop investigative skills and problem solving approach

PO7: Develop skills in Mathematical modeling.

PO8: Develop skills in performing analysis and interpretation of data.

PO9: Develop Technical Communication and ICT skills.

PO10: Demonstrate professional behavior with respect to attributes like objectivity, ethical values, self –reading etc

10. PROGRAM SPECIFIC OUTCOMES (PSOs)

The student graduating with the degree B.Sc. (H) Physics should be able to:

PSO1: Acquire a fundamental, systematic or coherent understanding of the academic field of Physics.

PSO2: Acquire procedural knowledge that creates different types of professional related to the disciplinary area of Physics.

PSO3: Acquire skills in areas related to one's specialization area within the disciplinary area of Physics and current and emerging development in the field of Physics.

PSO4: Demonstrate the ability to use skills in Physics and its related areas of technology

School Vision	School Mission	Programme Outcomes (PO)	Programme Specific Outcomes (PSO)
School of Basic and Applied Sciences intends for continuum growth as centre	M 1	PO1, PO2, PO3, PO5, PO6, PO7, PO8, PO10	PSO1, PSO2, PSO3, PSO4
of advanced learning, research and innovation by disseminating analytical and	M 2	O2, PO3, PO4, PO5, PO6, PO7, PO8, PO9, PO10	PSO1, PSO2, PSO3
scientific knowledge in the areas of basic and applied	M 3	PO1, PO2, PO3, PO5, PO6, PO7, PO8, PO9, PO10	PSO1, PSO2, PSO3, PSO4
sciences by promoting interdisciplinary research and scientific acumen.	M 4	PO3, PO4, PO5, PO6, PO9, PO10	PSO1, PSO2,
	M 5	PO1, PO2, PO3, PO4, PO5, PO6, PO7, PO8, PO9, PO10	PSO2, PSO3, PSO4

MAPPING OF SCHOOL VISION, MISSION WITH PROGRAMME OUTCOMES (PO) AND PROGRAMME SPECIFIC OUTCOMES(PSO)

11. PROGRAMME DURATION

We have designed a flexible choice-based credit system, multidisciplinary approach, and multiple entry and exit options for the duration of 2023-2027. The minimum period required for certificate in physics is one year, for Diploma in physics is two years, for B.Sc. degrss is three years and for the four year under graduate programme B.Sc (H) physics with research is four years.

12. CAREER OPTIONS

Career Options: - Opportunities exist in academics, research laboratories and administration besides all the opportunities applicable to any other graduate like UPSC examination's, defense services and other govt. jobs.

13. ELIGIBILITY CRITERIA

This course aims to impart basic and applied knowledge in physics with a view to produce good academics, researchers and professionals in the field.

Eligibility Criteria: - The student should have passed the 10+2 examination conducted by the Central Board of Secondary Education or equivalent examination from a recognized Board in Science stream with an aggregate of 50% or more.

14. CLASS TIMINGS

The classes will be held from Monday to Friday from 09:10 am to 04:10 pm.

15. TEACHING- LEARNING PROCESS

The School of Basic and Applied Sciences brings an attitudinal change among prospective teachers for their advancement into accountable agents of change in society. They are actively engaged in undertaking different activities such as school contact programs in various schools during their course with systematic support and feedback from the faculty. During this program, the student-teachers observe the school/classroom environments concerning infrastructure, equipment, teaching-learning materials, functioning, human resources, and organization of various activities. Such practices bring experiential learning by emphasizing reciprocal learning and reflection. The faculties foster and maintain a creative environment with a deep commitment to inculcate excellence in academics and contribute to student development through a focus on student-centric methods such as experiential learning process.

16. ASSESSMENT METHODS

Both formative and summative assessments are integral part of the B.Sc. programme. Formative assessments such as class discussions, group activities, projects, quizzes, assignments and presentations are conducted throughout the teaching-learning process, enabling teachers to monitor student progress continuously. Teachers provide oral or written feedback, engage in one-on-one discussions, and use rubrics and checklists to communicate student performance. Summative assessments such as Term End Examination, viva voce for project work, research dissertations and performance evaluations are conducted after the completion of the course.

17. MINIMUM ACCEPTABLE LEVEL OF ACADEMIC STANDARDS

The minimum acceptable level of achievement that a student must demonstrate to be eligible for the award of academic credit or qualification is the minimum acceptable level of academic standards. The Letter Grades and Grade Points which shall be used to reflect the outcome of the assessment process of the student's performance is indicated in Table 1.

urks Range (%)	tter Grade	ade Points	scription of the Grade
>90		0	tstanding
90			ccellent
80			ry Good
70			od
60			ove Average
55			erage
50			58
)			1
			sent
marks≥ 50			isfactory
marks <50			satisfactory
			thdrawal

Table 1

18. PROGRAMME STRUCTURE

Four-Year B.Sc.(H) Physics with research programme at a glance

	Sem I	Sem II	Sem III	Sem IV	Sem V	Sem VI	Sem VII	Sem VIII	Total
Courses	7	8	8	8	7	8	5	2	53
Credits	20	23	25	21	20	22	17	16	164

19. Scheme of Studies for B.Sc. (Hons.) Physics with Research- Nano Sciences stream: Year 2023-2028 (Scheme of Studies) FYUDP

First year : Odd Semester									
S.No.	TYPE OF COURSE	COURSE CODE	COURSE TITLE	L	Т	Р	С		
1	Major- DSC	SCPH101	Mathematical Physics I	4	0	0	4		
2	Major- DSC	SCPH103	Electricity and Magnetism	4	0	0	4		
3	Major- DSC	SCPH151	Electricity and Magnetism LAB	0	0	2	1		
4	AEC-I	AEC001	Communicative English-I	3	0	0	3		
5	VAC-I		Value Added Course (EVS+Disaster)through Moodle	2	0	0	2		
6	SEC-I	SEC015	Basic Instrumentation Skills	2	0	0	2		
7	Minor1	UNS101	Study of Materials	4	0	0	4		
			TOTAL				20		

First y	ear : Even Semes	ter					
S.No	TYPE OF COURSE	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Major-DSC	SCPH102	Mathematical Physics II	4	0	0	4
2	Major-DSC	SCPH104	Mechanics	4	0	0	4
3	Major-DSC	SCPH152	Mechanics Lab	0	0	2	1
4	AEC-II	AEC002	Communicative English-II	3	0	0	3
5	VAC-II		Value Added Course (Based on Extension Activity)	2	0	0	2
6	Open Elective/Generic Elective-I			3	0	0	3
7	SEC-II	SEC016	Physics Workshop Skill	0	0	2	2
8	Minor2	UNS102	Elements of Nanosciences and nanomaterials	4	0	0	4
		SIPH001	Summer Internship /Project				
			TOTAL				23

	S	econd year :	Odd Semester				
S.No.	TYPE OF COURSE	COURSE CODE	COURSE TITLE	L	Т	Р	C
1	DSCT5	SCPH201	Mathematical Physics III	4	0	0	4
2	Major-DSC	SCPH203	Solid State Physics	4	0	0	4
3	Major-DSE	SCPH205	Introduction of Nanochemistry and Applications	4	0	0	4
		SCPH207	Green Processes Of Chemistry	4	0	0	
4	Major-DSC	SCPH251	Solid State Physics Lab	0	0	2	1
5	Minor 3	UNS103	Nanostructured materials	4	0	0	4
6	AEC-III	AEC003	New Age Life Skills- III	3	0	0	3
7	Open Elective/Generic Elective-I		Select one course from a basket of course	3	0	0	3
8	Summer Internship /Project	SIPH001	Evaluation of Summer Internship /Project	2	0	0	2
Total							25

Second y	vear : Even Semeste	r					
S.No.	TYPE OF COURSE	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Major-DSC	SCPH202	Modern Physics	4	0	0	4
2	Major-DSC	SCPH204	Waves and Optics	4	0	0	4
3	Major-DSC	SCPH252	Waves and Optics Lab	0	0	2	1
4	Open Elective/Generic Elective-III		Selectonecoursefrom abasket of course	3	0	0	3
5	VAC-III		Select one course from a basket of course	2	0	0	2
6	SEC-III	SEC017	Documentation using Latex	0	0	2	2
7	Minor 4	UNS104	Crystallography	4	0	0	4
8	Minor 5	UNS105	Crystallography Lab	0	0	2	1
		SIPH002	Summer Internship /Project				
TOTAL							21

IIIrd year	IIIrd year : Odd Semester								
S.No.	TYPE OF COURSE	COURSE CODE	COURSE TITLE	L	Т	Р	C		
1	Major-DSC	SCPH301	Quantum mechanics and applications	4	0	0	4		
	Major-DSC	SCPH303	Digital Systems And Applications	4	0	0	4		
2	Major-DSC	SCPH351	Digital Systems And Applications Lab	0	0	2	1		
3	Minor6	UNS106	Synthesis of Nanomaterials-I	4	0	0	4		
4	Minor7	UNS107	Synthesis of Nanomaterials-I lab	0	0	2	1		
5	DSE2	SCPH305	Applied Optics	4	0	0	4		
		SCPH307	Laser Fundamentals	4	0	0			
6	Summer Internship/Proje ct	SIPH002	Evaluation of Summer Internship /Project	2	0	0	2		
TOTAL							20		

IIIrd year	Even SEMEST	ER					
S.No.	TYPE OF COURSE	COURS E CODE	COURSE TITLE	L	Т	Р	С
1	Major-DSC	SCPH302	Analog Systems and Applications	4	0	0	4
2	Major-DSC	SCPH352	Analog Systems and Applications Lab	0	0	2	1
3	Major-DSC	SCPH304	Themodynamics and Statistical Mechanics	4	0	0	4
4	Major-DSC	SCPH306 Electromagnetic theory 4		4	0	0	4
5	Minor8	UNS108	Characterisation techniques of nanomaterials	4	0	0	4
6	Minor9	UNS109	Characterisation techniques of nanomaterials Lab	0	0	2	1
7	VAC-IV		Select one course from a basket of course	2	0	0	2
8	SEC-IV	SEC018	Electrical circuits and network skills	0	0	2	2
TOTAL							22

IV th year : Odd Semester								
S.No.	TYPE OF COURSE	COURSE CODE	COURSE TITLE	L	Т	Р	С	
1	Major-DSC	SCPH401	Nuclear Physics	4	0	0	4	
2	Major-DSC	SCPH403	Classical dynamics	4	0	0	4	
3	Major-DSC	SCCH401	Research Methodology	4	0	0	4	
4	Minor10	UNS110	Synthesis of Nanomaterials-II	4	0	0	4	
5	Minor11	UNS111	Synthesis of Nanomaterials-II lab	0	0	2	1	
Total							17	

IVth year : Even SEMESTER							
S.No.	TYPE OF COURSE	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Major- DSC	SCPH402	Atomic, and Molecular Physics	4	0	0	4
2			Research Project- II				12
Total							16

Summary Sheet B.Sc (H) Physics with Research -Nano Sciences							
S. No.	Nature of Papers	Total No. of Papers	Credits (Theory+Practical)	TOTAL CREDITS			
1	Major-DSC	23	(4+1)	74			
	Major-DSE (Discipline Specific Electives) Papers	2	4	8			
2	Minor	11	32	32			
3	Open elective	3	3	9			
4	Ability Enhancement Courses	3	3	9			
5	Skill Enhancement Courses	4	2	8			
6	Value Added Courses	4	2	8			
7	Summer Internship/Project	2	2	4			
8	Research Project	1	12	12			
Total Papers/Credits				164			

Syllabus of B.Sc. (Hons.) Physics

Semester I

S.No.	COURSE CODE	COURSE TITLE	C
1	SCPH101	Mathematical Physics I	4
2	SCPH103	Electricity and Magnetism	4
3	SCPH151	Electricity and Magnetism LAB 1	
4	AEC001	Communicative English-I	3
5		ValueAddedCourse(EVS+Disaster)through Moodle	2
6	SEC015	Basic Instrumentation Skills	2
7	UNS101	Study of Materials	4
		TOTAL	20

SCPH101	Mathematical Physics-I	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Calculus				
Co-requisites					

Course Objectives

- 1. To make them learn about the calculus and its applications.
- 2. To enable them to use vector calculus for different applications.
- 3. To give knowledge of vector differentiation, integration.
- 4. To impart knowledge about orthogonal curvilinear coordinate, probability and Dirac delta function and its properties.

Course Outcomes

On completion of this course, the students will be able to:

- **CO1:** Apply calculus principles and differential equations to solve mathematical and real-world problems.
- **CO2:** Demonstrate proficiency in vector calculus techniques for functions of multiple variables and constrained maximization.
- **CO3:** Analyze and compute directional derivatives, divergence, curl, and perform line, surface, and volume integrals of vector fields.
- **CO4:** Utilize orthogonal curvilinear coordinates and probability distribution functions for practical applications in various contexts.

Catalog Description

This course aims to demonstrate the use of mathematical techniques in solving problems in Physics and to provide a deeper understanding of the mathematics underpinning theoretical physics. The course is intended to develop the concepts of vector calculus and its applications. Emphasis will be on illustrative examples from Physics and Engineering.

Course Content

UNIT-I

Calculus:

Recapitulation: Limits, continuity, average and instantaneous quantities, differentiation. Intuitive ideas of continuous, differentiable, etc. Approximation: Taylor and binomial series (statements only). First Order and Second Order Differential equations: First Order Differential Equations and Integrating Factor. Homogeneous Equations with constant coefficients. Wronskian and general solution. Statement of existence and Uniqueness Theorem for Initial Value Problems. Particular Integral.

UNIT-II Vector Calculus:

Calculus of functions of more than one variable: Partial derivatives, exact and inexact differentials. Integrating factor, with simple illustration. Constrained Maximization using Lagrange Multipliers.

14 Lectures

14 Lectures

Recapitulation of vectors: Properties of vectors under rotations. Scalar product and its invariance under rotations. Vector product, Scalar triple product and their interpretation in terms of area and volume respectively. Scalar and Vector fields.

UNIT-III

Vector Differentiation: Directional derivatives and normal derivative. Gradient of a scalar field and its geometrical interpretation. Divergence and curl of a vector field. Del and Laplacian operators. Vector identities.

Vector Integration: Ordinary Integrals of Vectors. Multiple integrals, Jacobian. Notion of infinitesimal line, surface and volume elements. Line, surface and volume integrals of Vector fields. Flux of a vector field. Gauss' divergence theorem, Green's and Stokes Theorems and their applications (no rigorous proofs).

UNIT-IV

Orthogonal Curvilinear Coordinates:

Orthogonal Curvilinear Coordinates. Derivation of Gradient, Divergence, Curl and Laplacian in Cartesian, Spherical and Cylindrical Coordinate Systems.

Introduction to probability:

Probability distribution functions; binomial, Gaussian, and Poisson, with examples. Mean and variance

Text Books:

TB1:Mathematical Physics, H.K. Dass and R. Verma, S. Chand & Company.

TB2:Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.

TB3:Mathematical Physics, Goswami, 1st edition, Cengage Learning

TB4:Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press

TB5:Essential Mathematical Methods, K.F.Riley & M.P.Hobson, 2011, Cambridge Univ. Press.

Reference Books:

RB1:Mathematical Methods for Physicists, G.B. Arfken, H.J. Weber, F.E. Harris, 2013, 7th Edn., Elsevier.

RB2:An introduction to ordinary differential equations, E.A. Coddington, 2009, PHI learning RB3:Differential Equations, George F. Simmons, 2007, McGraw Hill.

RB4:Mathematical Tools for Physics, James Nearing, 2010, Dover Publications.

RB5:Mathematical methods for Scientists and Engineers, D.A. McQuarrie, 2003, Viva Book RB6:Advanced Engineering Mathematics, D.G. Zill and W.S. Wright, 5 Ed., 2012, Jones and

Bartlett Learning.

Open Educational Resources (OER)

OER1:

https://www.youtube.com/playlist?list=PLZHQObOWTQDNPOjrT6KVlfJuKtYTftqH6

OER2: https://www.youtube.com/watch?v=GLs0nXZBUYk

OER3: https://archive.nptel.ac.in/courses/111/105/111105122/

OER4: <u>https://www.youtube.com/watch?v=KZzAFX54DWs</u>

OER5: https://archive.nptel.ac.in/courses/111/102/111102111/

14 Lectures

12 Lectures

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	DO3	P04	P05	P06	P07	PO8	6Ud	PO10	LOST	PSO2	PSO3	PSO4
SCPH101	CO1	2	2	1	1	2	2	2	2	1	1	3	2	2	2
	CO2	1	2	1	2	1	2	1	2	1	2	1	3	2	3
Mathematica l Physics-I	CO3	1	1	2	1	1	1	3	2	1	3	2	1	3	1
	CO4	1	2	2	1	2	1	1	1	2	1	1	2	2	1

1=lightly mapped

2= moderately mapped

3=strongly mapped

Week	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]- Chapter/ Page No./ OER	Teaching- Learning Method
1	Unit-I: Calculus - Recapitulation and Differentiation	TB1, OER1	Lectures, Discussions
2	Unit-I: Calculus - Approximation and Taylor Series	TB1, OER1	Online Tutorials, Quizzes
3	Unit-I: First Order Differential Equations	TB1, OER2	Problem- Solving Sessions
4	Unit-I: First Order Differential Equations (cont.)	TB1, OER2	Group Projects
5	Unit-II: Vector Calculus - Partial Derivatives	TB1, OER2	Demonstrations,
	12		

			Labs
6	Unit-II: Vector Calculus - Exact Differentials	TB1, OER2	Guest Lectures
7	Unit-II: Vector Calculus - Constrained	TB1, OER3	Practical
	Maximization		Exercises
8	Unit-III: Vector Differentiation - Gradient	TB1, OER3	
9	Unit-III: Vector Differentiation - Divergence	TB1, OER3	Virtual
			Simulations
10	Unit-III: Vector Integration - Ordinary Integrals	TB1, OER3	Peer
			Presentations
11	Unit-III: Vector Integration - Multiple Integrals	TB1, OER3	Problem-Based
			Learning
12	Unit-III: Vector Integration - Flux and	TB1, OER4	Case Studies
	Divergence Theorems		
13	Unit-III: Vector Integration - Green's and Stokes'	TB1, OER4	Interactive
	Theorems		Workshops
14	Unit-IV: Orthogonal Curvilinear Coordinates and	TB1, OER5	Revision
	Introduction to Probability		Lectures

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Calculus
Local	-
Regional	_
National	
Global	Vector calculus and its applications, analytical reasoning,
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Vector calculus
Local	-
Regional	-
National	-
Global	Disciplinary knowledge, use of mathematical techniques in solving problems in physics and engineering
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment & sustainability	-
Unit iii	Vector differentiation & integration
Local	-

Regional	-
National	
Global	Disciplinary knowledge, use of mathematical techniques in solving problems in physics and engineering
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Orthogonal Curvilinear Co-Ordinates & Probability
Local	-
Regional	-
National	-
Global	Scientific reasoning, equations encountered in physics and engineering
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	(skills for decent work, safe and inclusive learning environments)
Nep 2020	Towards a more holistic and multidisciplinary education
1	Promoting high-quality research
Poe/4 th IR	Use of software and simulations
	Projects and group discussion

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CO)	Teaching- Learning Activities	Assessment Task Methods
Ι	Apply calculus principles and differential equations to solve mathematical and real-world problems.	- Lectures - Presentations	 Presentations and class discussions. Assignments and

II III IV	Demonstrate proficiency techniques for functions of and constrained maximization Analyze and compute dir gradient, divergence, and vector fields. Utilize orthogonal curviling probability distribution fur applications.	f multiple variables on. ectional derivatives, curl of scalar and eear coordinates and	 Discussions Problem- Solving Discussions Case Studies Case Studies Lecture Guest Lectures Practical Exercises Guest Lectures - Demonstrations 		Stu pre Mi exa En	ss te aden ssent d-te amin d-te amin	t atio rm atio rm	ns.
			- Problem- Solving					
	SCPH103	Electricity and Mag	netism		L	Т	Р	С
	Version 1.0							
	Total Contact Hours							
	Pre-requisites/Exposure							
	Co-requisites	Co-requisites						

Course Objectives

- 1. The abstraction from forces to fields using the examples of the electric and magnetic fields, with some applications
- 2. To learn how charges behave through electric circuits.
- 3. Consolidate the understanding of fundamental concepts in Electricity and Magnetism more rigorously as needed for further studies in physics, engineering and technology.
- 4. Expand and exercise the students' physical intuition and thinking process through the understanding of the theory and application of this knowledge to the solution of practical problems

Course Outcomes

On completion of this course, the students will be able to

- CO1: Apply Gauss' Law and understand the conservative nature of electrostatic fields, and calculate electric potential and electric field for charge distributions with various symmetries.
- CO2: Utilize special techniques like the Method of Images to calculate potential and field in the presence of infinite sheets and spheres maintained at constant potential, and analyze electric fields in matter including polarization, displacement vector, and dielectric properties.
- CO3: Analyze magnetic fields, magnetic force, and torque on current elements, and apply Ampere's Circuital Law to solenoids and toroids, as well as calculate magnetic properties of matter such as magnetization, magnetic intensity, susceptibility, and hysteresis.
- CO4: Understand electromagnetic induction, Faraday's Law, self and mutual inductance, and apply reciprocity theorem and Maxwell's Equations to analyze energy stored in magnetic fields, and

comprehend concepts like charge conservation and displacement current.

Catalog Description

This course imparts the basic concepts of Physics. The course is design to point to a plausible physical origin of simple electromagnetic phenomena in nature, based on what the candidate has learned in the course about fundamental laws and concepts in electricity and magnetism. The course of Electricity and Magnetism help organizing the data in variety of ways to solve the problem efficiently. The course is focused on theoretical discussions of Electricity and Magnetism and applications of discussed phenomenon. It also discusses about daily life physics like magnetism, current etc.

Course Content	
Unit I:	13 Lecture hours
Electrostatics:	

Electric field & Electric field lines. Electric flux. Gauss' Law with applications to charge distributions with spherical, cylindrical and planar symmetry. Conservative nature of Electrostatic Field. Electrostatic Potential.

Laplace's and Poisson equations. The Uniqueness Theorem. Potential and Electric Field of a dipole. Force and Torque on a dipole. Capacitance of a system of charged conductors. Parallel-plate capacitor. Capacitance of an isolated conductor.

Unit II:

Special techniques for the calculation of Potential and Field: The Method of Images is applied to a system of a point charge and finite continuous charge distribution (line charge and surface charge) in the presence of (i) a Plane infinite sheet maintained at constant potential, and (ii) a Sphere maintained at constant potential.

Electric Field in Matter: Polarization in matter, Bound charges and their physical interpretation. Field inside a dielectric, Displacement vector D, Gauss' Law in the presence of dielectrics, Boundary conditions for D, Linear dielectrics, Electric Susceptibility and Dielectric Constant, idea of complex dielectric constant due to varying electric field.

Unit III:

Magnetostatics : Magnetic Field: Magnetic force between current elements and definition of Magnetic Field B. Biot-Savart's Law and its simple applications. Current Loop as a Magnetic Dipole and its Dipole Moment (Analogy with Electric Dipole). Ampere's Circuital Law and its application to (1) Solenoid and (2) Toroid.

Properties of B: curl and divergence. Vector Potential. Magnetic Force on (1) point charge (2) current carrying wire (3) between current elements. Torque on a current loop in a uniform Magnetic Field.

Unit IV:

Magnetic Properties of Matter: Magnetization vector (M). Magnetic Intensity (H). Magnetic Susceptibility and permeability. Relation between B, H, M. Ferromagnetism. B-H curve and hysteresis. **Electrodynamics**

Electromagnetic Induction: Faraday's Law. Lenz's Law. Self Inductance and Mutual Inductance. Reciprocity Theorem. Energy stored in a Magnetic Field. Introduction to Maxwell's Equations. Charge Conservation and Displacement current.

Text Books

1. Physics for Scientists and Engineers (6th Ed.), Raymond A. Serway and John W. Jewett, Thomson Brooks (2004).

2. Engineering Physics Theory and Practical, A. K. Katiyar and C. K. Pandey, Wiley (2015)

14 Lecture hours

14 Lecture hours

13 Lecture hours

Reference Books/Materials

Introduction to Electrodynamics (3rd Indian reprint), D.J. Griffiths,., Pearson Education (2003).
 Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw.

Open Educational Resources (OER) https://www.youtube.com/watch?v=dGYCwt2Nqas https://www.youtube.com/watch?v=qjsZTBZd1Ms https://www.youtube.com/watch?v=KGTZPTnZBFE https://www.youtube.com/watch?v=hJD8ywGrXks&vl=en

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	DO3	P04	205	P06	P07	PO8	bUd	PO10	PSO1	PSO2	PSO3	PSO4
SCPH103	CO1	3	3	2	1	1	1	1	1	1	1	2	2	2	1
Electricity and	CO2	3	3	1	2	1	2	2	1	1	2	2	2	2	3
Magnetism	CO3	3	3	1	2	2	2	1	1	1	1	2	2	2	3
	CO4	3	3	1	2	1	2	1	1	1	2	1	2	2	3

1=lightly mapped

2= moderately mapped

3=strongly mapped

Teaching Plan:

Week	Topic/Unit No.	Textbook[TB]/ReferenceBook[RB]-Chapter/ Page No./ OER	Teaching- Learning Method
1	Electrostatics: Electric Field & Electric Field Lines		Lectures, Discussions
2	Electrostatics: Electric Flux & Gauss' Law	TB1, RB2	Online Tutorials, Quizzes

3	Electrostatics: Charge Distributions with Symmetry & Conservative Nature of Electrostatic Field	TB1, RB2	Problem-Solving Sessions
4	Electrostatics: Electrostatic Potential & Laplace's and Poisson Equations	TB1, RB2	Group Projects
5	Electrostatics: Potential and Electric Field of a Dipole	TB1, RB2	Demonstrations, Labs
6	Electrostatics: Force and Torque on a Dipole & Capacitance of Charged Conductors	TB1, RB2	Guest Lectures
7	Electrostatics: Parallel-Plate Capacitor & Capacitance of an Isolated Conductor	TB1, RB2	Practical Exercises
8	Special Techniques for the Calculation of Potential and Field	TB1, RB2	Hands-on Activities
9	Electric Field in Matter: Polarization in Matter & Bound Charges	TB1, RB2	Virtual Simulations
10	Electric Field in Matter: Field inside a Dielectric & Gauss' Law in the presence of Dielectrics	TB1, RB2	Peer Presentations
11	Electric Field in Matter: Boundary Conditions for D & Linear Dielectrics	TB1, RB2	Problem-Based Learning
12	Electric Field in Matter: Electric Susceptibility & Dielectric Constant	TB1, RB2	Case Studies
13	Magnetostatics: Magnetic Field & Magnetic Force between Current Elements	TB1, RB2	Revision Lectures
14	Magnetostatics: Biot-Savart's Law & Current Loop as a Magnetic Dipole	TB1, RB2	Revision Lectures

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CO)	Teaching- Learning	Assessment Task Methods
Ι	Apply Gauss' Law to calculate electric flux and understand the conservative nature of electrostatic fields. Calculate electric potential and field for different charge distributions.	 Lectures Presentations Problem- Solving 	 Presentations and class discussions. Assignments and class tests. Student presentations.
II	Utilize special techniques like the Method of Images to calculate potential and field in	- Lecture	 Mid-term examinations.

	different configurations.	- Discussions	➢ End-term
	Analyze electric fields in matter, polarization,		examinations
	and displacement vector.	- Problem-	
		Solving	
III	Utilize Biot-Savart's Law to calculate magnetic	- Lecture	
	fields and analyze magnetic force between		
	current elements.	- Guest Lectures	
	Understand magnetic fields, force, torque, and		
	magnetic properties of matter.	- Practical	
		Exercises	
IV	Apply Ampere's Circuital Law to solenoids and	- Guest Lectures	
	toroids and calculate the magnetic field for a		
	current loop.	-	
	Understand electromagnetic induction,	Demonstrations	
	Faraday's Law, self and mutual inductance, and	- Problem-	
	apply Maxwell's Equations.	Solving	

SCPH151	Electricity and Magnetism Lab	L	Т	Р	С
Version 1.0		0	0	2	1
Total Contact Hours	54				
Pre-requisites/Exposure	Basics of Physics				
Co-requisites					

Course Objectives

- 1. Dedicated demonstration cum laboratory sessions on the construction, functioning and uses of different electrical bridge circuits, and electrical devices like the ballistic galvanometer. To learn how charges behave through electric circuits.
- 2. Sessions on the review of scientific laboratory report writing, and on experimental data analysis.
- 3. Expand and exercise the students' physical intuition and thinking process through the experiments.
- 4. Interpretation of experimental data

Course Outcomes

On completion of this course, the students will be able to

- CO1. Acquire fundamental knowledge of laboratory instruments and their uses.
- CO2. Better insight about data collection techniques.
- CO3. Better understanding of data interpretation and error analysis.
- CO4. Acquire knowledge about the techniques related data analysis and curve fitting.

Catalog Description

This course imparts the basic concepts of experimental physics. The course is design to give knowledge how to use basic instruments in laboratory and laboratory experiment protocols. The main focus is on data collection techniques and the data interpretation. For this purpose a series of experiments have been set. The difficulty level of experiments is set easy to moderate level due to introductory physics.

Course Content

1. Use a Multimeter for measuring (a) Resistances, (b) AC and DC Voltages, (c) DC Current,

- (d) Capacitances, and (e) Checking electrical fuses.
- 2. To study the characteristics of a series RC Circuit.
- 3. To determine an unknown Low Resistance using Potentiometer.
- 4. To determine an unknown Low Resistance using Carey Foster's Bridge.
- 5. To compare capacitances using De'Sauty's bridge.
- 6. Measurement of field strength B and its variation in a solenoid (determine dB/dx)
- 7. To verify the Thevenin and Norton theorems.
- 8. To verify the Superposition, and Maximum power transfer theorems.
- 9. To determine self inductance of a coil by Anderson's bridge.
- 10. To study response curve of a Series LCR circuit and determine its (a) Resonant frequency, (b)

Impedance at resonance, (c) Quality factor Q, and (d) Band width.

11. To study the response curve of a parallel LCR circuit and determine its (a) Anti-resonant

frequency and (b) Quality factor Q.

- 12. Measurement of charge and current sensitivity and CDR of Ballistic Galvanometer
- 13. Determine a high resistance by leakage method using Ballistic Galvanometer.
- 14. To determine self-inductance of a coil by Rayleigh's method.
- 15. To determine the mutual inductance of two coils by Absolute method.

Text Books [TB]

- 1. Physics for Scientists and Engineers (6th Ed.), Raymond A. Serway and John W. Jewett, Thomson Brooks (2004).
- 2. Engineering Physics Theory and Practical, A. K. Katiyar and C. K. Pandey, Wiley (2015).

Reference Books/Materials [RB]

- 1. Introduction to Electrodynamics (3rd Indian reprint), D.J. Griffiths,., Pearson Education (2003).
- 2. Electricity, Magnetism & Electromagnetic Theory, S. Mahajan and Choudhury, 2012, Tata McGraw

Open Educational Resources (OER)

- 1. phet.colorado.edu
- 2. https://www.youtube.com/watch?v=dGYCwt2Nqas

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Assessment & Evaluation

Programme And Course Mapping

Course Code and Title	Course Outcome	Į,	101	P02	DO3	P04	P05	P06	PO7	P08	60d	DO10	PSO1	PS02	PSO3	PSO4
SCPH152	CO1	3	1	l									3	1		
	CO2			3	2									2		
Mechanics Lab	CO3				3		2	1							3	1
	CO4					3			2	3	1					

1=lightly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Electric field
Local	-
Regional	-
National	-
Global	Understanding of fundamental concepts in electricity
Employability	Solving problems involving electric circuits and their behavior
Entrepreneurship	-
Skill development	Solving problems involving magnetic circuits and their behavior
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment & sustainability	-
Unit ii	Electrostatic energy of system of charges, dielectric properties of matter give heading of the unit here (if applicable)
Local	-
Regional	-
National	-
Global	Understanding of fundamental concepts in magnetism
Employability	Solving problems involving magnetic circuits and their behavior
Entrepreneurship	-
Skill development	Solving problems involving magnetic circuits and their behavior
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Magnetic field, magnetic properties of matter
Local	-
Regional	-
National	-
Global	Applications of electricity and magnetism

Employability	Application of electricity and magnetism in daily life
Entrepreneurship	-
Skill development	Application of electricity and magnetism in daily life
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Electromagnetic induction, electrical circuits, network theorems, ballistic
	galvanometer
Local	-
Regional	-
National	-
Global	Scientific reasoning
Employability	Application of electricity and magnetism in daily life
Entrepreneurship	-
Skill development	Application of electricity and magnetism in daily life
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)

Teaching Plan:

Week	Topic/Experiment No.	[TB]/ [RB]/ OER	Teaching-Learning Method
1	Experiment 1 Use of Multimeter for measuring electrical quantities	OER1	 Introduction to electrical measurements and multimeters. Hands-on practice with multimeters. Demonstration of various measurements.
2	Experiment 2 Study of characteristics of a series RC Circuit	OER1	 Introduction to RC circuits and their behavior. Practical setup and measurements. Data collection and analysis.
3	Experiment 3 Determination of unknown Low Resistance using Potentiometer	OER1	Explanation of potentiometer and its applications.Experiment setup and measurements.Calculation of unknown resistance.
4	Experiment 4 Determination of unknown Low Resistance using Carey Foster's Bridge	OER1	Introduction to Carey Foster's Bridge and working. Practical setup and measurements. Calculation of unknown resistance.
5	Experiment 5 Comparison of capacitances using De'Sauty's bridge	OER1	De'Sauty's bridge and its principle. Experimental setup and measurements. Comparison of capacitances.
6	Experiment 6 Measurement of field strength B and its variation in a solenoid	OER1	Introduction to magnetic fields and solenoids. Experimental setup and measurements of dB/dx. Data analysis.

7	Experiment 7 Verification of Thevenin and Norton theorems	OER1	Explanation of Thevenin and Norton theorems. Practical verification of the theorems.Data collection and analysis.
8	Experiment 8 Verification of Superposition and Maximum power transfer theorems	OER1	Introduction to superposition and maximum power transfer. Practical verification of the theorems. Data collection and analysis.
9	Experiment 9 Determination of self inductance of a coil by Anderson's bridge	OER1	Anderson's bridge setup and working. Experimental measurements of self inductance. Calculation of self inductance.
10	Experiment 10 Study of response curve of a Series LCR circuit	OER1	Series LCR circuit behavior and response. Practical setup and measurements. Calculation of resonant frequency, impedance, Q-factor.
11	Experiment 11 Study of response curve of a parallel LCR circuit	OER1	Parallel LCR circuit response and behavior. Practical setup and measurements. Calculation of anti- resonant frequency and Q-factor.
12	Experiment 12 Measurement of charge and current sensitivity of Ballistic Galvanometer	OER1	Ballistic galvanometer and its principles. Experiment setup for charge and current sensitivity. Data collection and analysis.
13	Experiment 13 Determination of high resistance by leakage method using Ballistic Galvanometer	OER1	Leakage method using ballistic galvanometer. Practical setup and measurements. Calculation of high resistance.

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CO)	Teaching- Learning	Assessment Task Methods
NO.		Activities	Methous
I	Use a multimeter for measuring various electrical quantities.	 Hands-on practice Presentations Discussions 	 Presentations and class discussions. Lab reports and comparison with theoretical values
II	Study characteristics of electrical circuits and verify theorems.	 Problem- Solving Sessions Discussions Case Studies 	 Assignments and class tests. Mid-term examinations. End-term examinations
	Determine electrical parameters using various measurement techniques.	 Lecture Guest Lectures Practical Exercises 	
IV	Apply concepts of electromagnetism and	- Guest Lectures	

inductance in practical scenarios.	Demonstrations
	- Problem-
	Solving
	Sessions

AEC001	New Age Life Skills-I	L	Т	Р	С
Version 1.0		3	0	0	3
Pre-requisites/Exposure					
Co-requisites					

SEC015	Basic Instrumentation Skills	L	Т	Р	С
Version 1.0		0	0	2	2
Total Contact Hours	27				
Pre-requisites/Exposure	Basics of Physics				
Co-requisites	Basics of Electronics				

Course Objectives

- 1. Dedicated demonstration cum hands on sessions on the construction, functioning and uses of different measuring Instruments such as Voltmeter, Ammeter, Multimeter, CRO, Function Generator etc.
- 2. To learn difference between analog and digital meters.
- 3. Expand and exercise the students' physical intuition and thinking process through the experiments.

Course Outcomes

On completion of this course, the students will be able to

CO1: Understand the principles and specifications of measurement instruments.

CO2: Analyze the working principles of Analog and digital voltmeter, ammeter and multimeter.

CO3: Apply CROs and DSOs for voltage measurement and analysis.

Course Description

This course is to give exposure with various aspects of instruments and their usage through hands-on mode. Importance of measurement is explained along with the working of various measuring instruments. For this purpose, a series of experiments have been set. Experiments listed below are to be done in continuation of the topics.

UNIT-I

5 Lectures

10 Lectures

Basic of Measurement: Instruments accuracy, precision, sensitivity, resolution range etc. Errors in measurements and loading effects. Multimeter: Specifications of a multimeter and their significance.

Unit-II

Electronic Voltmeter: Advantage over conventional multimeter for voltage measurement with respect to input impedance and sensitivity. Principles of voltage, measurement (block diagram only).

Specifications of an electronic Voltmeter/ Multimeter and their significance. AC millivoltmeter: Type of AC millivoltmeters: Amplifier- rectifier, and rectifier- amplifier. Block diagram ac millivoltmeter, specifications and their significance.

UNIT-III

12 Lectures

Cathode Ray Oscilloscope: Block diagram of basic CRO. Construction of CRT, Electron gun, electrostatic focusing and acceleration (Explanation only– no mathematical treatment), brief discussion on screen phosphor, visual persistence & chemical composition. Time base operation, synchronization. Front panel controls. Specifications of a CRO and their significance.

Use of CRO for the measurement of voltage (dc and ac frequency, time period. Special features of dual trace, introduction to digital oscilloscope, probes. Digital storage Oscilloscope: Block diagram and principle of working.

Text Books:

- 1. Text book in Electrical Technology B L Theraja S Chand and Co.
- 2. Performance and design of AC machines M G Say ELBS Edn.
- 3. Digital Circuits and systems, Venugopal, 2011, Tata McGraw Hill.

Reference Books:

- 1. Logic circuit design, Shimon P. Vingron, 2012, Springer.
- 2. Digital Electronics, Subrata Ghoshal, 2012, Cengage Learning.
- 3. Electronic Devices and circuits, S. Salivahanan & N. S.Kumar, 3rd Ed., 2012, Tata Mc-Graw Hill.
- 4. Electronic circuits: Handbook of design and applications, U.Tietze, Ch.Schenk, 2008, Springer
- 5. Electronic Devices, 7/e Thomas L. Floyd, 2008, Pearson India.

Open Educational Resources (OER)

https://www.youtube.com/watch?v=kxKOU3hmNug https://www.youtube.com/watch?app=desktop&v=dGtwItnYYqk

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term			
		Examination		Examination			
Weightage (%)	20	20	10	50			

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	PO2	DO3	P04	204	P06	704	PO8	bUd	PO10	PSO1	PSO2	PSO3	PSO4
SEC015	CO1	3	3	2	1	1	1	1	1	1	1	2	2	2	1
Basic Instrumentati	CO2	3	3	1	2	1	2	2	1	1	2	2	2	2	3
on Skills	CO3	3	3	1	2	2	2	1	1	1	1	2	2	2	3

1=lightly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Basic of measurement
Local	-
Regional	-
National	-
Global	Understanding of construction of standard laboratory instruments
Employability	-
Entrepreneurship	-
Skill development	Understanding of various analog and digital instruments
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Cathode ray oscilloscope
Local	-
Regional	-
National	-
Global	Differentiation between working of digital and analog instruments
Employability	-
T (1)	
Entrepreneurship	-
Skill development	- Understanding of various analog and digital instruments,
Skill development	Understanding of various analog and digital instruments,
Skill development Professional ethics	Understanding of various analog and digital instruments, -
Skill development Professional ethics Gender	Understanding of various analog and digital instruments, - -

Unit iii	Signal generators and analysis instruments
Local	-
Regional	-
National	-
Global	Using cathode ray oscilloscope
	(CRO) and function generators
Employability	-
Entrepreneurship	-
Skill development	Learning data fitting
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Digital instruments
Local	-
Regional	-
National	-
Global	Related to data fitting and curve analysis
Employability	-
Entrepreneurship	-
Skill development	Concept of accuracy, precision, and sensitivity in measurements
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	SDG
.1	Promoting high-quality research
Poe/4 th IR	Hands on experience.

Teaching Plan:

Week	Topic/Unit No.	Textbook [TB]/ Reference Book	Teaching-Learning
		[RB]-Chapter/ Page No./ OER	Method
1	Multimeter	TB1, OER1	Lectures, Discussions
2		TB1, OER1	Online Tutorials,
	Electronic Voltmeter		Quizzes
3		TB1, OER1	Problem-Solving
	AC Millivoltmeter		Sessions
4	Cathode Ray	TB1, OER2	Demonstrations, Labs
	Oscilloscope		
5	Time Base Operation	TB1, OER2	Lectures, Discussions
6	Front Panel Controls	TB1, OER2	Demonstrations, Labs
7	Digital Storage	TB1, OER2	Lectures, Discussions
	Oscilloscope		
8	Construction of CRT	TB1, OER2	Lectures, Discussions
9	Time Base Operation	TB1, OER2	Lectures, Discussions
10	Introduction to DSO	TB1, OER2	Peer Presentations

11	Specifications of CRO	TB1, OER2	Lectures, Discussions
12	Principles of Voltage	TB1, OER2	Demonstrations, Labs
	Measurement		
13	Digital Storage	TB1, OER2	Lectures, Discussions
	Oscilloscope		
14	Digital Storage	TB1, OER2	Case Studies
	Oscilloscope working		

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes (CO)	Teaching-	Assessment Task
No.		Learning	Methods
		Activities	
Ι	Understand the basics of measurement	- Lectures	Presentations
	instruments and their specifications.	- Presentations	and class
		- Problem-	discussions.
		Solving	Assignments and
		Sessions	class tests. ➤ Student
II	Analyze the working principles of Analog and	- Lecture	presentations.
	digital voltmeter, ammeter and multimeter.	- Discussions	 Mid-term
		- Problem-	examinations.
		Solving	➢ End-term
		Sessions	examinations
III	Analyze the working principles of Cathode Ray	- Lecture	
	Oscilloscope (CRO) and Digital Storage	- Problem-	
	Oscilloscope (DSO).	Solving	
	And Apply CROs and DSOs for voltage	Sessions	
	measurement and time base operation.	- Practical	
		Exercises	

UNS101	Study of Materials	L	Т	Р	C
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure					
Co-requisites					

Course Objective: All the modern modern materials show some unique properties which either are by the virtue of material or may be tailored. Metallurgists and Materials scientists are responsible for designing and producing new materials. The desired properties may be introduced in the materials by altering their microstructures. This course will help students understand the properties of different types of materials and their applications. The course will also helpful to develop new kind of materials for engineering applications.

Course Outcomes:

CO1: Understand the mechanical properties of metals, including stress-strain behavior, plastic deformation, and hardness.

CO2: Analyze dislocations and strengthening mechanisms in metals, including grain size reduction and

strain hardening.

CO3: Describe the solid solutions and phase diagrams, including unary & binary phase diagrams and eutectic systems.

CO4: Examine the failures of metals, including fracture, fatigue, creep, and corrosion mechanisms and prevention.

UNIT I

Mechanical Properties of Metals Concepts of Stress and Strain, Elastic Deformation: Stress-Strain Behavior, Anelasticity, Elastic Properties of Materials; Plastic Deformation: Tensile Properties, True Stress and Strain, Elastic Recovery after Plastic Deformation, Compressive, Shear, and Torsional Deformation, Hardness; Property Variability And Design/Safety Factors: Variability of Material Properties, Design/Safety Factors.

UNIT II

Dislocations and Strengthening Mechanisms

Characteristics of Dislocations, Slip Systems, Slip in Single Crystals, Plastic Deformation of Polycrystalline Materials, mechanism of plastic deformation, deformation by twinning,

Mechanisms Of Strengthening In Metals: Strengthening by Grain Size Reduction, 7.9 Solid-Solution Strengthening, Strain Hardening; Recovery, Recrystallization and Grain Growth: Recovery, Recrystallization, Grain Growth.

UNIT III

Solid solutions and phase diagram

Introduction to single and multiphase solid solutions and types of solid solutions, importance and objectives of phase diagram, systems, phase and structural constituents, cooling curves, unary & binary phase diagrams, Gibbs's phase rule, Lever rule, eutectic and eutectoid systems, peritectic and peritectoid systems, iron carbon equilibrium diagram and TTT diagram.

UNIT IV

Failures of metals

Failure analysis, fracture, process of fracture, types of fracture, fatigue, characteristics of fatigue, fatigue limit, mechanism of fatigue, factors affecting fatigue.

Definition and concept of Creep, creep curve, mechanism of creep, impact of time and temperature on creep, creep fracture, creep testing and prevention against creep.

Corrosion: Mechanism and effect of corrosion, prevention of corrosion **TEXT BOOKS:**

1. Materials Science and Engineering: An Introduction (7th Ed.), William D. Callister, Jr., John Wiley & Sons, Inc.

2. Elements of Material Science and Engineering: VanVlack, Wesley Pub. Comp.

3. Material Science - Narula, Narula and Gupta. New Age Publishers

REFERENCE BOOKS:

1. Material Science & Engineering –V. Raghvan, Prentice Hall of India Pvt. Ltd, New Delhi.

2. A Text Book of Material Science & Metallurgy – O.P. Khanna, Dhanpat Rai & Sons

3. Engineering Materials: Kenneth G. Budinski, Prentice Hall of India, New Delhi

Open Educational Resources (OER)

https://www.govinfo.gov/content/pkg/GOVPUB-C13-e18ffcc1681da9e902df23acaeb5cc6c/pdf/GOVPUB-C13-e18ffcc1681da9e902df23acaeb5cc6c.pdf

13 Lectures

13 Lectures

14 Lectures

14 Lectures

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term			
		Examination		Examination			
Weightage (%)	20	20	10	50			

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	DO3	P04	POS	P06	704	P08	60d	PO10	PSO1	PSO2	PSO3	PSO4
UNS101	3	2	2	2	2	2	2	2	2	2	2	2	2	2	2
Study of Material	CO2	2	3	2	2	2	2	2	2	2	2	2	2	2	2
S	CO3	2	2	3	2	2	2	2	2	2	2	2	2	2	2
	CO4	2	2	2	3	2	2	2	2	2	2	2	2	2	2
1=lightly	mapped	2=	modera	ately	mapp	ped	I	3=	stron=	gly r	napp	ed	1	1	1

Course Content: Mechanical Properties of Metals (Unit I)

Indicator	Relevant Course Content
Local	Concepts of Stress and Strain, Elastic Deformation, Plastic
	Deformation, Tensile Properties, True Stress and Strain, Hardness,
	Variability of Material Properties
Regional	-
National	Concepts of Stress and Strain, Elastic Deformation, Plastic
	Deformation, Tensile Properties, True Stress and Strain, Hardness,
	Variability of Material Properties
Global	Concepts of Stress and Strain, Elastic Deformation, Plastic
	Deformation, Tensile Properties, True Stress and Strain, Hardness,
	Variability of Material Properties
Employability	Concepts of Stress and Strain, Elastic Deformation, Plastic
	Deformation, Tensile Properties, True Stress and Strain, Hardness,
	Variability of Material Properties
Entrepreneurship	-
Skill Development	Concepts of Stress and Strain, Elastic Deformation, Plastic
	Deformation, Tensile Properties, True Stress and Strain, Hardness

Professional Ethics	
	-
Gender	-
Human Values	-
Environment &	-
Sustainability	
SDG	-
Nep 2020	-
Poe/4th IR	-
	ations and Strengthening Mechanisms (Unit II)
Indicator	Relevant Course Content
Local	Characteristics of Dislocations, Slip Systems, Plastic Deformation, Mechanisms Of Strengthening In Metals, Recovery, Recrystallization and Grain Growth
Regional	-
National	Characteristics of Dislocations, Slip Systems, Plastic Deformation, Mechanisms Of Strengthening In Metals, Recovery, Recrystallization and Grain Growth
Global	Characteristics of Dislocations, Slip Systems, Plastic Deformation, Mechanisms Of Strengthening In Metals, Recovery, Recrystallization and Grain Growth
Employability	Characteristics of Dislocations, Plastic Deformation, Mechanisms Of Strengthening In Metals, Recovery, Recrystallization and Grain Growth
Entrepreneurship	-
Skill Development	Characteristics of Dislocations, Plastic Deformation, Mechanisms Of Strengthening In Metals, Recovery, Recrystallization and Grain Growth
Professional Ethics	-
Gender	-
Human Values	-
Environment &	-
Sustainability	
SDG	-
Nep 2020	-
Poe/4th IR	-
Course Content: Solid S	Solutions and Phase Diagrams (Unit III)
Indicator	Relevant Course Content
Local	-
Regional	-
National	Introduction to solid solutions, Phase Diagrams, Gibbs's phase rule, Lever rule, Iron-Carbon Equilibrium Diagram
Global	Introduction to solid solutions, Phase Diagrams, Gibbs's phase rule, Lever rule, Iron-Carbon Equilibrium Diagram
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	-
Sustainability	
SDG	-

Nep 2020	-
Poe/4th IR	-
Course Content: Failure	s of Metals (Unit IV)
Indicator	Relevant Course Content
Local	Failure analysis, Fracture, Fatigue, Creep, Creep Testing, Prevention against Creep
Regional	-
National	Failure analysis, Fracture, Fatigue, Creep, Creep Testing, Prevention against Creep
Global	Failure analysis, Fracture, Fatigue, Creep, Creep Testing, Prevention against Creep
Employability	Failure analysis, Fatigue, Creep, Prevention against Creep
Entrepreneurship	-
Skill Development	Failure analysis, Fatigue, Creep
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	
SDG	-
Nep 2020	-
Poe/4th IR	-

Teaching Plan:

Week	Topic/Unit No.	Textbook [TB]/	Teaching-Learning
		ReferenceBook[RB]-Chapter/PageNo./	Method
		OER	
	Concepts of Stress and Strain,	TB1, OER1	Lecture, Conceptual
1	Elastic Deformation		Explanation
	Plastic Deformation, Tensile	TB1, OER1	Lecture, Examples,
2	Properties, True Stress and Strain		Problem Solving
	Compressive, Shear, and Torsional	TB1, OER1	Lecture, Practical
3	Deformation, Hardness		Examples, Lab Work
	Property Variability and	TB1, OER2	
4	Design/Safety Factors		Lecture, Case Studies
	Characteristics of Dislocations, Slip	TB1, OER2	Lecture, Case Studies,
5	Systems		Discussions
	Slip in Single Crystals, Plastic	TB1, OER2	Lecture, Examples,
	Deformation of Polycrystalline		Graphical
6	Materials		Representation
	Mechanisms of Strengthening in	TB1, OER2	
	Metals: Grain Size Reduction, Solid-		Lecture, Conceptual
7	Solution Strengthening		Exercises, Discussions
	Strain Hardening; Recovery,	TB1, OER2	Lecture, Practical
8	Recrystallization, and Grain Growth		Examples, Lab Work
	Introduction to Solid Solutions and	TB1, OER2	Lecture, Examples,
9	Phase Diagrams		Problem Solving

		TB1, OER2	Lecture, Case Studies,		
	Unary and Binary Phase Diagrams,		Problem-Solving		
10	Gibbs's Phase Rule		Sessions		
	Lever Rule, Eutectic and Eutectoid	TB1, OER2	Lecture, Case Studies,		
11	Systems		Group Discussions		
		TB1, OER2	Lecture, Examples,		
	Peritectic and Peritectoid Systems,		Graphical		
12	Iron-Carbon Equilibrium Diagram		Representation		
	TTT (Time-Temperature-	TB1, OER2			
	Transformation) Diagram, Failure		Lecture, Case Studies,		
13	Analysis		Discussions		
	Creep and Fatigue Mechanisms,	TB1, OER2	Lecture, Practical		
14	Prevention Against Creep		Examples, Lab Work		

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CO)	Teaching-Learning Activities	Assessment Task Methods
Ι	Understand the concepts of stress and strain and their relevance to mechanical properties of metals	LecturesPresentationsProblem-Solving Sessions	 Presentations and class discussions. Assignments and class tests.
II	Describe dislocations and their role in plastic deformation of materials.	LectureDiscussionsProblem-Solving Sessions	 Student presentations. Mid-term examinations.
III	Introduce the concept of solid solutions and phase diagrams in materials	- Lecture - Problem-Solving Sessions - Practical Exercises	End-term examinations
IV	Analyze the failures of metals, including fracture, fatigue, and creep mechanisms	Group presentations on preventive measures and case studies. - Lecture - Problem-Solving Sessions	

Semester II

S.No	COURSE CODE	COURSE TITLE	С
1	SCPH102	Mathematical Physics II	4
2	SCPH104	Mechanics	4
3	SCPH152	Mechanics Lab	1

4	AEC002	Communicative English-II	3
5		Value Added Course (Based on Extension Activity)	2
6		Open Elective/Generic Elective-I	3
7	SEC016	Physics Workshop Skill	2
8	UNS102	Elements of Nanosciences and nanomaterials	4
	SIPH001	Summer Internship /Project	
		TOTAL	23

SCPH102	Mathematical Physics-II	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Calculus				
Co-requisites	Mathematical Physics-I				

Course Objectives

1. To make them learn about the Fourier series expansion and its applications.

2. To enable them to use theory of errors on various types of data.

3. To give knowledge of special Functions such as Legendre, Bessel, Hermite and Laguerre and their properties.

4. To impart knowledge about various mathematical tools employed to study physics problems.

Course Outcomes

On completion of this course, the students will be able to

CO1: Understand Fourier series and its application for periodic and non-periodic functions.

CO2: Apply Frobenius method to solve second-order differential equations and special functions.

CO3: Comprehend Beta, Gamma functions, and Error Function for evaluating integrals and handling errors.

CO4: Solve partial differential equations using separation of variables for wave and diffusion equations.

Catalog Description

This course aims to demonstrate the use of mathematical techniques in solving problems in Physics and to provide a deeper understanding of the mathematics underpinning theoretical physics. The course is intended to develop the theory of errors, Fourier series, special functions and partial differential equations. Emphasis will be on illustrative examples from Physics and Engineering.

Course Content

UNIT-I

14 Lecture Hours

Fourier Series: Periodic functions. Orthogonality of sine and cosine functions, Dirichlet Conditions (Statement only). Expansion of periodic functions in a series of sine and cosine functions and determination of Fourier coefficients. Complex representation of Fourier series. Expansion of functions with arbitrary period. Expansion of non-periodic functions over an interval. Even and odd functions and their Fourier expansions. Application. Summing of Infinite Series. Term-by-Term differentiation and integration of Fourier Series. Parseval Identity.

UNIT-II

Frobenius Method and Special Functions: Singular Points of Second Order Linear Differential Equations and their importance. Frobenius method and its applications to differential equations. Legendre, Bessel, Hermite and Laguerre Differential Equations. Properties of Legendre Polynomials: Rodrigues Formula, Generating Function, Orthogonality. Simple recurrence relations. Expansion of function in a series of Legendre Polynomials. Bessel Functions of the First Kind: Generating Function, simple recurrence relations. Zeros of Bessel Functions (Jo(x) and J1(x)) and Orthogonality.

UNIT-III

13 Lecture Hours

14 Lecture Hours

Some Special Integrals: Beta and Gamma Functions and Relation between them. Expression of Integrals in terms of Gamma Functions. Error Function (Probability Integral).

Theory of Errors: Systematic and Random Errors. Propagation of Errors. Normal Law of Errors. Standard and Probable Error. Least-squares fit. Error on the slope and intercept of a fitted line. **UNIT-IV 13 Lecture Hours**

Partial Differential Equations: Solutions to partial differential equations, using separation of variables: Laplace's Equation in problems of rectangular, cylindrical and spherical symmetry. Wave equation and its solution for vibrational modes of a stretched string, rectangular and circular membranes. Diffusion Equation.

Text Books:

TB1:Mathematical Physics, H.K. Dass and R. Verma, S. Chand & Company. TB2:Advanced Engineering Mathematics, Erwin Kreyszig, 2008, Wiley India.

Reference Books:

- Mathematical Methods for Physicists: Arfken, Weber, 2005, Harris, Elsevier. •
- Fourier Analysis by M.R. Spiegel, 2004, Tata McGraw-Hill. •
- Mathematics for Physicists, Susan M. Lea, 2004, Thomson Brooks/Cole.
- Differential Equations, George F. Simmons, 2006, Tata McGraw-Hill. •
- Partial Differential Equations for Scientists & Engineers, S.J. Farlow, 1993, Dover Pub. •
- Engineering Mathematics, S.Pal and S.C. Bhunia, 2015, Oxford University Press •
- Mathematical methods for Scientists & Engineers, D.A. McQuarrie, 2003, Viva Books

Open Educational Resources (OER)

OER1: https://math.mit.edu/~gs/cse/websections/cse41.pdf OER2:

https://www.researchgate.net/publication/250156802_Notes_on_Special_Functions

OER3: https://ocw.mit.edu/courses/18-152-introduction-to-partial-differential-equationsfall-2011/resources/mit18_152f11_lec_01/

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Assessment & Evaluation

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	DO3	P04	POS	P06	P07	PO8	00d	P010	PSO1	PSO2	PSO3	PSO4
SCPH102	CO1	2	2	1	1	2	2	2	2	1	1	3	2	2	2
	CO2	1	2	1	2	1	2	1	2	1	2	1	3	2	3
Mathematica l Physics-II	CO3	1	1	2	1	1	1	3	2	1	3	2	1	3	1
	CO4	1	2	2	1	2	1	1	1	2	1	1	2	2	1
1=lightly	mapped	2=	moder	ately	mapp	bed		3=	stron=	gly 1	napp	ed			

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Fourier series
Local	-
Regional	-
National	
Global	Mathematical techniques like Fourier series expansion
Employability	-
Entrepreneurship	-
Skill development	
Professional ethics	-
Gender	
	-
Human values Environment &	-
	-
sustainability	Furthering mothed and encoded from theme
Unit ii Local	Frobenius method and special functions
	-
Regional	-
National	-
Global	Analytical reasoning,
Employability	-
Employability	
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Some special integrals, theory of errors
Local	-
Regional	-
National	-
Global	Critical thinking
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Partial differential equations
Local	-
Regional	-
National	-
Global	Scientific reasoning
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	

sustainability	
SDG	Quality education (4)
Nep 2020	Towards a more holistic and multidisciplinary education
	Promoting high-quality research

Teaching Plan

Week	Topic/Unit No.	Textbook[TB]/ReferenceBook[RB]-Chapter/Page No./ OER	Teaching- Learning Method
1	Orthogonality of sine and cosine functions	TB1, OER1	Lectures, Discussions
2	Expansion of periodic functions	TB1, OER1	Online Tutorials, Quizzes
3	Complex representation of Fourier series	TB1, OER1	Problem- Solving Sessions
4	Expansion of functions with arbitrary period	TB1, OER2	Group Projects
5	Expansion of non-periodic functions	TB1, OER2	Demonstrations, Labs
6	Even and odd functions and their Fourier exp	TB1, OER2	Guest Lectures
7	Application of Fourier series	TB1, OER3	Practical Exercises
8	Summing of Infinite Series	TB1, OER3	
9	Term-by-Term differentiation and integration	TB1, OER3	Virtual Simulations
10	Parseval Identity	TB1, OER3	Peer Presentations
11	Frobenius Method and Special Functions	TB1, OER3	Problem-Based Learning
12	Singular Points of Second Order Linear Diff.	TB1, OER3	Case Studies
13	Legendre, Bessel, Hermite and Laguerre Diff.	TB1, OER3	Interactive Workshops
14	Orthogonality of sine and cosine functions	TB1, OER3	Revision Lectures

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CO)	Teaching-Learning Activities	Assessment Task Methods
Ι	Understand Fourier Series and	- Lectures	Presentations
	their applications.	- Presentations	and class
		- Discussions	discussions.
II	Apply Frobenius method to solve	- Problem-Solving Sessions	Assignments and class tests.
	special differential equations.	- Discussions	\succ Student
		- Case Studies	presentations.
III	Comprehend Beta, Gamma	- Lecture	➢ Mid-term
	functions, and their applications.	- Guest Lectures	examinations.

			- Practical Exercises	➤ End-term					
IV	Solve partial differential	equations	- Guest Lectures	ex	ami	natio	ons		
	using separation of variables.		- Demonstrations						
			- Problem-Solving Sessions						
	SCPH104	MECHA	ANICS	L	Τ	P	С		
	Version 1.0			4	0	0	4		
7	Fotal Contact Hours	54							
]	Pre-requisites/Exposure Basic Phy		ysics and Mathematics						
Co-requisites			•						

Course Objectives

1. To acquire the knowledge of fundamentals of motion of objects, work, energy and collisions

2. To understand the concepts of rotational dynamics, elasticity and fluid motion.

3. To gain insight to the theory of gravitation and oscillations.

4. To have an insight about non-inertial systems and Special Theory of Relativity.

Course Outcomes

On completion of this course, the students will be able to

CO1: Understand fundamentals of dynamics, conservation laws, impulse, and energy principles in mechanics.

CO2: Analyze rotational dynamics, moment of inertia, and motion under central forces.

CO3: Comprehend oscillations, damping, resonance, non-inertial frames, and relativistic effects.

CO4: Apply principles to collisions, fluid motion, elasticity, and relativistic kinematics..

Catalog Description

This course is intended to introduce the basic concepts of physics related to motion of objects. It discusses the logic behind many events that we observe around us in day to day life. It emphasizes on the relationship between force, matter and motion under different circumstances. This course is a bridge between the basic and advance concepts of physics.

Course Content

14 Lecture

UNIT-I Hours

Fundamentals of Dynamics: Reference frames. Inertial frames; Review of Newton's Laws of Motion. Galilean transformations; Galilean invariance. Momentum of variable-mass system: motion of rocket. Motion of a projectile in Uniform gravitational field Dynamics of a system of particles. Centre of Mass. Principle of conservation of momentum. Impulse.

Work and Energy: Work and Kinetic Energy Theorem. Conservative and non-conservative forces. Potential Energy. Energy diagram. Stable and unstable equilibrium. Elastic potential energy. Force as gradient of potential energy. Work & Potential energy. Work done by nonconservative forces. Law of conservation of Energy.

Collisions: Elastic and inelastic collisions between particles. Centre of Mass and Laboratory frames. UNIT-II 14 Lecture Hours

Rotational Dynamics: Angular momentum of a particle and system of particles. Torque. Principle of conservation of angular momentum. Rotation about a fixed axis. Moment of Inertia. Calculation of moment of inertia for rectangular, cylindrical and spherical bodies. Kinetic energy of rotation. Motion involving both translation and rotation.

Elasticity: Relation between Elastic constants. Twisting torque on a Cylinder or Wire.

Fluid Motion: Kinematics of Moving Fluids: Poiseuille's Equation for Flow of a Liquid through a Capillary Tube.

Gravitation and Central Force Motion: Law of gravitation. Gravitational potential energy. Inertial and gravitational mass. Potential and field due to spherical shell and solid sphere.

Motion of a particle under a central force field. Two-body problem and its reduction to one-body problem and its solution. The energy equation and energy diagram. Kepler's Laws. Satellite in circular orbit and applications. Geosynchronous orbits. Weightlessness. Basic idea of global positioning system (GPS).

UNIT-III

13 Lecture Hours

Oscillations: SHM: Simple Harmonic Oscillations. Differential equation of SHM and its solution. Kinetic energy, potential energy, total energy and their time-average values. Damped oscillation. Forced oscillations: Transient and steady states; Resonance, sharpness of resonance; power dissipation and Quality Factor.

Non-Inertial Systems: Non-inertial frames and fictitious forces. Uniformly rotating frame. Laws of Physics in rotating coordinate systems. Centrifugal force. Coriolis force and its applications. Components of Velocity and Acceleration in Cylindrical and Spherical Coordinate Systems.

UNIT-IV

13 Lecture Hours

Special Theory of Relativity: Michelson-Morley Experiment and its outcome.Postulates of Special Theory of Relativity. Lorentz Transformations. Simultaneity and order of events. Lorentz contraction. Time dilation. Relativistic transformation of velocity, frequency and wave number. Relativistic addition of velocities. Variation of mass with velocity. Massless Particles. Mass energy Equivalence. Relativistic Doppler effect. Relativistic Kinematics. Transformation of Energy and Momentum.

Text books:

1. Mechanics, D.S. Mathur, S. Chand and Company Limited, 2000

Reference book(s) [RB]:

1. An introduction to mechanics, D. Kleppner, R.J. Kolenkow, 1973, McGraw-Hill.

- 2. Mechanics, Berkeley Physics, vol.1, C.Kittel, W.Knight, et.al. 2007, Tata McGraw-Hill.
- 3. Physics, Resnick, Halliday and Walker 8/e. 2008, Wiley.
- 4. Analytical Mechanics, G.R. Fowles and G.L. Cassiday. 2005, Cengage Learning
- 5. Feynman Lectures, Vol. I, R.P.Feynman, R.B.Leighton, M.Sands, 2008, Pearson Education
- 6. Introduction to Special Relativity, R. Resnick, 2005, John Wiley and Sons.
- 7. University Physics, Ronald Lane Reese, 2003, Thomson Brooks/Cole.

Open Educational Resources (OER)

OER1:

https://www.fisica.net/mecanicaclassica/introduction_to_statics_and_dynamics_by_rudr a_pratap.pdfhttps://www.fisica.net/mecanicaclassica/introduction_to_statics_and_dynam ics_by_rudra_pratap.pdf

OER2: <u>https://www.youtube.com/watch?v=W8_Vr7zzA84</u>

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	DO3	P04	P05	P06	P07	PO8	600	PO10	PSO1	PSO2	PSO3	PSO4
SCPH104	C01	3													
Mechanics	CO2		3												
Wechanics	CO3			3											
	CO4				3										

1=lightly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Fundamentals of dynamics, work and energy, collisions
Local	-
Regional	-
National	-
Global	Basic concepts of physics related to motion of objects.
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Rotational dynamics, elasticity, fluid motion, gravitation and central force
	motion
Local	-
Regional	-
National	-
Global	Basic concepts of physics related to motion of objects.
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	oscillations, non-inertial systems
Local	-
Regional	-
National	-

Global	Discussion of the logic behind many events that we observe around us in day
	to day life.
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Special theory of relativity
Local	-
Regional	-
National	-
Global	Discussion of the logic behind many events that we observe around us in day
F 1 1 11	to day life.
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education Promoting high-quality research
Poe/4 th IR	Projects and group discussion

Teaching Plan:

Week	Topic/Unit No.	Textbook [TB]/ Reference Book	Teaching-Learning Method
		[RB]-Chapter/	
		Page No./ OER	
1	Fundamentals of Dynamics	TB1, OER1	Lecture, Conceptual Explanation
2	Galilean transformations;	TB1, OER1	Lecture, Examples, Problem
	Newton's Laws		Solving
3	Momentum of variable-mass	TB1, OER1	Lecture, Practical Examples, Lab
	system		Work
4	Motion of a projectile	TB1, OER1	Lecture, Demonstrations
5	Dynamics of a system of	TB1, OER1	
	particles		Lecture, Case Studies
6	Principle of conservation of	TB1, OER1	
	momentum		Lecture, Group Discussions
7	Work and Kinetic Energy	TB1, OER1	Lecture, Practical Examples, Case
	Theorem		Studies
	Conservative and non-	TB1, OER1	
	conservative forces		Lecture, Group Discussions
9	Potential Energy	TB1, OER1	Lecture, Group Discussions

10	Elastic potential energy	TB1, OER1	Lecture, Practical Examples, Lab
			Work
11	Collisions: Elastic and	TB1, OER1	
	inelastic collisions		Lecture, Conceptual Explanation
12	Rotation about a fixed axis	TB1, OER2	Lecture, Demonstrations
13	Moment of Inertia	TB1, OER2	Lecture, Practical Examples, Lab
			Work
14	Motion involving both	TB1, OER2	
	translation and rotation		Lecture, Case Studies

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes (CO)	Teaching-	Assessment Task
No.		Learning	Methods
		Activities	
Ι	Understand fundamentals of dynamics,	- Lectures	Presentations
	conservation laws, impulse, and energy	- Presentations	and class
	principles in mechanics.	- Discussions	discussions. Assignments and
II	Analyze motion involving both translation and	- Problem-	Assignments and class tests.
	rotation.	Solving	Student
		Sessions	presentations.
		- Discussions	➢ Mid-term
		- Case Studies	examinations.
III	Comprehend special theory of relativity and its	- Lecture	End-term
	applications.	- Guest Lectures	examinations
		- Practical	
		Exercises	
IV	Analyze postulates and Lorentz	- Guest Lectures	
	Transformations of Special Theory of	-	
	Relativity, Time Dilation, and Length	Demonstrations	
	Contraction.	- Problem-	
		Solving	
		Sessions	

SCPH152	MECHANICS LAB	L	Τ	Р	С
Version 1.0		0	0	2	1
Total Contact Hours	27				
Pre-requisites/Exposure	Mechanics				
Co-requisites					

Course Objectives

- 5. Demonstration cum laboratory sessions on the concepts of mechanics such as moment of inertia, determination of 'g' and elastic constants of materials.
- 6. Sessions on the review of scientific laboratory report writing, and on experimental data analysis.
- 7. Expand and exercise the students' physical intuition and thinking process through the

experiments.

8. Interpretation of experimental data.

Course Outcomes

On completion of this course, the students will be able to

CO1: Demonstrate proficiency in using basic instruments for measurements in the laboratory.

CO2: Analyze and quantify random errors in experimental observations.

CO3: Apply experimental techniques to determine physical properties like spring constant and modulus of rigidity.

CO4: Utilize appropriate methods to determine gravitational acceleration (g) and other mechanical constants.

Catalog Description

This course involves the experimental verification of concepts of mechanics. The course is design to give knowledge how to use basic instruments in laboratory and laboratory experiment protocols. The main focus is on data collection techniques and the data interpretation. For this purpose a series of experiments have been set. The difficulty level of experiments is set easy to moderate level due to introductory physics.

Course Content

At least 08 experiments from the following:

1. Measurements of length (or diameter) using vernier caliper, screw gauge and travelling microscope.

- 2. To study the random error in observations.
- 3. To determine the height of a building using a Sextant.

4. To study the Motion of Spring and calculate (a) Spring constant, (b) g and (c) Modulus of rigidity.

- 5. To determine the Moment of Inertia of a Flywheel.
- 6. To determine g and velocity for a freely falling body using Digital Timing Technique
- 7. To determine Coefficient of Viscosity of water by Capillary Flow Method (Poiseuille's method).
- 8. To determine the Young's Modulus of a Wire by Optical Lever Method.
- 9. To determine the Modulus of Rigidity of a Wire by Maxwell's needle.
- 10. To determine the elastic Constants of a wire by Searle's method.
- 11. To determine the value of g using Bar Pendulum.
- 12. To determine the value of g using Kater's Pendulum.

References for Laboratory Work:

- 1. Advanced Practical Physics for students, B. L. Flint and H.T. Worsnop, 1971, Asia Publishing House
- 2. Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers
- 3. A Text Book of Practical Physics, I.Prakash & Ramakrishna, 11th Edn, 2011, Kitab Mahal
- 4. Engineering Practical Physics, S.Panigrahi & B.Mallick, 2015, Cengage Learning India Pvt.Ltd.
- 5. Practical Physics, G.L. Squires, 2015, 4th Edition, Cambridge University Press.

Open Educational Resources (OER)

OER1: phet.colorado.edu

Assessment & Evaluation

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	POI	PO2	DO3	P04	P05	P06	LUd	PO8	604	PO10	108d	PSO2	PSO3	PSO4
SCPH152	CO1	3	1									3	1		
	CO2		3	2									2		
Mechanics Lab	CO3			3		2	1							3	1
	CO4				3			2	3	1					

1=lightly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Mechanics lab
Local	-
Regional	-
National	-
Global	Experimental verification of concepts of mechanics
Employability	-
Entrepreneurship	-
Skill development	Mechanics
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
Poe/4 th IR	Hands-on experience,
	Projects

Teaching Plan:

Week	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]-Chapter/ Page No./ OER	Teaching-Learning Method
1	Experiment 1 Measurements using vernier caliper, screw gauge, and travelling microscope	OER1	Introductiontolaboratoryequipmentand safety measures.Demonstrationandhands-onpracticewithmeasurementinstruments.Discussiononmeasurementtechniques.
2	Experiment 2 Study of random errors in observations	OER1	- Lecture on sources of errors and error analysis. Experiment setup for random error determination. Data collection and error calculations.
3	Experiment 3 Determination of building height using a Sextant	OER1	- Introduction to Sextant and its working principle. Practical demonstration of Sextant usage. Calculation of building height.
4	Experiment 4 Study of Motion of Spring and calculation of Spring constant, 'g', and Modulus of rigidity	OER1	- Introduction to spring motion and related concepts. Experiment setup for motion of spring and data collection. Calculation of spring constant, 'g', and modulus of rigidity.
5	Experiment 5 Determination of Moment of Inertia of a Flywheel	OER1	Discussion on moment of inertia and its importance. Practical demonstration of flywheel experiment. Data analysis and calculation of moment of inertia.
6	Experiment 6 Determination of 'g' and velocity using Digital Timing Technique	OER1	- Introduction to free fall motion and timing techniques. Experiment setup and data collection using digital timing. Calculation of 'g' and velocity.
7	Experiment 7	OER1	- Explanation of

			• •, • •••
	Determination of Coefficient of Viscosity by Capillary Flow Method		viscosity and capillary flow method. Practical demonstration of viscosity experiment. Data analysis and calculation of viscosity coefficient.
8	Experiment 8 Determination of Young's Modulus using Optical Lever Method	OER1	- Introduction to Young's Modulus and optical lever method. Practical setup and measurement of Young's Modulus. Data analysis and calculations.
9	Experiment 9 Determination of Modulus of Rigidity using Maxwell's Needle	OER1	- Concept of rigidity modulus and Maxwell's needle method. Experimental setup and measurements. Calculation of rigidity modulus.
10	Experiment 10 Determination of elastic Constants of a wire by Searle's method	OER1	- Discussion on elasticity and Searle's method. Practical setup and measurements. Calculation of elastic constants.
11	Experiment 11 Determination of 'g' using Bar Pendulum	OER1	- Explanation of bar pendulum and its usage. Practical setup and measurements. Calculation of gravitational acceleration 'g'.
12	Experiment 12 Determination of 'g' using Kater's Pendulum	OER1	- Introduction to Kater's pendulum and working principle. Practical setup and measurements. Calculation of gravitational acceleration 'g'.
13	Review and Preparation Recap and review of experiments	OER1	Comprehensive review of all experiments and concepts. Clarification of doubts and discussion.
14	Review and Preparation Recap and review of experiments	OER1	Comprehensive review of all experiments and concepts. Clarification of doubts and discussion.

AEC002	New Age Life Skills-II	L	Т	Р	C
Version 1.0		3		0	3
Total Contact Hours	39				
Pre-requisites/Exposure					
Co-requisites					

ill:	Use	of N	Multin	neter.	Sold	ering	of e	lectrica	al c
anc	ł ICs	on	PCB.	Oper	ation	of o	scillo	scope.	Μ

SEC016	Physics Workshop Skill	L	Т	Р	C
Version 1.0		2		0	2
Total Contact Hours	27				
Pre-requisites/Exposure					
Co-requisites					

Course Objectives

- 9. To make them learn about the different measuring instruments.
- 10. To enable them to use mechanical skill for development of new tools.
- 11. To give knowledge of soldering process.
- 12. To impart knowledge about gear systems, lever and pulley.

Course Outcomes

On completion of this course, the students will be able to:

CO1: Measure and convert physical quantities using appropriate instruments and units.

CO2: Demonstrate knowledge of workshop practices and various manufacturing methods.

CO3: Apply electrical and electronic skills to construct and troubleshoot circuits using discrete components and ICs.

Catalog Description

The aim of this course is to enable the students to familiar and experience with various mechanical and electrical tools through hands-on mode. To make them learn about the different measuring instruments. To enable them to use mechanical skill for development of new tools. To give knowledge of soldering process. To impart knowledge about gear systems, lever and pulley.

Course Content

UNIT-I

Introduction: Measuring units. conversion to SI and CGS. Familiarization with meterscale, Vernier calliper, Screw gauge and their utility. Measure the dimension of a solid block, volume of cylindrical beaker/glass, diameter of a thin wire, thickness of metal sheet, etc.

UNIT-II

Mechanical Skill: Concept of workshop practice. Overview of manufacturing methods: casting, foundry, machining, forming and welding. Types of welding joints and welding defects. Common materials used for manufacturing like steel, copper, iron, metal sheets, composites and alloy, wood. Concept of machine processing, introduction to common machine tools like lathe, shaper, drilling, milling and surface machines. Cutting tools, lubricating oils.

UNIT-III

Hours

Electrical and Electronic Sk circuits having discrete components (R, L, C, diode) laking regulated power

10 Lecture

10 Lecture Hours

7 Lecture Hours

supply. Timer circuit, Electronic switch using transistor and relay.

Text Books:

TB1: A text book in Electrical Technology - B L Theraja – S. Chand and Company.

TB2: Performance and design of AC machines – M.G. Say, ELBS Edn.

TB3: Mechanical workshop practice, K.C. John, 2010, PHI Learning Pvt. Ltd

Reference Books:

RB1: Workshop Processes, Practices and Materials, Bruce J Black 2005, 3rd Edn., Editor Newnes [ISBN: 0750660732]

RB2: New Engineering Technology, Lawrence Smyth/Liam Hennessy, The Educational Company of Ireland [ISBN: 0861674480]

Open Educational Resources (OER)

OER1 https://www.youtube.com/watch?v=i9ixyz8y2gA

OER2 <u>https://www.youtube.com/watch?v=ynnJVpdhX3o</u>

OER3

https://www.youtube.com/watch?v=mc979OhitAg&list=PLWv9VM947MKi_7yJ0_FCfzTBXpQ U-Qd3K

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	DO3		504	P06	P07	PO8	604	P010	PSO1	PSO2	PSO3	PSO4
SEC016/	CO1	3	2	1	2	1	1	1	2	1	1	1	-	-	_
Physics Workshop Skill	CO2	1	1	1	3	3	3	2	1	2	1	1	-	-	-
	CO3	_	_	-	-	-	-	-	-	-	-	1	3	3	3

1=lightly mapped

2= moderately mapped

3=strongly mapped

Teaching Plan

We ek	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]-Chapter/ Page No./ OER	Teaching-Learning Method
1	UNIT-I: Introduction to Measuring Units	TB 1/RB2	Lecture
	Conversion to SI and CGS	TB 1	
	Familiarization with meterscale, Vernier caliper, Screw gauge, and their utility	OER1	
2	UNIT-I (Contd.): Measurement of Dimension of a Solid Block	ТВ-2	Practical/Lab
	Measurement of Volume of Cylindrical Beaker/Glass	TB 1	
3	UNIT-I (Contd.): Measurement of Diameter of a Thin Wire	TB 1	Practical/Lab
	Measurement of Thickness of Metal Sheet	TB 1	
4-5	UNIT-II: Concept of Workshop Practice	TB 3	Lecture
	Overview of Manufacturing Methods: Casting, Foundry, Machining, Forming, and Welding	OER2	
6	UNIT-II (Contd.): Types of Welding Joints and Welding Defects	ТВ 3	Lecture
7-8	UNIT-II (Contd.): Common Materials Used for Manufacturing	ТВ 3	Lecture
	Concept of Machine Processing	TB 3	
9- 10	UNIT-II (Contd.): Introduction to Common Machine Tools	ТВ 3	Practical/Lab
	(Lathe, Shaper, Drilling, Milling, and Surface Machines)	ТВ 3	
11	UNIT-II (Contd.): Cutting Tools and Lubricating Oils	TB 3	Practical/Lab
12	UNIT-III: Use of Multimeter	TB-1	Practical/Lab
13	UNIT-III (Contd.): Soldering of Electrical Circuits with Discrete Components (R, L, C, Diode) on PCB	OER3	Practical/Lab
14	UNIT-III (Contd.): Operation of Oscilloscope, Making Regulated Power Supply	TB-1	Practical/Lab
	Timer Circuit and Electronic Switch Using Transistor and Relay	TB-1	

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CLOs)	Teaching-Learning Activities	Assessment Task Methods
UNIT-I	Apply appropriate measuring units and conversions.	Lectures, discussions, and examples.	Present ations
	Utilize meterscale, Vernier caliper, and Screw gauge.	Laboratory demonstrations and hands-on practice.	and class
	Measure dimensions of solid blocks and cylindrical beakers accurately.	Group activities to measure various objects.	discuss ions.

UNIT-	Demonstrate an understanding of standard units and accurate measuring. Explain the principles of workshop	Problem-solving sessions and real- world applications. Lectures on workshop techniques	~	Assign ments and class
II	practices.	and safety precautions.	~	tests.
	Compare and contrast various manufacturing methods. Identify different types of welding joints and defects.	Case studies on different manufacturing processes. Welding demonstrations and practical exercises.	A	Studen t present ations. Mid-
	CLO8: Analyze properties and applications of materials used in manufacturing.	Discussions on material properties and hands-on material testing.	~	term examin ations.
UNIT- III	Operate a multimeter proficiently to measure electrical quantities.	Hands-on training with multimeters and circuits.		End- term examin
	Demonstrate skill in soldering electrical circuits.	PCB soldering exercises and soldering workshops.		ations
	Utilize an oscilloscope effectively for circuit analysis.	Oscilloscope labs and signal visualization exercises.		
	Design and construct a regulated power supply.	Design projects with hands-on power supply construction.		
	Create timer circuits and electronic switches using transistors.	Circuit design and implementation activities.		

UNS102	Elements of Nano sciences and nanomaterial L T				
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Basics of Chemistry				
Co-requisites					

Course Description

The aim of this course is to introduce an emerging class of materials called nanomaterials that consists of a broad spectrum of examples with at least one dimension in the range of 1 to 100 nm. Exceptionally high surface areas can be achieved through the rational design of nanomaterials. It will also explain how nanomaterials can be produced with outstanding magnetic, electrical, optical, mechanical, and catalytic properties that are substantially different from their bulk counterparts. The course will conclude with various types of characterization techniques which can be used for analysing these nanomaterials.

Course Outcomes

CO1: Learning about the background of nanoscience and understanding how it has been existent in nature since ages.

CO2: Knowledge about quantum mechanics and applying it understanding nano effects.

CO3: Analysing various ways of synthesising nanomaterial.

CO4: Evaluating ways for the structure and properties of nanomaterials.

Unit I

12 Lectures

13 Lectures

15 Lectures

Background to Nano science: Definition of Nano, Scientific revolution-atomic Structure and atomic size, emergence and challenges of nano science and nanotechnology, carbon age-new form of carbon (CNT to Graphene), influence of Nano over micro/macro, size effects and crystals, large surface to volume ratio, surface effects on the properties. Influence of Nano structuring on Mechanical, optical, electronic, magnetic and chemical properties.

Unit-II

Introduction to Quantum Mechanics: Schrodinger equation and expectation values, Solutions of the Schrodinger equation for free particle, particle in a box, particle in a finite well, Reflection and transmission by a potential step and by a rectangular barrier. Angular momentum and its operators, Eigen values and Eigen functions of the angular momentum operators, spin, Pauli spin operators and their properties, hydrogen atom, density of states, free electron theory of metals.

Unit III

Types of nanostructure and properties of nanomaterial: One dimensional, two dimensional and three dimensional nanostructured materials, Quantum Dots shell structures, metal oxides, semiconductors, composites, mechanical-physical-chemical properties.

Chemical synthesis of nano material: Self-assembly, self-assembled monolayers (SAMs). Langmuir-Blodgett (LB) films, colloids, zeolites, organic block copolymers, emulsion polymerization, template synthesis, and confined nucleation and/or growth. Biomimetic Approaches: polymer matrix isolation, and surface-template nucleation and/or crystallization. Vapour (or solution) – liquid – solid (VLS or SLS) growth -Electrochemical Approaches: anodic oxidation of alumina films, porous silicon, and pulsed electrochemical deposition

Unit IV

Characterization of nanomaterial: X-ray Diffraction - Thermal Analysis Methods, Differential Thermal Analysis and Differential scanning calorimetry - Spectroscopic techniques, UV-Visible Spectroscopy – IR Spectroscopy – Microwave Spectroscopy - Raman **Spectroscopy:** Electron Spin Resonance Spectroscopy, NMR Spectroscopy, **Particle size characterization:** Zeta Potential Measurement, **Particle size Analysis:** X-ray Photoelectron spectroscopy. **Imaging techniques for nanotechnology**: Scanning Electron Microscopy, Transmission Electron Microscopy, and Atomic

14 Lectures

Force Microscopy.

Textbooks

TB1 : Nanomaterials Chemistry by Rao C. N., A. Muller, A. K. Cheetham, WileyVCH, 2007. TB2: Nanomaterials and Nanochemistry by Brechignac C., P. Houdy, M. Lahmani, Springer publication, 2007.

TB3: Nanoscale materials in chemistry by Kenneth J. Klabunde, Wiley Interscience Publications, 2001.

TB4: Nanochemistry by Sergeev G.B., Elseiver publication, 2006.

TB5: Quantum Physics – A. Ghatak

Reference Books

RB1: Chemistry of nanomaterials: Synthesis, properties and applications by CNR Rao et.al.

RB2: Nanoparticles: From theory to applications – G. Schmidt, Wiley Weinheim 2004.

RB3: Instrument E L Principe, P Gnauck and P Hoffrogge, Microscopy and Microanalysis (2005), 11: 830- 831, Cambridge University Press.

RB4: Processing & properties of structural naonmaterials - Leon L. Shaw, Nanochemistry: A Chemical Approach to Nanomaterials, Royal Society of Chemistry, Cambridge UK 2005.

Open Educational Resources (OER)

https://www.youtube.com/watch?v=0EWCqCIsFOA

https://www.youtube.com/watch?v=-K7Gs0Nj-50&list=PLQzUXa8lZVq_y0i5dOjW6oEr6h43bJCV

https://nptel.ac.in/courses/118104008

https://nptel.ac.in/courses/115101007

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	200	P04	P05	P06	P07	PO8	00d	P010	PSO1	PSO2	PSO3	PSO4
UNS102/ Elements of	CO1	3	1	1	2	1	1	1	1	1	1	3	1	1	1
Nano sciences and	CO2	3	2	1	2	1	2	1	2	2	2	3	2	2	2
nanomaterial	CO3	3	1	2	3	3	2	3	2	1	3	3	3	2	3
	CO4	3	1	1	2	1	2	1	2	2	2	3	2	2	2

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Background to Nano science
Local	Understanding the impact of nanoscience on local industries and
	research.
Regional	-
National	Advancing national capabilities in nanotechnology research and
	quantum mechanics understanding.
Global	Contributing to global scientific advancements and collaborations in
Uluual	nanoscience.
	hanoseience.
Employability	Equipping students with knowledge of emerging nanotechnology
	trends.
Entrepreneurship	Facilitating innovation in nanotechnology-related startups.
Skill development	Developing analytical and research skills in nanoscience.
Professional	Encouraging ethical conduct in nanotechnology research.
ethics	
Gender	-
Human values	-
Environment &	Exploring sustainable nanomaterials and their applications.
sustainability	
Unit ii	Introduction to Quantum Mechanics
Local	Enabling local industries to adopt quantum mechanics principles in
	materials research.
Designal	
Regional	
Regional National	Strengthening the understanding of quantum mechanics in national
-	
National	Strengthening the understanding of quantum mechanics in national research.
-	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced
National	Strengthening the understanding of quantum mechanics in national research.
National Global	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies.
National	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced
National Global Employability	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups.
National Global Employability Entrepreneurship	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics.
National Global Employability Entrepreneurship Skill development	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups.
National Global Employability Entrepreneurship Skill development Professional	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics.
National Global Employability Entrepreneurship Skill development Professional ethics	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics.
National Global Employability Entrepreneurship Skill development Professional ethics Gender	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics.
National Global Employability Entrepreneurship Skill development Professional ethics Gender Human values	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics. -
National Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment &	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics. -
National Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics. - - Exploring quantum solutions for environmental challenges. Types of nanostructure and properties of nanomaterial Promoting the local production of nanomaterials with specific
National Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iii	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics. - - Exploring quantum solutions for environmental challenges.
National Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iii Local	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics. - - Exploring quantum solutions for environmental challenges. Types of nanostructure and properties of nanomaterial Promoting the local production of nanomaterials with specific
National Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iii	Strengthening the understanding of quantum mechanics in national research. Enhancing global knowledge in quantum mechanics for advanced technologies. Equipping students with quantum mechanics skills for diverse careers. Fostering innovation in quantum technology startups. Developing problem-solving skills in quantum mechanics. Promoting ethical research in quantum mechanics. - - Exploring quantum solutions for environmental challenges. Types of nanostructure and properties of nanomaterial Promoting the local production of nanomaterials with specific

Global	Contributing to global advancements in nanomaterial science.
Employability	Enhancing students' employability in nanotechnology-related fields.
Entrepreneurship	Encouraging innovation in nanomaterial startups.
Skill development	Developing synthesis and characterization skills in nanomaterials.
Professional	Emphasizing ethical considerations in nanomaterial research.
ethics	
Gender	-
Human values	-
Environment & sustainability	Investigating sustainable nanomaterials and processes.
Unit iv	Characterization of nanomaterial
Local	Offering local industries access to nanomaterial characterization techniques.
Regional	-
National	Strengthening national capabilities in nanomaterial characterization.
Global	Contributing to global knowledge in nanomaterial characterization.
Employability	Enhancing students' employability in materials analysis fields.
Entrepreneurship	Facilitating innovation in nanomaterial characterization services.
Skill development	Developing expertise in advanced characterization techniques.
Professional ethics	Promoting ethical conduct in nanomaterial characterization.
Gender	-
Human values	-
Environment & sustainability	Ensuring environmentally responsible nanomaterial analysis.
SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education Promoting high-quality research
Poe/4 th IR	Preparing students for the Fourth Industrial Revolution.

Teaching Plan:

Week	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]-Chapter/ Page	5
		No./ OER	

1	Background to Nano Science	TB 1	Lecture, Presentation
2	Introduction to Quantum Mechanics	ТВ 1	Lecture, Problem Solving
3	Types of Nanostructure and Properties of Nanomaterials	TB 1	Lecture, Case Studies
4	Chemical Synthesis of Nanomaterials	ТВ 2	Lab Demonstrations, Hands-on Activities
5	X-ray Diffraction and Thermal Analysis Methods	ТВ 2	Lecture, Lab Work
6	Spectroscopic Techniques for Nanomaterial Characterization	ТВ 3	Lecture, Guest Lectures
7	Imaging Techniques for Nanotechnology	ТВ 3	Lab Work, Demonstrations
8	Schrodinger Equation and Expectation Values	https://nptel.ac.in/course s/118104008	Lecture, Problem Solving
9	Reflection and Transmission by Potential Barriers	RB 1	Lecture, Case Studies
10	One-Dimensional Nanostructured Materials	https://nptel.ac.in/course s/115101007	Lecture, Presentation
11	Spin and Pauli Spin Operators	RB 1	Lecture, Problem Solving
12	Two-Dimensional and Three-Dimensional Nanostructured Materials	RB 1	Lecture, Guest Lectures
13	Metal Oxides, Semiconductors, and Composites	https://nptel.ac.in/course s/115101007	Independent Study, Discussions
14	Nanomaterial Structure and Properties Evaluation	RB 3	Independent Study, Discussions

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CO)	Teaching- Learning Activities	Assessment Task Methods
I	Learn about the background of nanoscience and understand its existence in nature since ages and	- Lectures	Presentations and class
	Apply knowledge of quantum mechanics to understand nano effects.	- Presentations	discussions. ➤ Assignments and class tests.
		- Discussions	 Student presentations.
П	Apply knowledge of quantum mechanics to	- Lab	Mid-term
	understand nano effects and Analyze various ways	Demonstrations	examinations.
	of synthesizing nanomaterials.	- Hands-on	► End-term
		Activities	examinations
		- Case Studies	
	CO3: Analyze various ways of synthesizing nanomaterials and Evaluate ways for the structure	- Lecture	
	and properties of nanomaterials.	- Guest Lectures	
		- Independent	
		Study	
IV	Evaluate ways for the structure and properties of nanomaterials.	- Lab Work	
		-	
		Demonstrations	
		- Discussions	

III Semester

S.No.	COURSE CODE	COURSE TITLE	С
1	SCPH201	Mathematical Physics III	4

2	SCPH203	Solid State Physics	4
3	SCPH251	Solid State Physics Lab	1
4	SCPH205	Introduction of Nanochemistry and Applications	4
	SCPH207	Green Processes Of Chemistry	
5	UNS103	Nanostructured materials	4
6	AEC003	New Age Life Skills-III	3
7		Select one course from a basket of course	3
8	SIPH001	Evaluation of Summer Internship /Project	2
Total			25

SCPH201	Mathematical Physics-III	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54 Hours				
Pre-requisites/Exposure	Calculus				
Co-requisites	Mathematical Physics-I, II				

Course Objectives

1. To make them learn about the complex numbers and their properties, functions of complex numbers and their properties such as analyticity, poles and residues.

2. To enable them to use residue theorem and its applications in evaluating definite Integrals.

3. To give knowledge of Fourier transform, Laplace Transform and their applications in real world problems.

4. To impart knowledge about various mathematical tools employed to study physics problems.

Course Outcomes

On completion of this course, the students will be able to

CO1: Identify and summarize the key concepts of Complex Analysis, including complex numbers, Euler's formula, De Moivre's theorem, and roots of complex numbers.

CO2: Apply the Cauchy-Riemann conditions to determine the analyticity of a complex function and identify singular functions, such as poles and branch points. Analyze the order of singularity and the concept of branch cuts.

CO3: Utilize Cauchy's Integral formula and residues to evaluate complex integrals in simply and multiply connected regions. Demonstrate proficiency in finding Laurent and Taylor expansions of complex functions.

CO4: Compare and contrast Fourier Transforms and their properties, including translation, change of scale, and complex conjugation. Apply Fourier Transforms to solve differential equations, particularly one-dimensional wave and diffusion/heat flow equations.

Catalog Description

This course aims to demonstrate the use of mathematical techniques in solving problems in Physics and to provide a deeper understanding of the mathematics underpinning theoretical physics. The course is intended to develop the theory of complex analysis and its applications, Fourier Transform and Laplace Transform, their properties and applications. Emphasis will be on illustrative examples from Physics and Engineering.

Course Content

UNIT-I

Complex Analysis: Brief Revision of Complex Numbers and their Graphical Representation. Euler's formula, De Moivre's theorem, Roots of Complex Numbers. Functions of Complex Variables. Analyticity and Cauchy-Riemann Conditions. Examples of analytic functions. Singular functions: poles and branch points, order of singularity, branch cuts.

UNIT-II

Integration of a function of a complex variable. Cauchy's Inequality. Cauchy's Integral formula. Simply and multiply connected region. Laurent and Taylor's expansion. Residues and Residue Theorem. Application in solving Definite Integrals.

Integrals Transforms: Fourier Transforms: Fourier Integral theorem. Fourier Transform. Examples. Fourier transform of trigonometric, Gaussian, finite wave train & other functions. Representation of Dirac delta function as a Fourier Integral.

UNIT-III

Hours

Fourier transform of derivatives, Inverse Fourier transform, Convolution theorem. Properties of Fourier transforms (translation, change of scale, complex conjugation, etc.). Three dimensional Fourier transforms with examples. Application of Fourier Transforms to differential equations: One

13 Lecture Hours

13 Lecture Hours

14 Lecture

dimensional Wave and Diffusion/Heat Flow Equations.

UNIT-IV

Hours

Laplace Transforms: Laplace Transform (LT) of Elementary functions. Properties of LTs: Change of Scale Theorem, Shifting Theorem. LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs. LT of Unit Step function, Dirac Delta function, Periodic Functions. Convolution Theorem. Inverse LT. Application of Laplace Transforms to 2nd order Differential Equations: Damped Harmonic Oscillator, Simple Electrical Circuits, Coupled differential equations of 1st order. Solution of heat flow along infinite bar using Laplace transform.

Text Books

Mathematical Physics, H.K. Dass and R. Verma, S. Chand & Company.

Reference Books/Materials

• Mathematical Methods for Physics and Engineers, K.F Riley, M.P. Hobson and S. J. Bence, 3rd ed., 2006, Cambridge University Press.

- Mathematics for Physicists, P. Dennery and A.Krzywicki, 1967, Dover Publications.
- Complex Variables, A.S.Fokas & M.J.Ablowitz, 8th Ed., 2011, Cambridge Univ. Press.
- Complex Variables, A.K. Kapoor, 2014, Cambridge Univ. Press.
- Complex Variables and Applications, J.W. Brown & R.V. Churchill, 7th Ed. 2003, Tata McGraw-Hill.
 - First course in complex analysis with applications, D.G. Zill and P.D. Shanahan, 1940, Jones & Bartlett.

Open Educational Resources (OER)

- <u>https://youtu.be/ysVcAYo7UPI</u>
- <u>https://youtu.be/QiwfF83NWNA</u>
- <u>https://www.coursera.org/lecture/complex-analysis/complex-functions-</u>

koxdh?utm_source=link&utm_medium=page_share&utm_content=vlp&utm_campaign=top button

- <u>https://youtu.be/OiNh2DswFt4</u>
- <u>https://youtu.be/33TYoybjqPg</u>

Assessment & Evaluation

Components	Assignment	Mid Term Examination	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
SCPH201, Mathematical	CO1	3	3	3	-	3	-	-	-	1	-	3	2	3	2

14 Lecture

Physics-III	CO2	2	2	2	-	2	2	-	-	-	1	2	3	3	1
	CO3	2	2	2	-	2	2	2	2	-	-	1	3	3	2
	CO4	2	2	2	2	2	2	2	2	1	-	3	3	1	3

1=weakly mapped 2= moderately mapped 3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Complex analysis
Local	-
Regional	-
National	-
Global	Knowledge about complex analysis and its importance
Employability	-
Entrepreneurship	-
Skill development	Image processing using Fourier and Laplace transform
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Integrals
Local	-
Regional	-
National	-
Global	Introduction to Fourier transforms
Employability	-
Entrepreneurship	_
Skill development	Image processing using Fourier and Laplace transform
Professional ethics	-
Gender	_
Human values	-
Environment &	-
sustainability	
Unit iii	Fourier transform
Local	-
Regional	-
National	-
Global	Applications of Fourier transforms in diffusion and heat flow equations
Employability	-
Entrepreneurship	-
Skill development	Image processing using Fourier and Laplace transform
Professional ethics	
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Laplace transforms
Local	-
Regional	-
National	-
	1

Global	Laplace transform and its applications
Employability	-
Entrepreneurship	-
Skill development	Image processing using Fourier and Laplace transform
	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
Poe/4 th IR	Use of software and simulations
	Projects and group discussion

Teaching Plan:

Weekl y Teachi ng Plan	Topic/Unit No.	[RB]-Chapter/ Page No./ Open Education Resources [OER]	Teaching- Learning Method
	Complex numbers and their graphical representation, Euler's formula, De Moivre's theorem, Roots of Complex Numbers, Analyticity and Cauchy- Riemann Conditions		Lecture, Examples, Discussions
	Integration of a function of a complex variable, Cauchy's Inequality, Cauchy's Integral formula, Simply and multiply connected regions	https://youtu be/OiwfE83NWNA	Lecture, Examples, Discussions
•	Laurent and Taylor's expansion, Residues and Residue Theorem, Application in solving Definite Integrals		Lecture, Examples, Discussions
4	Fourier Integral theorem, Fourier Transform, Fourier transform of trigonometric, Gaussian, finite wave train & other functions		Lecture, Examples, Discussions
Week 5	Representation of Dirac delta function as a Fourier Integral	Riley et al. (Ch. 12)	Lecture, Examples, Discussions
6	Inverse Fourier transform, Convolution theorem, Properties of Fourier transforms		Lecture, Examples, Discussions
7	Three-dimensional Fourier transforms with examples, Application of Fourier Transforms to differential equations	https://www.coursera.org/lecture/comp	Lecture, Examples, Discussions

r			1
		<u>m_campaign=top_button</u>	
8			Lecture, Examples, Discussions
9	LTs of 1st and 2nd order Derivatives and Integrals of Functions, Derivatives and Integrals of LTs		Lecture, Examples, Discussions
10	LT of Unit Step function, Dirac Delta function, Periodic Functions, Convolution Theorem, Inverse LT		Lecture, Examples, Discussions
	Application of Laplace Transforms to 2nd order Differential Equations	Riley et al. (Ch. 15) <u>https://youtu.be/OiNh2DswFt4</u>	Lecture, Examples, Discussions
	Review of important concepts and techniques	Riley et al., Kapoor, Fokas & Ablowitz	Lecture, Examples, Discussions
13	Review of important concepts and techniques		Lecture, Examples, Discussions
	Application of complex analysis and transforms in Physics	Riley et al., Kapoor, Fokas & Ablowitz	Lecture, Examples, Discussions

Unit	Course Learning Outcomes	Teaching	Assessment
No.		Learning	Task
		0	Methods
1	• Recall the properties of complex numbers and represent them	(i) Each topic to	•
	graphically. Apply Euler's formula and De Moivre's theorem to manipulate	be explained with	Presentations
	complex numbers.	illustrations.	and class
	• Determine and calculate roots of complex numbers.	(ii) Students to be	discussions. •
	 Understand and define functions of complex variables. 	encouraged to	Assignments
	 Verify the analyticity of complex functions using Cauchy-Riemann 	discover the	and class
	conditions	relevant concepts.	tests.
2	 Utilize Cauchy's Integral formula to evaluate complex integrals in 	(iii) Students be	Student
	simply and multiply connected regions.	given	presentations
	 Find Laurent and Taylor expansions of complex functions and 	homework/assign	. • Mid-term
	apply ment in relevant contents.	()	examinations
	• Compute residues and apply the Residue Theorem to evaluate	Discuss and solve	. • Practical
	complex integrals.	the theoretical	and viva-
		and practical	
	 Understand the concept of Fourier Transforms and their properties, 	problems in the	
		class.	. • End-term
	 Calculate Fourier Transforms for various functions, including 	(v) Students to be	examinations
	trigonometric, Gaussian, and finite wave train functions.	encouraged to	
	• Represent the Dirac delta function as a Fourier Integral.	apply concepts to	
		real world	
3	• Apply the Convolution theorem and understand the properties of	problems.	
	Fourier transforms.		

•	Calculate three-dimensional Fourier transforms with appropriate
examp	oles.
•	Utilize Fourier Transforms to solve one-dimensional wave and
diffus	ion/heat flow equations in Physics applications.
Transi • functi • Transi • variou simple	Calculate Laplace Transforms for Unit Step function, Dirac Delta on, and periodic functions. Apply the Convolution Theorem and perform Inverse Laplace

SCPH203	Solid State Physics	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Crystallography				
Co-requisites	Mathematical Physics				

Course Objectives

- 1. To acquire knowledge of crystal structure
- 2. Understanding the magnetic properties of matter
- 3. To enable them to understand of dielectric properties of Materials
- 4. To impart knowledge about semiconductor physics

On completion of this course, the students will be able to

CO1: Analyze crystal structures, bonding types, and defects in materials, and classify magnetic materials based on their properties.

CO2: Understand dielectric polarization, complex dielectric constant, and their variations with temperature and frequency, and apply dielectric properties in alternating electric fields.

CO3: Describe superconductivity phenomena, critical temperatures, and critical magnetic fields, and explain the Meissner effect in Type I and Type II superconductors.

CO4: Classify and compare different magnetic materials, explain hysteresis and energy loss in magnetic materials, and understand anti-ferromagnetism and ferrimagnetism.

Catalog Description

This course is intended to cover most of the basic topics of solid state including Crystal Structure, Space groups; Packing fraction, Miller indices, Defects in crystal, X-Ray Diffraction, Diamagnetism and Paramagnetism, Superconductivity. This course gives crystallographic knowledge and enables students to analyze the solid structures, which will also be beneficial for students in research field.

Course Content

Unit I

Crystal Structure: amorphous and crystalline materials, lattice translation vectors, lattice with a basis –unit cell, types of lattices symmetry elements, inter planer spacing, packing fraction, Miller Indices, Bonding in solids- ionic bond. covalent bond, metallic bonds, hydrogen bonding, van Der Waals bond, crystal defects, point defects, line defects, Burgers vector, surface imperfections.

Unit II

Magnetic Properties of Matter: Classification of Magnetic materials-Dia-, Para-, Ferri- and Ferromagnetic Materials, Classical Langevin Theory of dia magnetic materials.Curie's law, Weiss's Theory of Ferromagnetism and Ferromagnetic Domains.Discussion of B-H Curve. Hysteresis and Energy Loss, antiferromagnetism, ferrimagnetism.

Unit III

Dielectric Properties of Materials: Types of Polarization, Local Electric Field at an Atom, static, Dielectric Constant, Electric Susceptibility, Polarizability, Classical Theory of Electric Polarizability, three vectors, Clausius-Mosotti Equation. Variation of dielectric polarization with temperature and frequency, pizo-pyro and ferroelectricity properties, domain theory of ferroelectricity, Complex Dielectric Constant, dielectrics in alternating fields, relaxation in dielectrics, absorption and losses, dielectric breakdowns.

Unit IV

Superconductivity: Critical Temperature. Critical magnetic field. Meissner effect. Type I and type II Superconductors, London's Equation and Penetration Depth. Isotope effect. Idea of BCS theory (No derivation)

Text Books

1. S O Pillai, Solid State Physics (New Age International Limited).

2. B.D. Cullity and C. D. Graham, Introduction to Magnetic Materials (John Wiley and Sons, Inc.)

Reference Books/Materials

- 1. B.D. Cullity, Elements of X-Ray Diffraction (Addison-Wesley Metallurgy Series).
- 2. Charles Kittel, Introduction to Solid State Physics (John Wiley and Sons, Inc.).
- 3. N. W. Ascroft and N. D. Mermin, Solid State Physics (Harcourt Asia, Singapore).

M. Ali Omar, Elementary solid state physics: principles and applications (Pearson Education)

Open Educational Resources (OER)

- <u>https://youtu.be/5h5gXoFyo64</u>
- <u>https://youtu.be/ax_rNTSI7ac</u>
- <u>https://youtu.be/63cwdYXNIYE</u>
- <u>https://youtu.be/sEGLcpmIIBY</u>
- <u>https://youtu.be/XrTJUAyolvE</u>
- <u>https://youtu.be/rkntp3_cZl4</u>
- https://youtu.be/WV2AexANG34

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

13 Lectures

13 Lectures

14 Lectures

14 Lectures

Cinde	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	РО9	PO10	PSO1	PSO2	PSO3	PSO4
SCPH203 Solid State Physics	CO1	2	3	1	2	1	3	3	2	1	1	3	3	1	2
	CO2	2	3	1	1	1	3	3	2	1	1	2	2	1	2
	СОЗ	2	3	1	1	1	3	2	3	1	1	2	2	1	2
	CO4	2	3	1	1	1	3	2	3	1	1	2	2	1	2

1=weakly mapped 2= moderately mapped 3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Crystal structure
Local	-
Regional	-
National	-
Global	Knowledge of crystal structures
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Magnetic properties of matter
Local	-
Regional	-
National	-
Global	Understanding about magnetic properties of matter
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Dielectric properties of materials
Local	-
Regional	-
National	-
Global	Understanding of dielectric properties of matter
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-

Environment &	-
sustainability	
Unit iv	Superconductivity
Local	-
Regional	-
National	-
Global	Deep understanding of semiconductors
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), industry, innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
	Promoting high-quality research
Poe/4 th IR	Projects and group discussion
	Internship

Teaching Plan:

Weekly Plan	TeachingTopic/Unit No.	Textbook [TB]/ Reference Bo [RB]-Chapter/ Page No./ O Education Resources [OER]	
Week 1	Crystal Structure	TB: S O Pillai, Ch. 1	Lecture, Examples, Discussions
Week 2	Bonding in Solids	TB: S O Pillai, Ch. 2	Lecture, Examples, Discussions
Week 3	Crystal Defects	TB: S O Pillai, Ch. 3	Lecture, Examples, Discussions
Week 4	Magnetic Properties of Matter	of TB: B.D. Cullity and C. Graham, Ch. 1	D.Lecture, Examples, Discussions
Week 5	Dielectric Properties of Materials	ofTB: S O Pillai, Ch. 5	Lecture, Examples, Discussions
Week 6	Superconductivity	TB: S O Pillai, Ch. 6	Lecture, Examples, Discussions
Week 7	Crystal Structur (contd.)	reRB: Charles Kittel, Ch. 1	Lecture, Examples, Discussions
Week 8	Magnetic Properties of Matter (contd.)	ofRB: Charles Kittel, Ch. 6	Lecture, Examples, Discussions
Week 9	Dielectric Properties of Materials (contd.)	ofRB: Charles Kittel, Ch. 9	Lecture, Examples, Discussions

Week 10	Superconductivity (contd.)	RB: Charles Kittel, Ch. 11	Lecture, Discussions	Examples
Week 11	Crystal Structure (contd.)	OER: https://youtu.be/5h5gXoFyo64	Lecture, Discussions	Examples
Week 12	Magnetic Properties of Matter (contd.)	OER: https://youtu.be/63cwdYXNIYE	Lecture, Discussions	Examples,
Week 13	Dielectric Properties of Materials (contd.)	OER: https://youtu.be/rkntp3_cZl4	Lecture, Discussions	Examples,
Week 14	······································	OER: https://youtu.be/WV2AexANG34	Lecture, Discussions	Examples,

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes	Teaching Learning Activity	Assessment Task
No.			Methods
1		illustrations. (ii) Students to be encouraged to discover the relevant concepts. (iii) Students be given homework/assignments. (iv)	discussions. Assignments and class tests. presentations. • Mid-term
2	Students will be able to analyze and explain the magnetic properties of matter, including the classification of magnetic materials, Curie's law, hysteresis, and the behavior of ferromagnetic, antiferromagnetic, and ferrimagnetic materials.	and practical problems in the class. (v) Students to be encouraged to apply concepts to real world problems.	and viva-voce examinations. • End-term
3	Students will be able to describe the dielectric properties of materials, including various types of polarization, dielectric constant, dielectric susceptibility, and the behavior of dielectrics in alternating fields.		
4	Students will be able to comprehend the principles of superconductivity, including critical temperature, critical magnetic field, Meissner effect, and the differences between Type I and Type II superconductors.		

SCPH251	SOLID STATE PHYSICS Lab	L	Т	Р	С
Version 1.0		0	0	2	1
Total Contact Hours					
Pre-requisites/Exposure	Solid State Physics				
Co-requisites					

Course Objectives

• Learn the basics of dielectric properties of the materials.

- Develop an understanding of about Ferroelectric properties
- Understanding the source of magnetic behaviour of the materials and experimental verification.
- Experiments related to magnetism.

Course Outcomes

On completion of this course, the students will be able to

CO1: Apply the four-probe method to determine the band gap of an intrinsic semiconductor and analyze the experimental data.

CO2: Analyze hysteresis loss using a CRO and interpret the obtained waveforms to understand magnetic properties of the material. (Outcome Level: Analysis)

CO3: Measure the dielectric constant of a dielectric material using appropriate techniques and interpret the results to characterize the material's behavior in electric fields. (Outcome Level: Comprehension)

CO4: Conduct experiments to study the V-I characteristics of PN diodes and apply the obtained data to find the energy band gap of the PN junction diode.

Catalog Description

This course imparts the basic knowledge of construction of materials, microscopically. The course deals with the factors and conditions which are required to determine various properties like dielectric constant, magnetic susceptibility, semiconductor properties. The course further delivers keen understanding of magnetism and its application in technology.

Course Content

List of experiments

- 1. To find the band gap of intrinsic semiconductor using four probe method.
- 2. To determine hysteresis loss using CRO
- 3. To measure the dielectric constant of a dielectric material
- 4. To study the variation of magnetic field with distance and to find the radius of coil
- 5. To study V-I characteristics of PN diode
- 6. To find the energy band gap of PN junction diode
- 7. To determine the value of Planck's constant by photo cell
- 8. To find the value of Hall coefficient and carrier concentration of a semiconductor.
- 9. To measure the Magnetic field strength in solenoid

Text book :

- 1. Solid State Physics, S.O.PIllai, New Age Publication
- 2. Elements of X-Ray Diffraction, B.D. Cullity. Addison-Wesley Publishing Company,
- 3. Introduction to Magnetic Materials (2ndEdition,), B.D. Cullity and C.D. Graham, Wiley(2009)

References Books:

- 1. Introduction to Solid State Physics, Charles Kittel, 8th Ed., 2004, Wiley India Pvt. Ltd.
- 2. Elements of Solid State Physics, J.P. Srivastava, 2nd Ed., 2006, Prentice-Hall of India.

- 3. Introduction to Solids, Leonid V. Azaroff, 2004, Tata Mc-Graw Hill.
- 4. Solid State Physics, N.W. Ashcroft and N.D. Mermin, 1976, Cengage Learning.

5. Solid-state Physics, H. Ibach and H. Luth, 2009, Springer. Reference Books/Materials

Open Educational Resources (OER)

- <u>https://youtu.be/KU3c5WaEwkI</u>
- <u>https://youtu.be/sSzpb6rOXx8</u>
- <u>https://youtu.be/N9wyxXo-c30</u>
- <u>https://youtu.be/_vKeaPHXF9U</u>
- <u>https://youtu.be/NKYBc7u6hO4</u>
- <u>https://youtu.be/gDFGj0Iodug</u>
- <u>https://youtu.be/RA_wGkUBetU</u>
- https://youtu.be/2VkUMnl3dPk

Assessment & Evaluation

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

LOUGE	Course Outcomes	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
SCPH251,	CO1	2	2	2	3	1	3	2	3	1	2	3	2	3	2
Solid	CO2	2	3	1	1	1	2	2	3	2	1	1	2	2	3
Physics Lab	CO3	1	2	1	3	1	1	2	2	3	1	2	3	3	1
	CO4	2	1	1	3	3	2	1	1	1	2	1	3	3	3

1=weakly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Solid state physics-i lab
Local	-
Regional	-
National	-
Global	Understanding of crystals, magnetism and its application in technology.
	-
Employability	-
Entrepreneurship	-

Skill development	Hands on experiments on physics instruments, data recording, data analysis and laboratory report writing
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
Poe/4 th IR	Use of software and simulations, hands on experience.

Teaching Plan:

Week	Topic/Unit No.	Textbook/Reference/OER	Teaching-Learning
	.		Method
1	Experiment 1: Band	TB: Solid State Physics - S.O. Pillai - Ch.	Lecture, Discussion
	Gap of	X	
	Semiconductors		
2	Experiment 1 (contd.)	TB: Solid State Physics - S.O. Pillai - Ch.	Lab Demonstration,
		X	Hands-on Activity
3	Experiment 2:	OER: https://youtu.be/KU3c5WaEwkI	Video Lecture,
	Hysteresis Loss		Discussion
4	Experiment 3:	TB: Introduction to Solids - Leonid V.	Lecture, Hands-on
	Dielectric Constant	Azaroff	Measurement
5	Experiment 4:	TB: Elements of Solid State Physics - J.P.	Lecture, Calculation
	Magnetic Field	Srivastava	Practice
6	Experiment 5: V-I	TB: Solid State Physics - N.W. Ashcroft	Lecture, Lab
	Characteristics	and N.D. Mermin	Demonstration
7	Experiment 5 (contd.)	TB: Solid State Physics - N.W. Ashcroft	Lab Work, Data
		and N.D. Mermin	Analysis
8	Experiment 6: Energy	TB: Solid State Physics - N.W. Ashcroft	Lecture, Calculation
	Band Gap	and N.D. Mermin	Practice
9	Experiment 7:	OER: <u>https://youtu.be/RA_wGkUBetU</u>	Video Lecture,
	Planck's Constant		Discussion
10	Experiment 8: Hall	TB: Solid State Physics - S.O. Pillai - Ch.	Lecture, Derivation
	Coefficient	Y	Practice
11	Experiment 9:	TB: Introduction to Magnetic Materials -	Lecture, Lab
	Magnetic Field	B.D. Cullity and C.D. Graham - Ch. Z	Demonstration
	Strength		
12	Recap and Revision	TB: Elements of X-Ray Diffraction - B.D.	Group Discussion,
		Cullity	Q&A Session
13	Assessment and	RB: Introduction to Solid State Physics -	Problem Solving,
	Problem Solving	Charles Kittel - Ch. P	Practice Questions
14	Review and	RB: Introduction to Solids - Leonid V.	Group Discussion,
	Conclusion	Azaroff	Summary, Feedback

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Comprehend concepts of band gaps, electronic properties, and energy bands in semiconductors, exemplified by experiments like PN diode characteristics and energy band gap analysis.	(i) Each topic to be explained with illustrations. (ii) Students to be encouraged to discover the relevant concepts. (iii) Students be given homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v)	 Presentations and class discussions. Assignments and class tests. Student presentations. Mid-term examinations. Practical and viva-voce examinations. End-term examinations.
2	Develop hands-on skills in conducting experiments, interpreting results, and relating them to theoretical principles, fostering an ability to apply physical concepts to real-world scenarios	Students to be encouraged to apply concepts to real world problems.	
3	Gain proficiency in utilizing diverse educational resources, fostering self- directed learning, and preparing for continuous exploration in solid-state physics and related fields.		
4	Enhance critical thinking skills by analyzing complex experimental data, applying theoretical knowledge to solve problems, and developing the capacity to approach new challenges in the realm of solid-state physics.		

SCPH205	Introduction Applications	of	Nanochemistry	and	L	Т	Р	С
Version 1.0					4	0	0	4
Total Contact Hours	54							
Pre-requisites/Exposure								
Co-requisites								

Course Objectives

1. To be able to understand different classifications of nanomaterials.

2. To learn the experimental methods for synthesising nanomaterials.

3. To understand characterisation techniques that can be employed to study nano dimensions.

4. To develop a comprehensive knowledge about size dependent properties of nanoparticles.

Course Outcomes

On completion of this course, the students will be able to

CO1: Identify and categorize different types of nanostructures and nanomaterials based on their characteristics.

CO2: Analyze the size-dependent properties of nanomaterials and their implications in various fields. **CO3:** Compare and contrast the different synthesis methods for nanomaterials and assess their advantages and limitations.

CO4: Utilize electron microscopy, diffraction, and other techniques to characterize nanomaterials, and apply this knowledge to practical applications in environmental remediation and biology.

Catalog Description

This course imparts the basic concepts of nanotechnology. It enables the students to understand the idea of synthesis and structural aspects of different types of nanomaterials. The course of nanochemistry will impart the knowledge about different characterisation techniques for nanomaterials. The course also introduces the use of nanoparticles in environmental remediation and biology.

Course Content

Unit I:

Introduction to nanoscience, nanostructure and nanotechnology (basic idea), Overview of nanostructures and nano-materials, classification, (cluster, colloid, nanoparticles, and nanostructures - Spheroid, Wire, Rod, Tube, and Quantum Dot); Calculation of percentage of surface atom and surface to volume ratio of spherical, wire, rod, and disc shapes nanoparticles.

Unit II:

Size dependent properties of nanomaterials (basic idea with few examples only): Quantum confinement, Electrical, Optical (Surface Plasmon resonance), variation in colors (Blue shift & Red shift), Magnetic, thermal and catalytic properties.

Unit III:

Synthesis of Nanomaterials: Brief introduction about Top-down and Bottom-up approaches & selfassembly techniques of nanoparticles synthesis, Solvothermal process, Examples of preparation of gold and silver metallic nanoparticles, self-assembled nanostructures- control of nanoarchitecture- one dimensional control. Carbon nanotubes and inorganic nanowires.

Unit IV:

Material characterization techniques (basic idea of use of following instruments in nanomaterial characterization need to be emphasized): Electron microscopic technique, diffraction technique, photoelectron spectroscopy, zeta-potential measurement; Examples of use of nanomaterials in environmental remediation and biology (few practical examples of use of materials can be discussed). **Text Books**

12 Lectures

12 Lectures

8 Lectures

8 Lectures

8 Lectures

75

1. C. N. R. Rao, A. Muller, A. K. Cheetam, The Chemistry of Nanomaterials: Synthesis, Properties and Applications, Willey-VCH Verlag, Germany, 2005.

2. G. Cao, Nanostructures and Nanomaterials: Synthesis, Properties and Applications, Imperial College Press, London, 2004

Reference Books/Materials

1. R. W. Kelsall, I. W. Hameley, M. Geoghegan, Nanoscale Science and Technology, John Wiley & Sons, England, 2005

2. Charles P. Poole and Frank J Owens, *Introduction to nano technology*, Wiley Interscience, 2003.

3. Pradeep, T., A text of book of nanoscience and nanotechnology, Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2012.

Open Educational Resources

- <u>https://youtu.be/tlzlNg6xC5E</u>
- <u>https://youtu.be/zxjaXV10lnE</u>
- https://youtu.be/NZrXDK5Plj4
- https://youtu.be/iOggL0Uurlw
- https://youtu.be/Z51R49OOqAA
- https://youtu.be/8YflxVwm6cE
- <u>https://youtu.be/dSwvxLHAKKs</u>

Assessment & Evaluation

Components		As	ssign	imen	t		l Teri mina			Atten	lance	End Term Examination			
Weightage (%)	20	20 20 10						50	50					
Programme A	and Cours	se Ma	appi	ng											
	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
SCPH205	CO1	2	-	-	-	-	-	-	-	-	-	2	-	-	-
Introduction of Nanochemistry	CO2	-	3	-	-	-	-	-	-	-	-	-	3	-	-
and Applications	CO3	-	-	3	-	-	-	-	-	-	-	-	-	3	-
	CO4	-	-	-	2	-	3	-	-	-	-	-	-	-	3

1=weakly mapped

2= moderately mapped

3=strongly mapped

Teaching Plan:

Weekly	Topic/Unit No.	Textbook [TB]/Teaching-Learning
Teaching	_	Reference BookMethod
Plan		[RB]-Chapter/ Page
		No./ Open Education
		Resources [OER]

Introduction to Nanoscience	TB1/RB1	Lecture, Examples,
		Discussions
Nanostructures and Nanomaterials - Classification	TB1	Lecture, Examples, Discussions
Calculation of Percentage & Surface-to- Volume Ratio	TB1	Lecture
Size Dependent Properties - Quantum Confinement	TB1	Lecture
Size Dependent Properties - Electrical & Optical	TB2	Lecture
Size Dependent Properties - Magnetic & Thermal	TB2	Lecture
Size Dependent Properties - Catalytic Properties	TB2	Lecture, Examples, Discussions
•	TB2	Lecture
I	TB2	Lecture
Synthesis of Nanomaterials - Solvothermal Process	TB1	Lecture
Carbon Nanotubes and Inorganic Nanowires	TB1	Lecture, Examples, Discussions
Material Characterization Techniques	TB1	Lecture
Examples of Nanomaterials in Environmental Remediation & Biology	TB2	Lecture, Examples, Discussions
Review and Recap	-	Discussion
	Nanostructures and Nanomaterials - Classification Calculation of Percentage & Surface-to- Volume Ratio Size Dependent Properties - Quantum Confinement Size Dependent Properties - Electrical & Optical Size Dependent Properties - Magnetic & Thermal Size Dependent Properties - Magnetic & Thermal Size Dependent Properties - Catalytic Properties Synthesis of Nanomaterials - Top-down & Bottom-up Synthesis of Nanomaterials - Self-assembly Techniques Synthesis of Nanomaterials - Solvothermal Process Carbon Nanotubes and Inorganic Nanowires Material Characterization Techniques Examples of Nanomaterials in Environmental Remediation & Biology	Nanostructures and Nanomaterials - TB1 Classification Calculation of Percentage & Surface-to-TB1 Volume Ratio Size Dependent Properties - Quantum TB1 Confinement Size Dependent Properties - Electrical & TB2 Optical Size Dependent Properties - Magnetic & TB2 Thermal Size Dependent Properties - Catalytic TB2 Properties Synthesis of Nanomaterials - Top-down & TB2 Bottom-up Synthesis of Nanomaterials - Self-assembly TB2 Techniques Synthesis of Nanomaterials - Solvothermal TB1 Process Carbon Nanotubes and Inorganic TB1 Nanowires Material Characterization Techniques TB1 Examples of Nanomaterials in TB2 Environmental Remediation & Biology

Unit	Course Learning Outcomes	Teaching	Learning	Assessment Task
No.		Activity	_	Methods
1	Understand the fundamental concepts of nanoscience, nanostructure, and nanotechnology, including the classification of nanostructures and nanomaterials, and calculate the percentage of surface atom and surface-to-volume ratio of different-shaped	explained illustration Students encourage	with s. (ii) to be d to discover	class discussions. Assignments and class tests. • Studen
2	nanonarticles	(iii) Stude homework (iv) Discu the theo practical	onts be given /assignments. ss and solve oretical and problems in	Practical and viva voce examinations. End-term examinations.

		to be encouraged to	
3	Demonstrate knowledge of various synthesis methods for nanomaterials, including Top-down and Bottom- up approaches, self-assembly techniques, and the preparation of gold and silver metallic nanoparticles, as well as control of nanoarchitecture and one- dimensional control in self-assembled nanostructures, carbon nanotubes, and inorganic nanowires.	wond problems.	
4	Familiarize with material characterization techniques, such as electron microscopy, diffraction, photoelectron spectroscopy, and zeta-potential measurement, and understand their applications in nanomaterial characterization. Explore practical examples of using nanomaterials in environmental remediation and biology.		

SCPH207	Green Processes of Chemistry	L	Т	Р	С
Version 2.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	12 th level Chemistry				
Co-requisites					

Course Objectives

On completion of this course, the students will be able to understand

- 1. Green chemistry and its principles and processes in laboratory reactions.
- 2. Green synthesis and reactions.
- 3. Green chemistry for sustainable solutions.
- 4. Principles of green chemistry.

5. Design of chemical reactions/chemical synthesis using green chemistry principles.

Course Outcomes

CO1: By the end of this course, students will be able to: Understand the goals of Green Chemistry and identify the limitations and obstacles in achieving them.

CO2: Apply the twelve principles of Green Chemistry to design environmentally friendly chemical synthesis, focusing on waste prevention, atom economy, and materials incorporation.

CO3: Demonstrate knowledge of various green synthesis methods for specific chemicals and reactions, such as adipic acid, catechol, disodium iminodiacetate, and ultrasound-assisted reactions.

CO4: Analyze and evaluate the significance of Green Chemistry in developing environmentally safe products, including marine antifoulants, compostable plastics (poly lactic acid), and healthier fats and oils through enzymatic interesterification.

Catalog Description

Climate change and degradation of environment is a common global issue and sustainable development goals emphasize on reduction in pollution so as ensure better health, better sanitation and clean environment for all. Chemicals released from different industries as well as from chemical/ pharmaceutical labs add on to contaminants concentration in the environment. It is imperative to teach students the philosophy of green chemistry and how it can be helpful to reduce environmental pollution. Success stories and real world cases also motivate them to practice green chemistry. These

days customers are demanding to know about a product: Is it green? Does it contribute to global warming? Was it made from non-renewable resources?

Students have many career opportunities as " green" is the path to success.

Course Content

UNIT I

Introduction to Green Chemistry

Basic introduction and explaining goals of Green Chemistry. Limitations/Obstacles in the pursuit of the goals of Green Chemistry

UNIT II

Principles of Green Chemistry and Designing a Chemical synthesis

Twelve principles of Green Chemistry with their explanations and examples and special emphasis on Designing a Green Synthesis using these principles (Prevention of Waste/ byproducts; maximum incorporation of the materials used in the process into the final products, Atom Economy, calculation of atom economy of the rearrangement, addition, substitution and elimination reactions).

UNIT III

Green Synthesis / Reactions

Lectures

Green Synthesis of adipic acid, catechol, disodium iminodiacetate (alternative to Strecker synthesis).

1.Microwave assisted reactions in water: (Hofmann Elimination, methyl benzoate to benzoic acid, oxidation of toluene and alcohols) and reactions in organic solvents (Diels-Alder reaction and Decarboxylation reaction).

2.Ultrasound assisted reactions: sonochemical Simmons-Smith Reaction (Ultrasonic alternative to Iodine)

3.Surfactants for carbon dioxide – replacing smog producing and ozone depleting solvents with CO2 for precision cleaning and dry cleaning of garments.

4. Designing of Environmentally safe marine antifoulant.

5.An efficient, green synthesis of a compostable and widely applicable plastic (poly lactic acid) made from corn.

6.Healthier Fats and oil by Green Chemistry: Enzymatic Inter esterification for production of no Trans-Fats and Oils

UNIT IV

Future Trends in Green Chemistry

Lectures

Oxidation reagents and catalysts; Biomimetic, multifunctional reagents; Combinatorial green chemistry; Proliferation of solvent less reactions; co crystal controlled solid state synthesis (C2S3); Green chemistry in sustainable development.

Recommended Books/References:

1. Ahluwalia, V.K., Kidwai, M.R. *New Trends in Green Chemistry*, Anamalaya Publishers (2005).

2. Anastas, P.T. & Warner, J.K, *Green Chemistry- Theory and Practical*, Oxford University Press (1998).

3. Matlack, A.S. Introduction to Green Chemistry, Marcel Dekker (2001).

4. Cann, M.C.and Connely, M.E. Real-World cases in Green Chemistry, ACS (2000).

5. Ryan, M.A. and Tinnesand, M. *Introduction to Green Chemistry*, American Chemical Society, (2002).

6. Lancaster, M. *Green Chemistry: An Introductory Text* RSC Publishing, Second Edition, 2010.

Open Educational Resources

- https://youtu.be/ESGFdKITnDg
- <u>https://youtu.be/IuYtBR_XkQw</u>

4 Lectures

12 Lectures

16

8

- <u>https://youtu.be/FMHinRsfosU</u>
- https://youtu.be/bsQBSVJoV04
- https://youtu.be/80kXSJqBYZg
- Proliferation of Solventless Reactions <u>https://doi.org/10.1016/B978-0-12-817592-7.00014-9</u>

Assessment & Evaluation

Components	8	Mid Term Examination		End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

LOGE	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	РО9	PO10	PSO1	PSO2	PSO3	PSO4
SCPH207	CO1	3	-	-	1	-	-	-	-	-	-	3	-	-	1
Groon	CO2	-	3	-	-	-	2	-	-	-	-	-	1	-	-
of Chemistry	CO3	-	-	3	-	-	-	2	-	1	-	-	-	-	-
	CO4	-	-	-	3	-	-	-	-	-	1	1	-	1	2

1=weakly mapped , 2= moderately mapped , 3=strongly mapped

Teaching Plan:

Weekl y Teachi ng Plan			
1		1	Lecture
	Goals of Green Chemistry, Limitations/Obstacles		
2	1 57	TB - Chapter 2 (Principles 1-6)	Lecture
3	1 57	TB - Chapter 2 (Principles 7-12)	Lecture
	Designing a Green Synthesis		
4		RB - Green Chemistry Journals	Discussion and Group Work
5		OER - Microwave- assisted Organic Synthesis	Laboratory and Demonstration
6	0	OER - Green Chemistry Reactions	Laboratory and Demonstration
7		OER - Sonochemical Synthesis	Laboratory and Demonstration

	Designing Environmentally Safe Marine	OER - Green Chemistry	Discussion and Group
	Antifoulant	Applications	Work
8	Green Synthesis of Compostable Plastic	RB - Green Chemistry	Laboratory and
	(PLA)	Journals	Discussion
	Healthier Fats and Oils through Green	RB - Green Chemistry	Lecture
	Chemistry	Applications	
9	Examination (Mid-Semester Assessment)		Assessment
10	Oxidation Reagents and Catalysts	TB - Chapter 3 (Section	Lecture
		1)	
11	Biomimetic and Multifunctional Reagents	TB - Chapter 3 (Section	Lecture
		2)	
	Combinatorial Green Chemistry	TB - Chapter 3 (Section	Lecture
		3)	
12	Proliferation of Solventless Reactions	RB - Green Chemistry	Discussion and Group
		Journals	Work
	Co-crystal Controlled Solid State Synthesis	RB - Green Chemistry	Discussion and Group
		Journals	Work
13	Green Chemistry in Sustainable	TB - Chapter 4	Lecture
	Development		
14	Revision and Final Examination		Assessment

Unit	Course Learning Outcomes	Teaching	Learning	Assessment Task
No.		Activity		Methods
	Understand the goals and principles of Green			
	Chemistry and identify the challenges in achieving	explained	with	class discussions. •
	them.	illustrations.	(ii)	Assignments and
2	Apply the twelve principles of Green Chemistry to	Students	to be	class tests. • Student
	design environmentally friendly chemical synthesis	-	i i i i i i i i i i i i i i i i i i i	-
	methods, focusing on waste prevention and atom		-	
		(iii) Students		
3	Demonstrate knowledge of various green synthesis	homework/ass	signments.	Practical and viva-
	techniques for specific chemicals and reactions, such			
	as adipic acid, catechol, and ultrasound-assisted			
		practical prob		
4	Analyze and evaluate the significance of Green	class. (v) Stud	dents to be	
	Chemistry in developing environmentally safe	encouraged	to apply	
	products, including marine antifoulants, compostable	concepts to	real world	
	plastics (poly lactic acid), and healthier fats and oils	problems.		
	through enzymatic interesterification.			

UNS103	Nanostructured materials	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Basics of nanomaterial				
Co-requisites					

Course Description

The aim of this course is make students understand the importance of nanostructured materials. Nanostructured materials have gained prominence in **technological advancements** due to their tunable physicochemical characteristics such as melting point, wettability, electrical and thermal conductivity, catalytic activity, light absorption and scattering resulting in enhanced performance over their bulk counterparts. Knowledge about these emerging materials will further help the students to explore these materials for advanced real life applications.

Course Outcomes

CO1: To recall the basics of Nano science and nanomaterial.

CO2: To understand about various applications of nanostructured materials

CO3: Analysing various technique for fabricating thin films

CO4: Evaluating the properties of Nano composites.

Unit I:

10 Lectures

Nano Composites and their Applications, Metal-Metal Nano composites for nuclear energy applications, Magnetic Nano composites for Spintronics application, Ceramic Nano composites for high temperature applications. Length, energy, and time scales - Quantum confinement of electrons in semiconductor nanostructures: Quantum confinement in 3D, 2D, 1D and zero dimensional structures - Size effect and properties of nanostructures, Top down and Bottom up approach.

Unit II:

10 Lectures

Nano ceramics: Dielectrics, ferroelectrics and magneto ceramics, Nano polymers: Preparation and characterization of diblock Copolymer based Nano composites, Nanoparticles polymer ensembles; Applications of Nano polymers in Catalysis.

Unit III:

10 Lectures

Classification of conducting polymers: Intrinsic and extrinsic conducting polymers - Chemical and electrochemical methods of the synthesis of conducting polymers – Applications of conducting polymers in corrosion protection, sensors, electronic and electrochemical energy devices.

Unit IV:

10 Lectures

Miscellaneous applications of nanotechnology: dental implants, consumer products, biomimetic nanomaterial for tissue engineering, biopolymer tagging, semiconductor quantum dots.

Thin Film Formation Methods- Physical methods: thermal evaporation - vapour sources - Wire, crucible and electron beam gun - sputtering mechanism and methods - epitaxy - MBE. Chemical methods: chemical vapour deposition and chemical solution deposition techniques – spray pyrolysis - laser ablation

Textbooks

1. Materials Science and Engineering – An Introduction, William D Callister, 12th Edition, John Wiley

2. Nanomaterials – An introduction to synthesis, properties and applications, D. Vollath, Wiley-VCH, Second Edition 2013.

Reference Books

Novel Nanocrystalline Alloys and Magnetic Nanomaterials- Brian Cantor

2. Nanoscale materials -Liz Marzan and Kamat.

3. Physical properties of Carbon Nanotube-R Satio.

4. Polymer nanocomposites: Edited by Yiu-Wing Mai and Zhong-Zhen Yu, First published 2006,

Woodhead Publishing Limited and CRC Press LLC, USA.

- 5. Physics of Magnetism S. Chikazumi and S.H. Charap.
- 6. Magnetostriction and Magnetomechanical Effects E.W. Lee.

7. Carbon Nanotubes: Properties and Applications- Michael J. O'Connell

Open Educational Resources (OER)

- <u>https://youtu.be/6TprsnrvKIk</u>
- <u>https://youtu.be/j_wOgy97Pi4</u>
- https://youtu.be/CJn2gXp3pyo
- <u>https://youtu.be/TgwpVGWL6dQ</u>
- https://youtu.be/nSAvyOajVzE
- https://youtu.be/mbOQYlBp0VQ
- <u>https://youtu.be/ev1EiLWgDIs</u>

Assessment & Evaluation

Components	8	Mid Term Examination		End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

	Course Outcome	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	CO1	3	3	-	-	-	-	-	-	-	-	3	3	_	-
Minor 3 Nanostructured materials	CO2	2	2	2	-	_	_	-	-	-	-	3	2	3	-
materials	CO3	-	-	_	2	_	2	2	_	-	_	_	2	3	-
	CO4	1	1	-	-	2	1	1	2	-	-	-	2	2	1

1=weakly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Nano Composites and their Applications
Local	
	Advancing regional capabilities in nanocomposite research and applications.
Regional	
	Contributing to national research and development in nanocomposites for energy and technology sectors.
National	
	Sharing knowledge of advanced nanocomposites for global energy and technology advancements.
Global	
	Equipping students with knowledge of nanocomposites relevant to emerging industries.
Employability	
	Fostering innovation in nanocomposite-related startups for niche applications.

Entrepreneurship	
	Developing skills in nanocomposite design, fabrication, and
	characterization.
Skill development	
	Encouraging ethical conduct in nanocomposite research and application development.
Professional	
ethics	Exploring the potential impact of nanocomposites, nanoceramics, and nanopolymers on gender-related issues.
Gender	
	Considering ethical and societal values in the development of nanocomposites.
Human values	
	Exploring sustainable applications of nanocomposites for environmental conservation.
Environment & sustainability	Exploring sustainable nanomaterials and their applications.
Unit ii	Nano ceramics
Local	
	Strengthening regional expertise in nanoceramics and nanopolymer development.
Regional	
	Enhancing national capabilities in nanoceramics, nanopolymer, and conducting polymer research.
National	
	Contributing to global research in nanoceramics, nanopolymer, and conducting polymer fields.
Global	
	Developing students' skills in nanoceramics, nanopolymer synthesis, and characterization.
Employability	
	Encouraging entrepreneurship in nanoceramics, nanopolymer, and conducting polymer sectors.
Entrepreneurship	
	Enhancing skills in nanoceramics, nanopolymer synthesis, and application development.
Skill development	-
	Promoting ethical research and innovation in nanoceramics, nanopolymer, and conducting polymer fields.
Professional ethics	Investigating gender-inclusive approaches to nanotechnology applications and research.

Gender	
	Incorporating human values into nanoceramics, nanopolymer, and conducting polymer research.
Human values	
	Investigating environmentally friendly approaches in nanoceramics, nanopolymer, and conducting polymer development.
Environment &	Exploring quantum solutions for environmental challenges.
sustainability	
Unit iii	Classification of conducting polymers
Local	
	Promoting regional innovation in conducting polymer applications.
Regional	
	Advancing national research in conducting polymers for critical areas like energy devices.
National	
	Advancing global understanding of conducting polymers and their applications.
Global	
	Enhancing students' employability with expertise in conducting polymers for various sectors.
Employability	
	Supporting entrepreneurship in conducting polymer applications such as electronic devices.
Entrepreneurship	
	Developing expertise in conducting polymer synthesis and applications.
Skill development	
	Emphasizing ethical considerations in conducting polymer applications for safety and reliability.
Professional	
ethics	Addressing gender inclusivity in conducting polymer research and its applications.
Gender	
	Integrating human values into conducting polymer applications for societal benefit.
Human values	
	Promoting sustainable conducting polymer applications that align with environmental goals.
Environment & sustainability	Investigating sustainable nanomaterials and processes.
Unit iv	Miscellaneous applications of nanotechnology
Local	
	Investigating miscellaneous nanotechnology applications with local

	relevance, e.g., dental implants.
Regional	
	Supporting regional industries with diverse nanotechnology applications.
National	
	Promoting the adoption of nanotechnology in various national sectors through diverse applications.
Global	
	Exploring global applications of nanotechnology in areas like tissue engineering and biopolymer tagging.
Employability	
	Preparing students for careers in diverse nanotechnology applications globally.
Entrepreneurship	
	Promoting entrepreneurship in miscellaneous nanotechnology applications like semiconductor quantum dots.
Skill development	
	Developing skills in various thin film formation methods, both physical and chemical.
Professional ethics	Ensuring ethical practices in miscellaneous nanotechnology applications, especially in healthcare-related fields.
Gender	upplications, espectally in licakieure readed fields.
	Considering gender perspectives in the development and application of miscellaneous nanotechnology products.
Human values	
	Reflecting human values in miscellaneous nanotechnology applications, especially those with healthcare implications.
Environment & sustainability	Ensuring the environmental sustainability of miscellaneous nanotechnology applications, such as biopolymer tagging.
SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education Promoting high-quality research
Poe/4 th IR	Preparing students for the Fourth Industrial Revolution.

Teaching Plan:

Teaching Plan	•	[TB]/Reference Book [RB]-Chapter/Page No./OER	Teaching-Learning Method
1	Applications	TB - Materials Science and Engineering, Ch. 1-2	
2	1	TB - Materials Science and Engineering, Ch. 4	Lecture and Discussion
3	0 1	RB - Nanoscale materials, Ch. 5	Lecture and Discussion
4	1	RB - Nanoscale materials, Ch. 6	Lecture and Discussion
5	nanostructures	TB - Materials Science and Engineering, Ch. 11	
6		TB - Nanomaterials, Ch. 8	
7		TB - Nanomaterials, Ch. 9	
8		nanocomposites, Ch. 7	Lecture and Discussion
9	Unit III: Applications of conducting polymers	nanocomposites, Ch. 8	Lecture and Discussion
10	Unit IV: Miscellaneous nanotechnology applications	RB - Carbon Nanotubes, Ch. 3	Lecture and Discussion
11		and Engineering, Ch. 17	Demonstration
12	Unit IV: Thin Film Formation - Chemical methods	and Engineering, Ch. 18	
13	Unit IV: Thin Film Formation - Chemical	RB - Polymer nanocomposites, Ch. 10	Lecture and Practical
14	Unit IV: Thin Film Formation - Chemical	RB - Nanoscale materials,	Lecture and Practical Demonstration
15	Unit IV: Thin Film Formation - Chemical methods	OER (Links provided)	Video Lectures
16	Revision and Recap	-	Review and Discussion

Unit	Course Learning Outcomes	Feaching Learning Activity Assessment Task Methods
No.		
1	Understand the fundamentals of	(i) Each topic to be explained • Presentations and class
	nanomaterials and nanov	with illustrations. (ii) discussions. • Assignments and
	composites, including their S	Students to be encouraged to class tests. • Student
	classifications, properties, and	discover the relevant presentations. • Mid-term
	various applications in fields such	concepts. (iii) Students be examinations. • Practical and
	as nuclear energy, spintronics, g	given viva-voce examinations. • End-
	high-temperature environments,h	nomework/assignments. (iv)term examinations.
	catalysis, and consumer products.	Discuss and solve the
2	Analyze the principles of quantum	-
	confinement in semiconductorp	problems in the class. (v)

	nanostructures and explain how Students to be encouraged to
	size effects influence the apply concepts to real world
	properties of nanostructures inproblems.
	three-dimensional (3D), two-
	dimensional (2D), one-
	dimensional (1D), and zero-
	dimensional (0D) structures.
3	Evaluate the synthesis and
	characteristics of different nano
	materials, such as nano ceramics,
	nano polymers, and conducting
	polymers, and their application
	potential in fields such as
	dielectrics, ferroelectrics, magneto
	ceramics, sensors, electronic
	devices, and electrochemical
	energy devices.
4	Demonstrate knowledge and
	understanding of thin film
	formation methods, including
	physical methods like thermal
	evaporation, sputtering, and
	epitaxy, as well as chemical
	methods like chemical vapor
	deposition and chemical solution
	deposition, and apply this
	knowledge in real-world
	scenarios.
L	

AEC003	New Age Life Skills-III	L	Т	Р	С
Version 1.0		0	0	0	3
Pre-requisites/Exposure	Basics of nanomaterial				
Co-requisites					

Semester IV

S.No.	COURSE CODE	COURSE TITLE	C
1	SCPH202	Modern Physics	4
2	SCPH204	Waves and Optics	4
3	SCPH252	Waves and Optics Lab	1
4		Select one course from a basket of course	3
5		Select one course from a basket of course	2
6	SEC017	Documentation using Latex	2
7	UNS104	Crystallography	4
8	UNS105	Crystallography Lab	1
	SIPH002	Summer Internship /Project	
TOTAL			21

SCPH202	MODERN PHYSICS	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Basics of nanomaterial				

Co-requisites

Couse Objectives

- 1. Understand the structure of the atom
- 2. Explore the particle properties of waves
- 3. Examine the wave properties of particles.
- 4. Study nuclear transformations
- 5. Investigate artificial transmutation of elements

Course Outcomes:

CO1: Understand the fundamental structure and behavior of atoms

CO2: Comprehend the dual nature of particles

CO3: Analyze nuclear transformations and reactions

CO4: Apply knowledge to artificial transmutation and neutron-related topics

UNIT-I

Lectures

Structure of the Atom

Rutherford's Experiments on Scattering of *a*-particles; Theory of *a*-particle Scattering; Bohr Atom Model; Effect of Nuclear Motion on Atomic Spectra; Evidences in Favour of Bohr's Theory; Correspondence Principle; Critical Potentials; Sommerfeld's Relativistic Atom Model; The Vector Atom Model; Quantum Numbers Associated with the Vector Atom Model; The Pauli Exclusion Principle; The Periodic Classification of Elements; Magnetic Dipole Moment due to Orbital Motion of the Electron; Magnetic Dipole Moment due to Spin; Zeeman Effect; Larmor's Theorem; Stark Effect. 13 Lectures

UNIT-II

Particle properties of Waves: Electromagnetic waves, Blackbody Radiation, Photo-electric effect, Einstein's Photoelectric Equation, Compton scattering, pair production, photons and gravity.

Wave properties of the Particles: De Broglie waves, description of wave, Probability. Wave amplitude and wave functions, Group and Phase velocities and relation between them. Davisson-Germer experiment, Heisenberg uncertainty principle.

UNIT-III

14 Lectures

Nuclear Transformations

stability of the nucleus; Law of radioactive decay; Mean life and half-life; types of radio active decays, Alpha decay; Beta decay, Gamma ray emission, positron emission and electron capture, radioactive series, energy-momentum conservation: electron-positron pair creation by gamma photons in the vicinity of a nucleus, nuclear reactions and Q values.

Nuclear Fission; Energy Released in Fission; Chain Reaction; Atom Bomb; Nuclear Reactors; Nuclear Fusion, Source of Stellar Energy; Thermonuclear reactions

UNIT IV

Artificial Transmutation of Elements

The Discovery of Artificial Transmutation; Bohr's Theory of Nuclear Disintegration, nuclear reactions; The Q-Value Equation for a Nuclear Reaction; Nuclear Reactions; Energy Balance in Nuclear Reactions and the Q-value; Threshold Energy of an Endoergic Reaction; Nuclear Transmutations; The Scattering Cross-Section; Discovery; Preparation of Radioelements; Applications of Radioisotopes; The Discovery of the Neutron; Basic Properties of the Neutron;

Classification of Neutrons; Neutron Sources; Neutron Detection; Neutron Collimator.

Text Books

- 1. Concepts of Modern Physics, Arthur Beiser, 2002, McGraw-Hill.
- 2. Modern Physics (17th Ed.), 2013, S. Chand & Company Pvt. Ltd.

Reference Books/Materials

- 1. Introduction to Modern Physics, Rich Meyer, Kennard, Coop, 2002, Tata McGraw Hill
- 2. Textbook of engineering Physics, M.N Avadhanulu, P.G.Kshirsagar.

13 Lectures

14

3. Introduction to Quantum Mechanics, David J. Griffith, 2005, Pearson Education.

4. Physics for scientists and Engineers with Modern Physics, Jewett and Serway, 2010, Cengage Learning.

5. Modern Physics, G.Kaur and G.R. Pickrell, 2014, McGraw Hill

Quantum Mechanics: Theory & Applications, A.K.Ghatak & S.Lokanathan, 2004, Macmillan 2002.

Open Educational Resources (OER)

- <u>https://www.youtube.com/live/uFF_ptEDN0o?feature=share</u>
- https://youtu.be/3It49x562b0
- <u>https://youtu.be/UyWXOIK0uSg</u>
- <u>https://youtu.be/QpXIPPIn3Ig</u>
- <u>https://youtu.be/Hpn5G1FiuCs</u>
- <u>https://youtu.be/Lhxx2jQmLH4</u>
- <u>https://youtu.be/PNBk5LjweEk</u>

Assessment & Evaluation

Components	8	Mid Term Examination		End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

~ -	Course Outcomes		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	CO1	3	2	-	-	-	3	-	-	-	3	3	-	-	-
SCPH202 Modern	CO2	3	2	-	-	-	3	-	-	-	3	3	-	-	-
Physics	CO3	3	-	2	-	-	3	-	-	-	2	3	-	-	-
	CO4	3	2	-	_	-	3	-	-	-	2	3	_	-	_

1=weakly mapped

2= moderately mapped

3=strongly mapped

Teaching Plan

Week	Topic/Unit No.	Textbook [TB]/Teaching-Learning
		Reference Book [RB]-Method
		Chapter/ Page No./
		OER
1	Structure of the Atom	TB: Concepts of Modern Lecture and Discussion
		Physics - Chapter 1
2	Structure of the Atom	TB: Concepts of Modern Lecture and Discussion
		Physics - Chapter 2
3	Structure of the Atom	TB: Concepts of Modern Lecture and Discussion
		Physics - Chapter 3
4	Particle properties of	fTB: Concepts of ModernLecture and Discussion
	Waves	Physics - Chapter 4
5	Particle properties of	fTB: Concepts of ModernLecture and Discussion
	Waves	Physics - Chapter 5
6	Nuclear Transformations	TB: Concepts of Modern Lecture and Discussion

	Physics - Chapter 6
7	Nuclear Transformations TB: Concepts of Modern Lecture and Discussion Physics - Chapter 7
8	Nuclear Transformations TB: Concepts of Modern Lecture and Discussion Physics - Chapter 8
9	Artificial Transmutation TB: Concepts of Modern Lecture and Discussion of Elements Physics - Chapter 9
10	Artificial Transmutation TB: Concepts of Modern Lecture and Discussion of Elements Physics - Chapter 10
11	Artificial Transmutation RB: Introduction to Lecture and Discussion of Elements Quantum Mechanics - Chapter 1
12	Artificial Transmutation RB: Introduction to Lecture and Discussion of Elements Quantum Mechanics - Chapter 2
13	Review and Recap TB: Concepts of Modern Lectures, Discussions, Physics - Chapters 1-10 Q&A
14	Revision and Comprehensive Review Lectures, Discussions, Assessment and Assessment of the Q&A, Exam Course Topics

Unit	Course Learning Outcomes	Teaching]	Learn	ing	Assessment Task Methods
No.		Activity			U	
1	principles of atomic structure and behavior, including Rutherford's experiments on scattering alpha particles, Bohr's atom model, and the effects of nuclear motion on	explained v (ii) Stud encouraged relevant	with ill lents to dis concep be	ustratio to scover ots. gi	ons. be the (iii) iven	
2	Comprehend the wave-particle duality concept, including the particle properties of waves (e.g., electromagnetic waves) and the wave properties of particles (e.g., De Broglie waves). Understand the Davisson-Germer experiment and the Heisenberg uncertainty principle.	Discuss a theoretical problems i Students to apply conce problems.	and s and n the be ence	olve pract class. ourage	the tical (v) d to	
3	Analyze nuclear transformations and decay processes, including the stability of nuclei, radioactive decay laws, types of radioactive decays (alpha, beta, gamma, positron emission, and electrom capture), and energy-momentum conservation in nuclear reactions. Apply knowledge of nuclear reactions and artificial					
	transmutation of elements, including understanding Bohr's theory of nuclear disintegration, Q-value equation for nuclear reactions, and preparation and					

SCPH204	Waves and Optics	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54	.			
Pre-requisites/Exposure	Electromagnetic Theory				
Co-requisites	Electrostatics and Electromagnetism				

Course Objectives

- 3. To learn about the Simple Harmonic Oscillation and its solution
- 4. To understand the different wave's phenomenon
- 5. To understand the behaviour and properties of light
- 6. To acquire knowledge of interference diffraction, polarisation and Holography

Course Outcomes

On completion of this course, the students will be able to

CO1: Understand principles of superposition, collinear harmonic oscillations, wave motion, and wave optics.

CO2: Apply graphical and analytical methods to study superposition of perpendicular harmonic oscillations and interference in thin films.

CO3: Analyze standing waves in strings and pipes, and interpret diffraction patterns in various scenarios.

CO4: Comprehend the principles of interferometers and holography, and evaluate their significance and applications.

Catalog Description

This course builds on the ideas of harmonic motion to cover in depth the concept of waves in physics with particular emphasis on light waves as an example. Emphasis will be on the optical phenomena associated with Wave Optics for example Interference, Diffraction and Polarisation.

Course Content

UNIT-I

14 Lecture Hours

Superposition of Collinear Harmonic oscillations: Linearity and Superposition Principle. Superposition of two collinear oscillations having (1) equal frequencies and (2) different frequencies (Beats). Superposition of N collinear Harmonic Oscillations with (1) equal phase differences and (2) equal frequency differences.

Superposition of two perpendicular Harmonic Oscillations: Graphical and Analytical Methods. Lissajous Figures with equal an unequal frequency and their uses.

Wave Motion: Plane and Spherical Waves. Longitudinal and Transverse Waves. Plane Progressive

(Travelling) Waves. Wave Equation. Particle and Wave Velocities. Differential Equation. Pressure of a Longitudinal Wave. Energy Transport. Intensity of Wave. Water Waves: Ripple and Gravity Waves. **UNIT-II** 13 Lecture Hours

Velocity of Waves: Velocity of Transverse Vibrations of Stretched Strings. Velocity of Longitudinal Waves in a Fluid in a Pipe. Newton's Formula for Velocity of Sound. Laplace's Correction.

Superposition of Two Harmonic Waves: Standing (Stationary) Waves in a String: Fixed and Free Ends. Analytical Treatment. Phase and Group Velocities. Changes with respect to Position and Time. Energy of Vibrating String. Transfer of Energy. Normal Modes of Stretched Strings. Plucked and Struck Strings. Melde's Experiment. Longitudinal Standing Waves and Normal Modes. Open and Closed Pipes. Superposition of N Harmonic Waves.

UNIT-III

14 Lecture Hours

Wave Optics: Electromagnetic nature of light. Definition and properties of wave front. Huygens Principle. Temporal and Spatial Coherence.

Interference: Division of amplitude and wavefront. Young's double slit experiment. Lloyd's Mirror and Fresnel's Biprism. Phase change on reflection: Stokes' treatment. Interference in Thin Films: parallel and wedge-shaped films. Fringes of equal inclination (Haidinger Fringes); Fringes of equal thickness (Fizeau Fringes). Newton's Rings: Measurement of wavelength and refractive index.

Interferometer: Michelson Interferometer-(1) Idea of form of fringes (No theoryrequired), (2) Determination of Wavelength, (3) Wavelength Difference, (4) Refractive Index, and (5) Visibility of Fringes. Fabry-Perot interferometer.

UNIT-IV

13 Lecture Hours

Diffraction: Kirchhoff's Integral Theorem, Fresnel-Kirchhoff's Integral formula. (Qualitative discussion only)

Fraunhofer diffraction: Single slit. Circular aperture, Resolving Power of a telescope. Double slit. Multiple slits. Diffraction grating. Resolving power of grating.

Fresnel Diffraction: Fresnel's Assumptions. Fresnel's Half-Period Zones for Plane Wave. Explanation of Rectilinear Propagation of Light. Theory of a Zone Plate: Multiple Foci of a Zone Plate. Fresnel's Integral, Fresnel diffraction pattern of a straight edge, a slit and a wire.

Holography: Principle of Holography. Recording and Reconstruction Method. Theory of Holography as Interference between two Plane Waves. Point source holograms.

Reference Books:

- Waves: Berkeley Physics Course, vol. 3, Francis Crawford, 2007, Tata McGraw-Hill.
- Fundamentals of Optics, F.A. Jenkins and H.E. White, 1981, McGraw-Hill
- Principles of Optics, Max Born and Emil Wolf, 7th Edn., 1999, Pergamon Press.
- Optics, Ajoy Ghatak, 2008, Tata McGraw Hill
- The Physics of Vibrations and Waves, H. J. Pain, 2013, John Wiley and Sons.
- The Physics of Waves and Oscillations, N.K. Bajaj, 1998, Tata McGraw Hill.
- Fundamental of Optics, A. Kumar, H.R. Gulati and D.R. Khanna, 2011, R. Chand

Publications.

Open Educational Resources (OER)

- https://youtu.be/JWfYzyPvYNU
- <u>https://youtu.be/xjiS1lblx_c</u>
- https://youtu.be/iWSNa8BCgaI
- <u>https://youtu.be/420N11Vuf_g</u>
- <u>https://youtu.be/nzwHI6UUnuA</u>

- <u>https://youtu.be/mL63s4QqVPc</u>
- https://youtu.be/hpLADfPpXwg
- https://youtu.be/-qngILxqGX0

Assessment & Evaluation

Components	8	Mid Term Examination		End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Couse Code and Title			PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
	CO1	3	3	2	2	1	2	2	2	2	2	3	3	2	2
and	CO2	2	3	2	3	1	3	2	3	2	2	2	3	2	3
Optics and	CO3	2	2	3	2	1	3	3	3	2	2	2	2	3	2
SCPH204	CO4	2	2	2	3	1	2	3	2	2	2	2	2	2	3

1=weakly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Superposition of harmonic oscillations, wave motion
Local	-
Regional	-
National	-
Global	Understand the behaviour and properties of waves such as light waves
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Velocity of waves, superposition of two harmonic waves
Local	-
Regional	-
National	-
Global	Understand the behaviour and properties of waves such as light waves
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Wave optics, interference, interferometer
Local	-
Regional	-

National	-
Global	Knowledge of various wave optics phenomena such as interference,
	diffraction, polarisation and holography
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Diffraction
Local	-
Regional	-
National	-
Global	Knowledge of various wave optics phenomena such as interference,
	diffraction, polarisation and holography
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	Promoting high-quality research
Poe/4 th IR	Projects and group discussion

Teaching Plan

Week	Unit No.	Topic Name Textbook [TB]/ Reference Teaching- Book [RB]-Chapter/ Page No./Learning Open Education Resources Method [OER]
1	Unit-I	SuperpositionofTB: Waves - Berkeley PhysicsLectureCollinearCourse, vol. 3, FrancisHarmonicCrawford, 2007, Tata McGraw-OscillationsHill
2	Unit-I	Beats TB: Waves - Chapter 1 Lecture
3	Unit-I	Superpositionof TB: Waves - Chapter 2LectureNCollinearHarmonicOscillationsOscillations
4	Unit-I	Superposition of TB: Waves - Chapter 3 Lecture Two Perpendicular Harmonic Oscillations

5	Unit-I	Lissajous Figures TB: Waves - Chapter 4 Lectu and Their Uses	re
6	Unit-II	Wave MotionTB: Waves - Chapter 5Lectu	re
7	Unit-II	Plane and TB: Waves - Chapter 6 Lectu Spherical Waves	re
8	Unit-II	Plane Progressive TB: Waves - Chapter 7 Lectu (Travelling) Waves	re
9	Unit-II	Wave Equation TB: Waves - Chapter 8 Lectu and Particle Velocities	re
10	Unit-III	Velocity of TB: Fundamentals of Optics, Lectu Waves F.A. Jenkins and H.E. White, 1981, McGraw-Hill	re
11	Unit-III	Superposition of TB: Fundamentals of Optics -Lectu Two Harmonic Chapter 1 Waves	re
12	Unit-III	Phase and Group TB: Principles of Optics, Max Lectu Velocities Born and Emil Wolf, 7th Edn., 1999, Pergamon Press	re
13	Unit-IV	Changes with TB: Principles of Optics -Lectu respect to Position Chapter 1 and Time	re
14	Unit-IV	EnergyofOER:VideoVibrating String https://youtu.be/JWfYzyPvYNU	Lecture

Unit	Course Learning Outcomes	Teaching LearningAssessment Task Methods
No.	5	Activity
1	superposition, harmonics, and wave motion, and their applications in various physical	rillustrations. (ii) StudentsStudent presentations. • Mid-term lto be encouraged to examinations. • Practical and viva-
	5	discover the relevant voce examinations. • End-term
2	interference, diffraction, and holography phenomena, and their implications in optics and wave-based technologies.	homework/assignments. d(iv) Discuss and solve the theoretical and practical
3	Apply graphical and analytical methods to study the behavior of waves in different configurations, such as standing waves and Lissajous figures.	rStudents to be encouraged to apply concepts to real sworld problems.
4	Develop problem-solving and investigative skills in the field of physics, enabling the analysis of complex wave- related problems and the use of mathematical modeling for	1 - - f

practical applications.		
-------------------------	--	--

SCPH252	Waves and Optics Lab	L	Т	Р	С
Version 1.0		0	0	4	2
Pre-requisites/Exposure	Waves and Optics				
Co-requisites	Electromagnetic Theory				

Course Objectives

- 7. To learn about the experimental set ups related to various optical phenomena.
- 8. To learn the wave equation an its solution.
- 9. To understand the behaviour and properties of light.
- 10. To acquire knowledge of interference, diffraction, polarisation and Holography

Course Outcomes

On completion of this course, the students will be able to

CO1. Explain different laboratory instruments and their uses in optics lab.

CO2. Understand various optical phenomena i.e. Interference, Diffraction and Polarisation using hands on experiments.

CO3. Apply various wave optics phenomena such as Interference, Diffraction, Polarisation and Holography to evaluate various physical parameters.

CO4. Identify and evaluate the errors involved.

List of Experiments

1. To determine the frequency of an electric tuning fork by Melde's experiment and verify λ^2 –T law.

- 2. To investigate the motion of coupled oscillators.
- 3. To study Lissajous Figures.
- 4. Familiarization with: Schuster's focusing; determination of angle of prism.
- 5. To determine refractive index of the Material of a prism using sodium source.

6. To determine the dispersive power and Cauchy constants of the material of a prism using mercury source.

- 7. To determine the wavelength of sodium source using Michelson's interferometer.
- 8. To determine wavelength of sodium light using Fresnel Biprism.
- 9. To determine wavelength of sodium light using Newton's Rings.

10. To determine the thickness of a thin paper by measuring the width of the interference fringes produced by a wedge-shaped Film.

11. To determine wavelength of (1) Na source and (2) spectral lines of Hg source using plane diffraction grating.

12. To determine dispersive power and resolving power of a plane diffraction grating.

Reference Books:

• Advanced Practical Physics for students, B.L. Flint and H.T. Worsnop, 1971, Asia Publishing House

• A Text Book of Practical Physics, I. Prakash & Ramakrishna, 11th Ed., 2011, Kitab Mahal

• Advanced level Physics Practicals, Michael Nelson and Jon M. Ogborn, 4th Edition, reprinted 1985, Heinemann Educational Publishers

• A Laboratory Manual of Physics for undergraduate classes, D.P.Khandelwal, 1985, Vani Pub.

Open Educational Resources

- <u>https://youtu.be/hwWPDqHFxOg</u>
- https://youtu.be/tnQn994Eqm8
- <u>https://youtu.be/e4poHiwoTH8</u>
- https://youtu.be/S3PiJ0PQghc
- <u>https://youtu.be/JvVOaqej1II</u>
- <u>https://youtu.be/tQj5v74Q8p0</u>
- <u>https://youtu.be/1Qc-HIml-U4</u>
- https://youtu.be/fWhgguWc8rk

Assessment & Evaluation

-		Lab Record/Viva Voce		End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

	Outcome		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
SCPH252	CO1	2	1	1	3	1	1	1	1	2	2	1	2	1	1
Waves	CO2	1	2	1	1	1	3	1	2	1	1	1	1	1	1
and Optics Lab	CO3	1	1	2	1	3	2	2	3	1	2	1	1	2	3
Lau	CO4	1	1	1	1	1	1	1	2	2	1	1	2	1	2

1=weakly mapped

2= moderately mapped

3=strongly mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Waves and optics lab
Local	-
Regional	-
National	-
Global	Deep knowledge of waves and optical phenomena associated with wave optics through lab experiments
Employability	Experimental set ups related to various optical phenomena such as interference, diffraction, polarisation and holography
Entrepreneurship	-
Skill development	Experimental set ups related to various optical phenomena such as interference, diffraction, polarisation and holography
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment & sustainability	-

SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Promoting high quality research
Poe/4 th IR	Hands on experience, projects, internship

Week	Topic/Unit No.	Textbook/Reference	Teaching-Learning Method
1	Experiment 1	TB: Ch. X	Lecture, Demonstration
2	Experiment 1	OER: Link 1	Practical Lab Session
3	Experiment 2	TB: Ch. X	Lecture, Discussion
4	Experiment 2	OER: Link 2	Practical Lab Session
5	Experiment 3	TB: Ch. X	Lecture, Demonstration
6	Experiment 3	OER: Link 3	Practical Lab Session
7	Experiment 4	TB: Ch. X	Lecture, Discussion
8	Experiment 4	OER: Link 4	Practical Lab Session

9	Experiment 5	TB: Ch. X	Lecture, Demonstration
10	Experiment 5	OER: Link 5	Practical Lab Session
11	Experiment 6	TB: Ch. X	Lecture, Discussion
12	Experiment 6	OER: Link 6	Practical Lab Session
13	Experiment 7	TB: Ch. X	Lecture, Demonstration
14	Experiment 7	OER: Link 7	Practical Lab Session

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Learn to verify wave laws, like λ^2 – T law, by determining tuning fork frequencies, building a strong foundation in experimental optics.	Students to be encouraged to discover the relevant	discussions. • Assignments and class tests. • Student presentations. • Mid-term
2	Investigate coupled oscillators, unraveling the dynamic interplay between interconnected systems and enhancing analytical skills	homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v) Students to be encouraged to apply concepts to real world	term examinations.
3	Study Lissajous Figures to enhance wave pattern visualization and analysis skills, crucial in diverse	problems.	

	scientific and engir applications	leering
	Gain proficiency in by exploring properti refractive i dispersive power, resolving power, applications ranging materials to light sour	es like ndices, and with from
UNS104		Crystallography L T P C
Version 1	1.0	4 0 0 4
Total Co	ontact Hours	54
Pre-requ	isites/Exposure	Solid State Physics
Co-requi	isites	Basic knowledge in Materials Science

Course Description

This course is an introduction to the principles of structure of materials, and theory and applications of diffraction and imaging techniques for materials characterization using X-ray diffraction and transmission electron microscopy (TEM).

Course Outcomes

CO1: Analyze and interpret the key principles of geometric crystallography, including the properties of crystalline matter, the application of symmetry operations, and understanding of crystallographic notations.

CO2: Compare and contrast various crystal structures, apply principles that govern the formation of these structures, and utilize X-ray diffraction methods to investigate structural variations.

CO3: Investigate and articulate the relationship between the physical properties of crystals and their crystalline symmetry, demonstrating an understanding of optical properties and how they're observed and determined.

CO4: Evaluate the impact of crystal defects and dynamics on the physical properties of crystals, and develop a comprehensive understanding of crystal formation, growth, and real crystal morphology.

Course Content

Unit 1.

Geometric crystallography: Historical development of Crystallography, The periodic table of the elements and interatomic bonds, Order and periodicity. Properties of crystalline matter, Crystal networks. Periodic two-dimensional networks. Bravais networks and crystalline systems. Elements of the periodic networks, Crystallographic notations: knots rows and planes. Weiss parameters and Miller indices, Relationship between morphology and structure, Crystallographic areas, Symmetry operations in 2 and 3 dimensions, The 32 specific groups. Crystal systems and symmetry, Crystal morphology.

<u>Unit</u> 2.

Structural crystallography and crystal chemistry : The symmetry of the unit cell., Space groups, Atomic positions and structural positions, Crystal structures, Principles that govern the formation of crystalline structures, Variations in the chemical composition of the crystals. Isomorphism, solid solutions and stoichiometry, X-ray diffraction by crystals. Diffraction methods: fundamentals and information they provide.

Unit 3.

Physical properties of crystals: Introduction to the physical properties of crystals, and their relation to crystalline symmetry. Optical properties, Nature of light, and other basic concepts, Optical properties, Isotropy and optical anisotropy. The optical surfaces. , Optical properties, The transmitted light polarization microscope, Optical properties, Optical observations with parallel light and without analyzer. Optical determinations with parallel light and analyzer. Optical determinations with convergent light.

Unit 4.

Crystal Dynamics : The real crystal. Crystal defects and crystalline dynamics. Influence of defects on the physical properties of crystals, Crystal defects: punctual, linear, two-dimensional and three-dimensional. Crystal formation and growth. Morphology of the real crystal. Add and twins. Polymorphism

Textbook: David B. Williams and C. Barry Carter, *Transmission Electron Microscopy: A Textbook* for Materials Science, Plenum Press, NY (2007). (Required)

Reference Books

Introduction to Solid State Physics - C. Kittel Principles of Solid State Physics - R. A. Levy Solid State Physics- S.O. Pillai Elements of X-Ray diffraction - B.D. Cullity Elementary Solid State Physics - Ali Omar Elements of Solid State Physics - J.P. Srivastava Nano; The Essentials By T. Pradeep (Tata McGraw Hill Publ)

Open Education Resources

• <u>Introduction to Crystallography and Mineral Crystal Systems</u> - A comprehensive overview of geometric crystallography.

- <u>Crystallography Open Database</u> A database of crystal structures.
- <u>MIT OpenCourseWare Crystal Structure Reading Collection</u> Reading materials on crystal structures.
- <u>Fundamentals of Crystallography</u> An article on the principles that govern the formation of crystalline structures.
- <u>Introduction to Crystal Physics</u> A detailed course on the physical properties of crystals.
- <u>Crystalline Materials</u> Explains the optical properties of crystals.
- Solid State Physics A chapter on crystal defects and dynamics from a course on solid state physics.
- <u>Crystal Growth & Design</u> A journal with open access articles on crystal formation and growth.

Assessment & Evaluation

Components	8	Mid Term Examination	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme and Course Mapping

Course Code &	Course	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
Title	Outcomes														
	(CO)														
UNS104	CO1	3	2	1	3	1	2	3	3	1	1	3	3	1	2
Crystallography	CO2	3	2	1	3	2	3	2	3	1	1	3	3	2	2
	CO3	3	3	2	2	2	3	2	3	1	1	3	2	3	3
	CO4	3	3	2	3	3	3	2	3	1	1	3	3	3	3

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit 1: Geometric Crystallography

Indicator	Relevant Course Content
Local	Symmetry operations in 2 and 3 dimensions, Crystal morphology
Regional	-
National	Historical development of Crystallography, Properties of crystalline matter, Crystal

multator	Keevant Coulde Content
Indicator	Relevant Course Content
Unit 2: Structural	Crystallography and Crystal Chemistry
Poe/4th IR	-
Nep 2020	-
SDG	-
Sustainability	
Environment &	Symmetry operations in 2 and 3 dimensions, Crystal morphology
Human Values	Symmetry operations in 2 and 3 dimensions, Crystal morphology
Gender	-
Professional Ethics	Symmetry operations in 2 and 3 dimensions, Crystal morphology
Skill Development	Symmetry operations in 2 and 3 dimensions, Crystal morphology
Entrepreneurship	-
Employability	Symmetry operations in 2 and 3 dimensions, Crystal morphology
	2 and 3 dimensions, The 32 specific groups, The symmetry of the unit cell, Atomic positions and structural positions
Global	Historical development of Crystallography, Properties of crystalline matter, Crystal networks, Crystallographic notations: knots rows and planes, Symmetry operations in
	positions and structural positions
	2 and 3 dimensions, The 32 specific groups, The symmetry of the unit cell, Atomic
	networks, Crystallographic notations: knots rows and planes, Symmetry operations in

mulcator	Kelevant Course Content
Local	The symmetry of the unit cell, Variations in the chemical composition of the crystals,
	X-ray diffraction by crystals, Diffraction methods: fundamentals and information
	they provide
Regional	-
National	The symmetry of the unit cell, Variations in the chemical composition of the crystals,
	Isomorphism, solid solutions, and stoichiometry, X-ray diffraction by crystals,
Global	The symmetry of the unit cell, solid solutions, and stoichiometry, X-ray diffraction by
	crystals, Diffraction methods: fundamentals and information they provide, Crystal
	defects: punctual, linear, two-dimensional, and three-dimensional, The real crystal,
	Influence of defects on the physical properties of crystals
Employability	The real crystal
Entrepreneurship	-
Skill Development	The real crystal
Professional Ethics	The real crystal
Gender	-
Human Values	The real crystal
Environment &	The real crystal
Sustainability	
SDG	-
Nep 2020	-
Poe/4th IR	-

Unit 3: Physical Properties of Crystals

Indicator	Relevant Course Content
Local	-
Regional	-
National	Introduction to the physical properties of crystals, and their relation to crystalline symmetry, Optical properties, Nature of light, and other basic concepts, Optical properties, Isotropy and optical anisotropy, The optical surfaces, Optical properties, The transmitted light polarization microscope, Optical properties, Optical observations with parallel light and without analyzer, Optical determinations with parallel light and analyzer, Optical determinations with convergent light
Global	Introduction to the physical properties of crystals, and their relation to crystalline symmetry, Optical properties, Nature of light, and other basic concepts, Optical properties, Isotropy and optical anisotropy, The optical surfaces, Optical properties, The transmitted light polarization microscope, Optical properties, Optical observations with parallel light and without analyzer, Optical determinations with parallel light and analyzer, Optical determinations with convergent light

Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	-
Sustainability	
SDG	-
Nep 2020	-
Poe/4th IR	-

-				
Unit 4: Crystal Dynamics				
Relevant Course Content				
-				
-				
The real crystal, Crystal defects: punctual, linear, two-dimensional, and three-				
dimensional, Influence of defects on the physical properties of crystals, Crystal				
formation and growth, Morphology of the real crystal, Add and twins,				
Polymorphism				
The real crystal, Crystal defects: punctual, linear, two-dimensional, and three-				
dimensional, Influence of defects on the physical properties of crystals, Crystal				
formation and growth, Morphology of the real crystal, Add and twins,				
Polymorphism				
The real crystal				
-				
The real crystal				
The real crystal				
-				
The real crystal				
The real crystal				
-				
-				
-				

Week	Topics	Reference Books/Open Education Teaching Learning
		Resources Method
Week 1		IC. Kittel, Introduction to Solid StateLectures Physics, <u>Webmineral: Crystallography</u>
Week 2	The Periodic Table of the Elements and Interatomic Bonds	sDavid B. Williams and C. Barry Carter, Lectures and Group Transmission Electron Microscopy: ADiscussions Textbook for Materials Science
Week 3	Order and Periodicity, Properties of Crystalline Matter	fR. A. Levy, Principles of Solid State Lectures and Physics, <u>MIT OpenCourseWare: Solid State</u> Demonstrations <u>Physics</u>
Week 4		-S.O. Pillai, Solid State Physics, <u>MIT</u> Lectures and Practica OpenCourseWare: Crystal Structures Lab Sessions
Week 5	Bravais Networks and Crystalline Systems	eB.D. Cullity, Elements of X-RayLectures and Grouj Diffraction, <u>Crystallography Open</u> Discussions

		Database	
Week 6		Ali Omar, Elementary Solid State Physics, Crystallography and Minerals Arranged by Crystal Form	
Week 7	rows and planes. Weiss parameters and Miller indices, Relationship between morphology and structure.	Transmission Electron Microscopy: A Textbook for Materials Science <u>Fundamentals of Crystallography</u> - An article on the principles that govern the formation of crystalline structures.	Examinations
Week 8		J.P. Srivastava, Elements of Solid State Physics, <u>Crystallography in Real Life</u>	Lectures and Group Discussions
Week 9		T. Pradeep, Nano; The Essentials, Crystallography Matters!	Lectures and Demonstrations
Week 10	The Symmetry of the Unit Cell,	C. Kittel, Introduction to Solid State	Lectures and Practical Lab Sessions
Week 11	Positions, Crystal Structures	R. A. Levy, Principles of Solid State Physics, <u>Structural Crystallography: An</u> Introduction	
Week 12	Introduction to the Physical Properties of Crystals and their Relation to Crystalline Symmetry	S.O. Pillai, Solid State Physics, <u>The Physics</u> of Crystals	Lectures and Group Discussions
Week 13		David B. Williams and C. Barry Carter, Transmission Electron Microscopy: A Textbook for Materials Science, <u>Crystalline</u> <u>Materials</u>	Lab Sessions
Week 14		David B. Williams and C. Barry Carter, Transmission Electron Microscopy: A Textbook for Materials Science, <u>Crystalline</u> <u>Materials</u>	

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes (CLO)	()	Task Methods
Unit 1	Analyze and interpret the key principles of geometric crystallography, including the properties of crystalline matter, the application of symmetry operations, and understanding of crystallographic notations.	Lectures and demonstrations, self-study, guided group discussion.	and class discussions. • Assignments and class tests. • Student presentations. •
Unit 2	Compare and contrast various crystal structures, apply principles that govern the formation of these structures, and utilize X-ray diffraction methods to investigate structural variations.	guided reading.	Mid-term examinations. • Practical and viva-voce examinations. • End-term examinations.
Unit 3	Investigate and articulate the relationship between the physical properties of crystals and their crystalline symmetry, demonstrating an understanding of optical properties and how they're observed and determined.	properties of crystals, group	

Unit 4	Evaluate the impact of crystal defects and dynamics on the	eCase study	analysis,
	physical properties of crystals, and develop a comprehensive	collaborative group	work on
	understanding of crystal formation, growth, and real crysta	lspecific topics, self	-study on
	morphology.	crystal defects.	

UNS105	Crystallography lab			Р	С
Version 1.0		0	0	2	1
Total Contact Hours	30				
Pre-requisites/Exposure	Solid State Physics				
Co-requisites	Basic knowledge in Materials Science				

Course Description

This course is an introduction to study of structure of materials, coordination number, bond lengths etc using Diamond software

Course Outcomes

CO1: Describe the theoretical foundations of crystallography.

- CO2: Understand the properties and symmetry of crystals.
- CO3: Analyze the bonding between atoms.
- CO4: Evaluation of the Coordination number

Course Content

List of experiments

- 1. To Study the structure of Simple cubic crystal system.
- 2. To Study the structure of Body centered cubic crystal system
- 3. To Study the structure of Face centered cubic crystal system
- 4. To Study the structure of tetragonal crystal system
- 5. To Study the structure of Orthorhombic crystal system
- 6. To Study the structure of Rhombohedral crystal system
- 7. To Study the structure of Hexagonal crystal system
- 8. To Study the structure of monoclinic Crystal system
- 9. To Study the structure of Triclinic crystal system
- 10. To Study the structure of Perovskites.

Reference Books

- Introduction to Solid State Physics C. Kittel
- Principles of Solid State Physics R. A. Levy
- Solid State Physics- S.O. Pillai
- Elements of X-Ray diffraction B.D. Cullity
- Elementary Solid State Physics Ali Omar
- Elements of Solid State Physics J.P. Srivastava
- Nano; The Essentials By T. Pradeep (Tata McGraw Hill Publ)

Open Educational Resources (OER)

- <u>https://youtu.be/HCWwRh5CXYU</u>
- <u>https://youtu.be/_9RnbGqtkd4</u>

- <u>https://youtu.be/GSPVC34ijIA</u>
- <u>https://youtu.be/JS9ysbgr0BE</u>
- <u>https://youtu.be/07iZ7-IEyYE</u>

Assessment & Evaluation

1	Experiment	Lab Record/Viva Voce		End Term Examination
Weightage (%)	20	20	10	50

Programme and Course Mapping

& Title	Course Outcome s (CO)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
UNS105	CO1	3	2	1	2	1	3	2	3	3	2	3	3	3	2
Crystallograph	CO2	3	3	2	2	1	2	2	3	3	2	3	3	3	2
У	CO3	3	2	1	3	2	3	2	3	3	2	3	2	3	2
	CO4	2	1	1	3	2	3	2	3	3	2	2	3	2	3

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Indicator	Relevant Course Content
Local	To Study the structure of Simple cubic crystal system, To Study the structure of Body centered cubic crystal system, To Study the structure of Face centered cubic crystal system, To Study the structure of tetragonal crystal system, To Study the structure of Orthorhombic crystal system, To Study the structure of Rhombohedral crystal system, To Study the structure of Hexagonal crystal system, To Study the structure of monoclinic Crystal system, To Study the structure of Triclinic crystal system, To Study the structure of Perovskites
Regional	-
National	To Study the structure of Simple cubic crystal system, To Study the structure of Body centered cubic crystal system, To Study the structure of Face centered cubic crystal system, To Study the structure of tetragonal crystal system, To Study the structure of Orthorhombic crystal system, To Study the structure of Rhombohedral crystal system, To Study the structure of Hexagonal crystal system, To Study the structure of monoclinic Crystal system, To Study the structure of Triclinic crystal system, To Study the structure of Perovskites
Global	To Study the structure of Simple cubic crystal system, To Study the structure of Body centered cubic crystal system, To Study the structure of Face centered cubic crystal system, To Study the structure of tetragonal crystal system, To Study the structure of Orthorhombic

	crystal system, To Study the structure of Rhombohedral crystal system, To Study the structure of Hexagonal crystal system, To Study the structure of monoclinic Crystal system, To Study the structure of Triclinic crystal system, To Study the structure of Perovskites
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	-
Sustainability	
SDG	_
Nep 2020	_
Poe/4th IR	_

Week	Topic/Unit No.	Textbook/Reference	Teaching- Learning Method
1	Introduction to Crystal	TB - Introduction to Solid State Physics -	Lecture,
	Systems	C. Kittel, Ch. 1, OER1	Demonstration
2	Simple Cubic Crystal	TB - Introduction to Solid State Physics -	Practical Lab
	System	C. Kittel, Ch. 3, OER1	Session
3	Body Centered Cubic Crystal System	TB - Introduction to Solid State Physics - C. Kittel, Ch. 3, OER2	Lecture, Discussion
4	Face Centered Cubic	TB - Introduction to Solid State Physics -	Practical Lab
	Crystal System	C. Kittel, Ch. 3, OER 3	Session

5	Tetragonal Crystal	TB - Introduction to Solid State Physics -	Lecture,
	System	C. Kittel, Ch. 4, OER4	Demonstration
6	Orthorhombic Crystal	TB - Introduction to Solid State Physics -	Practical Lab
	System	C. Kittel, Ch. 4, OER 4	Session
7	Rhombohedral Crystal System	TB - Introduction to Solid State Physics - C. Kittel, Ch. 4, OER 4	Lecture, Discussion
8	Hexagonal Crystal	TB - Introduction to Solid State Physics -	Practical Lab
	System	C. Kittel, Ch. 5, OER 4	Session
9	Monoclinic Crystal	TB - Introduction to Solid State Physics -	Lecture,
	System	C. Kittel, Ch. 5, OER 4	Demonstration
10	Triclinic Crystal	TB - Introduction to Solid State Physics -	Practical Lab
	System	C. Kittel, Ch. 5, OER 4	Session
11	Perovskites Structure	RB - Nano; The Essentials By T. Pradeep, Relevant Chapters, OER 4	Lecture, Discussion
12	X-Ray Diffraction	TB - Elements of X-Ray diffraction - B.D. Cullity, Relevant Chapters, OER 5	Discussion
13	Solid State Physics	RB - Principles of Solid State Physics - R.	Lecture,
	Principles	A. Levy, Relevant Chapters	Demonstration

14	Review and Applications	TB - Solid State Physics- S.O. Pillai, Relevant Chapters	Practical Lab Session
----	-------------------------	---	--------------------------

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Understand the fundamental principles and characteristics of various crystal systems in solid state physics.	(i) Each topic to be explained with illustrations. (ii) Students to be encouraged to discover the relevant concepts. (iii)	discussions. • Assignments and class tests. • Student presentations.• Mid-term examinations. •
2	Demonstrate proficiency in identifying and describing the structural arrangements of different crystal systems.	Students be given homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v)	examinations. • End-term
3	Apply theoretical knowledge to analyze and differentiate crystal structures in practical laboratory experiments.	Students to be encouraged to apply concepts to real world problems.	
4	Gain insights into the unique properties and applications of specific crystal systems, such as perovskites, in various scientific and technological contexts.		

Semester V

S.No. COURSE CODE	COURSE TITLE	С
----------------------	--------------	---

1	SCPH301	Quantum mechanics and applications	4
	SCPH303	Digital Systems And Applications	4
2	SCPH351	Digital Systems And Applications Lab	1
3	UNS106	Synthesis of Nanomaterials-I	4
4	UNS107	Synthesis of Nanomaterials-I lab	1
5	SCPH305	Applied Optics	4
	SCPH307	Laser Fundamentals	
6	SIPH002	Evaluation of Summer Internship /Project	2
TOTAL			20

SCPH301	QUANTUM	MECHANICS	AND	L	Т	Р	С
	APPLICATION	IS					
Version 1.0				4	0	0	4
Total Contact Hours	54						
Pre-requisites/Exposure	Quantum Mecha	anics					
Co-requisites	Mathematical P	hysics					

Course Objectives

1. Acquire knowledge of time independent perturbed systems using Schrödinger's equation.

2. Know about the mechanism related to electronic transitions using time independent perturbed systems.

3. Explanation of physical significance of phenomenon of scattering quantum mechanically.

4. Deep insight about the co-relationship between relativity and quantum mechanics.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Demonstrate a deep understanding of wave functions, Schrodinger's equation, and principles of quantum mechanics, enabling them to explain these concepts accurately.
- CO2. Apply the concepts of quantum mechanics to one-dimensional potentials, harmonic oscillators, and hydrogen-like atoms.

- CO3. Analyze quantum phenomena; students will interpret the behavior of atoms in electric and magnetic fields, demonstrating their understanding of space quantization and the Zeeman effect.
- CO4. Synthesize knowledge on many electron atoms, spin orbit coupling, and Hund's Rule, to solve complex quantum problems and interpret atomic states.

Catalog Description

This course is intended to cover most of the basic topics in quantum mechanics, related to perturbed system. This course gives the theoretical explanations of perturbed systems (time independent and time dependent both) and co-relates the experimental data to theoretical aspects. Here the scattering problem tackled by quantum mechanically. Moreover, the course bridges different branches of physics, like spectroscopy, relativity etc, to quantum mechanics

Course Content

Unit 1:

20 Contact Hours

Wave Function and Schrodinger equation: Time dependent Schrodinger equation and dynamical evolution of a quantum state; Properties of Wave Function. Interpretation of Wave Function Probability and probability current densities in three dimensions; Conditions for Physical Acceptability of Wave Functions. Normalization. Linearity and Superposition Principles. Eigenvalues and Eigenfunctions. Position, momentum and Energy operators; commutator of position and momentum operators; Expectation values of position and momentum. Wave Function of a Free Particle. (6 Lectures)

Time independent Schrodinger equation-Hamiltonian, stationary states and energy eigenvalues; expansion of an arbitrary wavefunction as a linear combination of energy eigenfunctions; General solution of the time dependent Schrodinger equation in terms of linear combinations of stationary states; Application to spread of Gaussian wave-packet for a free particle in one dimension: wave packets, momentum space wavefunction (qualitative discussion); Position-momentum uncertainty principle. (10 Lectures)

Unit 2:

10 Contact Hours

General discussion of bound states in an arbitrary potential- continuity of wavefunction, boundary condition and emergence of discrete energy levels; application to one-dimensional problem-square well potential; Quantum mechanics of simple harmonic oscillator-energy levels and energy eigenfunctions; Hermite polynomials; ground state, zero point energy & uncertainty principle. (12 Lectures)

Unit 3:

10 Contact Hours

14 Contact Hours

Quantum theory of hydrogen-like atoms: time independent Schrodinger equation in spherical polar coordinates; separation of variables for second order partial differential equation; angular momentum operator & quantum numbers; Radial wavefunctions; shapes of the probability densities for ground & first excited states ; Orbital angular momentum quantum numbers l and m; s, p, d shells. (10 Lectures)

Unit 4:

Atoms in Electric & Magnetic Fields: Space quantization- Electron Spin and Spin Angular Momentum. Larmor's Theorem. Spin Magnetic Moment, Stern- Gerlach Experiment. Zeeman Effect,

Gyromagnetic Ratio and Bohr Magneton. (8 Lectures)

Atoms in External Magnetic Fields:- Normal Zeeman Effect. Paschen Back (Qualitative Discussion

only). (4 Lectures)

Many electron atoms: Pauli's Exclusion Principle. Symmetric & Antisymmetric Wave Functions, Fine

structure. Spin orbit coupling-LS and JJ coupling. Spectral Notations for Atomic State- Term symbols,

Total angular momentum, Vector Model, Hund's Rule.

(10 Lectures)

Text books:

- 1. Advanced Quantum Mechanics, Satya Prakesh, Kedarnaath Ramnaath (2016)
- 2. . Introduction to Quantum Mechanics, D.J Griffith, Prentice Hall (1994).

Reference book(s):

1. Modern Quantum Mechanics, J.J Sakurai, Revised Edition, 1994, Addision-Wesley.

2. Advanced Quantum Mechanics, B,S, Rajput, Pragati Prakashan (2004)

3. Quantum Mechanics: Theory and Applications, (2019), (Extensively revised 6th Edition), Ajoy Ghatak and S. Lokanathan, Laxmi Publications, New Delhi.

4. Quantum Mechanics, Eugene Merzbacher, 2004, John Wiley and Sons, Inc.

5 A Text book of Quantum Mechanics, P M Mathews & K Venkatesan, 2nd Ed. 2010 McGraw

5. A Text book of Quantum Mechanics, P.M.Mathews& K.Venkatesan, 2nd Ed., 2010, McGraw Hill.

Open Educational Resources (OER)

- 1. https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i-spring-2016/
- 2. https://online.stanford.edu/courses/soe-ycphysics0002-quantum-mechanics
- 3. https://www.khanacademy.org/science/physics/quantum-physics/quantum-numbers-andorbitals/a/quantum-mechanics
- 4. https://ocw.mit.edu/courses/physics/8-05-quantum-physics-ii-fall-2013/
- 5. https://ocw.uci.edu/courses/chem 131a quantum principles.html
- 6. https://openstax.org/details/books/university-physics-volume-3

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcom e	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
SCPH301 Quantum	CO1	3	2	2	2	1	2	2	1	1	1	3	2	2	2
mechanics and	CO2	2	3	2	2	3	3	3	2	1	1	3	3	3	3
applicatio ns	CO3	2	3	3	2	2	2	2	3	1	2	2	2	3	3
	CO4	2	3	2	3	3	3	3	3	2	2	3	3	3	3

Local-Regional-Regional-GlobalKnowledge about perturbed quantum mechanical systems and their applicationsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment &-sustainability-InitiGeneral discussion of bound states in an arbitrary potentialLocal-Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Invironment &-Skill development-Professional ethics-Invironment &-SustainabilityQuantum theory of hydrogen-like atomsLocal-Invironment &-Skill development-Professional ethics-Interpreneurship-Statianability-Quantum theory of hydrogen-like atomsLocal-Regional-Skill development-Professional ethics-Skill development-Skill development-Skill development-Skill development <th>Unit i</th> <th>Wave function and Schrodinger equation</th>	Unit i	Wave function and Schrodinger equation
National - Global Knowledge about perturbed quantum mechanical systems and their applications Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Human values - Environment & - sustainability - Unit ii General discussion of bound states in an arbitrary potential Local - Regional - National - Global Understanding of relativistic quantum mechanical systems Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Human values - Environment & - sustainability - Unit iii Quantum theory of hydrogen-like atoms Local - Regional - Sustainability - Unit iii Quantum theory of hydrogen-like atoms <tr< td=""><td>Local</td><td>-</td></tr<>	Local	-
Global Knowledge about perturbed quantum mechanical systems and their applications Employability - Entrepreneurship - Skill development - Ordessional ethics - Gender - Human values - Environment & - sustainability - Unit ii General discussion of bound states in an arbitrary potential Local - Regional - National - Global Understanding of relativistic quantum mechanical systems Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Human values - Environment & - Sustainability - Unit iii Quantum theory of hydrogen-like atoms Local - Regional - National - Gender - Professional ethics - Gobal P	Regional	-
applicationsEmployability-Entropreneurship-Skill development-Professional ethics-Gender-Human values-Environment &-sustainability-Unit iiGeneral discussion of bound states in an arbitrary potentialLocal-Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entropreneurship-Skill development-Professional ethics-Gender-Human values-Entropreneurship-Skill development-Professional ethics-Gender-Human values-Environment &-Sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-Skill development-Skill development-Skill development-Skill development-Skill development-Cender-Imployability-Skill development-Skill development-Skill development &-Skill development &-Skill development &-Skill development &-Skill development &-Skill development <td>National</td> <td>-</td>	National	-
applicationsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment &-sustainability-Unit iiGeneral discussion of bound states in an arbitrary potentialLocal-Regional-Roll of a state	Global	Knowledge about perturbed quantum mechanical systems and their
Employability-Entrepreneurship-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiGeneral discussion of bound states in an arbitrary potentialLocal-Regional-Skill development-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Entrepreneurship-Skill development &-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-Skill development-Professional ethics-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Intrepreneurship-Skill development-Professional ethics-Gender-Intrepreneurship-Skill development &-Skill development &-Intrepreneurship-Environme		
Skill development - Professional ethics - Gender - Human values - Environment & - sustainability - Unit ii General discussion of bound states in an arbitrary potential Local - Regional - National - Global Understanding of relativistic quantum mechanical systems Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Human values - Ituman values - Ituman values - Local - Ituman values - Local - Vinit iii Quantum theory of hydrogen-like atoms Local - Astional - Skill development - Physical significance of phenomenon of scattering quantum mechanically Employability - Entrepreneurship -	Employability	
Professional ethics-Gender-Human values-Environment &-sustainability-Unit iiGeneral discussion of bound states in an arbitrary potentialLocal-Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment &-Sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-Sustainability-Unit iiiQuantum theory of phenomenon of scattering quantum mechanicallyEmployability-Professional ethics-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Invironment &-Skill development-Invironment &-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Gender-Invironment &-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-<	Entrepreneurship	-
Gender - Human values - Environment & - sustainability - Unit ii General discussion of bound states in an arbitrary potential Local - Regional - National - Global Understanding of relativistic quantum mechanical systems Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Human values - Environment & - sustainability - Unit iii Quantum theory of hydrogen-like atoms Local - Regional - National - Global Physical significance of phenomenon of scattering quantum mechanically Employability - Entrepreneurship - Skill development - Professional ethics - Global - Professional ethics - Human values <t< td=""><td>Skill development</td><td>-</td></t<>	Skill development	-
Human values - Environment & - sustainability - Unit ii General discussion of bound states in an arbitrary potential Local - Regional - National - Global Understanding of relativistic quantum mechanical systems Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Human values - Environment & - sustainability - Unit ii Quantum theory of hydrogen-like atoms Local - Regional - Regional - Regional - Regional - Regional - Skill development - Professional ethics - Gender - Human values - Environment & - Skill development - Professional ethics - </td <td></td> <td>-</td>		-
Environment & - sustainability General discussion of bound states in an arbitrary potential Local - Regional - National - Global Understanding of relativistic quantum mechanical systems Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Human values - Environment & - sustainability Quantum theory of hydrogen-like atoms Local - Regional - National - Global Physical significance of phenomenon of scattering quantum mechanically Employability - Entrepreneurship - Skill development - Professional ethics - Gender - Unit iii Atoms in electric & magnetic fields Local - Regional - Unit iv Atoms in electric & magnetic fields Local - </td <td>Gender</td> <td>-</td>	Gender	-
sustainabilityGeneral discussion of bound states in an arbitrary potentialLocal-Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmtrepreneurship-Skill development-Corola-Regional-Stril development-Regional-Stril development-Regional-Skill development-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmtrepreneurship-Skill development-Professional ethics-GenderHuman valuesUnit ivAtoms in electric & magnetic fieldsLocal-RegionalHuman valuesGender-Human valuesBritoponnent &Unit ivAtoms in electric	Human values	-
sustainabilityGeneral discussion of bound states in an arbitrary potentialLocal-Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmtrepreneurship-Skill development-Corola-Regional-Stril development-Regional-Stril development-Regional-Skill development-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmtrepreneurship-Skill development-Professional ethics-GenderHuman valuesUnit ivAtoms in electric & magnetic fieldsLocal-RegionalHuman valuesGender-Human valuesBritoponnent &Unit ivAtoms in electric	Environment &	-
Unit iiGeneral discussion of bound states in an arbitrary potentialLocal-Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-Skill development-Benvironment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-Skill development-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Skill development-Professional ethics-GenderSkill development-Professional ethics-GenderSkill development &-Invironment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEntrepreneurship-Skill development-Professional ethics-Entrepreneurship-Skill development- <td></td> <td></td>		
Local-Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-Autional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEnvironment & sustainability-Valid development-National-Skill development-Cocal-Regional-National-Skill development-Professional ethics-Gender-Intrepreneurship-Skill development-Coral-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Still development-Professional ethics-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Still development-Professional ethics-Employability<		General discussion of bound states in an arbitrary potential
Regional-National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Employability-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Atoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-Entrepreneurship-Skill development-Professional ethics-Entrepreneurship-Still development <td></td> <td></td>		
National-GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Gender-Iduman values-Intropreneurship-Skill development-Entrepreneurship-Skill development-Professional ethics-Invironment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Entrepreneurship-Skill development-Skill development-Invironment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-Foresional-Stational-Stational-Stational <td></td> <td></td>		
GlobalUnderstanding of relativistic quantum mechanical systemsEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Skill development-Idevelopment-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Idevelopment &-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Inti viAtoms in electric & magnetic fieldsLocal-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-Professional ethics-Professional ethics-Subsci Struct Struct Struct Struct Str		<u> </u>
Employability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Skill development-Foressional ethics-Invironment & sustainability-Quantum theory of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Invironment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Regional-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Regional-Stational-Stational-Stational-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Stational-Stational-Stational-Professional ethics-Entrepreneurship-Skill development-Professional ethics-		Understanding of relativistic quantum mechanical systems
Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-Gender-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEntrepreneurship-Skill development-Forfessional ethics-Gender-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Skill development-Skill development-Entrepreneurship-Gender-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Statinability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Statinability-Professional ethics-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability-Statinability- <td></td> <td>-</td>		-
Skill development-Professional ethics-Gender-Human values-Environment &-sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Environment &-Skill di ovelopment-Itoman values-Environment &-Gender-Itoman values-Environment &-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Stoinal-Stoinal-Professional ethics-Local-Regional-Skill development-Stoinal-Stoinal-Stoinal-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Skill development <td></td> <td>-</td>		-
Professional ethics-Gender-Human values-Environment &-sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Environment &-Unit iii-Unit iii-Skill development-Professional ethics-Intrepreneurship-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Gender-GobalCo-relationship between relativity and quantum mechanicsInt ivAtoms in electric & magnetic fieldsLocal-Regional-Still development-Regional-Still development-Professional ethics-Employability-Still development-Professional ethics-Entrepreneurship-Still development-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Still development-Professional ethics-Professional ethics-P	î	
Gender-Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-Regional-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Skill development &-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-SkillopalCo-relationship between relativity and quantum mechanicsEmployability-Fantrepreneurship-Skill development-Professional ethics-Professional ethics-Regional-Professional ethics-Professional ethics-Skill development-Professional ethics-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Professional ethics-Professional		
Human values-Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Skill development-Professional ethics-Skill development-Professional ethics-Professional ethics-Professional-Professional-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Professional ethics-<		
Environment & sustainability-Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-OdalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Foressional ethics-Skill development &-Skill development &-Skill development &-Skill development &-Professional ethics-Regional-Skill development &-Professional ethics-Skill development &-Professional ethics-Professional ethics-Skill development &-Professional ethics-Sk		
sustainabilityQuantum theory of hydrogen-like atomsUnit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Regional-Stofpal-Global-Stofpal-Stofpal-Sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Skill development-Forfessional ethics-Forfessional ethics-Skill development-Professional ethics-Professional ethics-Skill development-Professional ethics-Professional ethics-Skill development-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Professional ethics- <t< td=""><td></td><td>-</td></t<>		-
Unit iiiQuantum theory of hydrogen-like atomsLocal-Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Still development-Sustainability-Unit ivAtoms in petceric & magnetic fieldsLocal-Regional-Skill development-Skill development-Forfessional ethics-Forfessional ethics-Skill development-Professional ethics-Forfessional ethics-Skill development-Professional ethics-Professional ethics-Skill development-Professional ethics-Professional ethics-Skill development-Professional ethics-Professional ethics-		-
Local-Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Entrironment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Skill development-Skill development &-Still development &-Atoms in electric & magnetic fieldsLocal-Regional-Skill development-Foressional ethics-Foressional-Skill development-Professional ethics-Foressional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Professional ethics-Professional ethics-		Quantum theory of hudrogen like stome
Regional-National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Entrironment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Skill development-Skill development-Skill development-Atoma in electric & magnetic fieldsLocal-Professional-Skill development-Furtional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-National-Skill development-Skill development-Professional ethics-		
National-GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Still development-Skill development-Skill development-Skill development-Skill development-Skill development-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Skill development-Professional ethics-Skill development-Skill development-Skill development-Skill development-Professional ethics-Skill development-Skill development-Skill development-Skill development-Skill development-Skill development-Skill development- <tr< td=""><td></td><td></td></tr<>		
GlobalPhysical significance of phenomenon of scattering quantum mechanicallyEmployability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Entriproment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Skill development-Skill development-Entrepreneurship-Skill development-Forfessional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-		-
Employability-Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Regional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Skill development-Skill development-Professional ethics-Atoms in electric & magnetic fields-Skill development-Skill development-Professional ethics-Skill development-Professional ethics-	1 NT / 1	
Entrepreneurship-Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-Intional-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Skill development-Skill development-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Professional ethics-Skill development-Skill deve		
Skill development-Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-Other Professional ethics-	Global	- Physical significance of phenomenon of scattering quantum mechanically
Professional ethics-Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability	
Gender-Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship	
Human values-Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development	
Environment & sustainability-Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics	
sustainabilityAtoms in electric & magnetic fieldsUnit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender	- - -
Unit ivAtoms in electric & magnetic fieldsLocal-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values	
Local-Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment &	
Regional-National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability	
National-GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv	
GlobalCo-relationship between relativity and quantum mechanicsEmployability-Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv Local	
Employability - Entrepreneurship - Skill development - Professional ethics -	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv Local Regional	
Entrepreneurship-Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv Local Regional National	
Skill development-Professional ethics-	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv Local Regional National Global	
Professional ethics -	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv Local Regional National Global	- Co-relationship between relativity and quantum mechanics
	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv Local Regional National Global Employability	- Co-relationship between relativity and quantum mechanics - -
Gender -	GlobalEmployabilityEntrepreneurshipSkill developmentProfessional ethicsGenderHuman valuesEnvironment &sustainabilityUnit ivLocalRegionalNationalGlobalEmployabilityEntrepreneurship	- Co-relationship between relativity and quantum mechanics - -
	Global Employability Entrepreneurship Skill development Professional ethics Gender Human values Environment & sustainability Unit iv Local Regional National Global Employability Entrepreneurship Skill development	- - <t< td=""></t<>

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
	Promoting high-quality research
Poe/4 th IR	Use of software and simulations
	Projects and group discussion

Week	Topics	Text/Reference Books/Open Education Resources	Teaching Learning Method
1	Introduction to Wave Function and Schrödinger equation	"Introduction to Quantum Mechanics" by D.J Griffith, https://ocw.mit.edu/courses/physics/8-04-quantum-physics-i- spring-2016/	Lectures, guided readings
2	Properties of Wave Function, Expectation values	"Advanced Quantum Mechanics" by Satya Prakesh, https://online.stanford.edu/courses/soe-ycphysics0002- quantum-mechanics	Lectures, discussion s
3	Eigenvalues and Eigenfunctions, Position, momentum, and Energy operators	"Quantum Mechanics: Theory and Applications" by Ajoy Ghatak, <u>https://www.khanacademy.org/science/physics/quantum-physics/quantum-numbers-and-orbitals/a/quantum-mechanics</u>	Lectures, problem- solving sessions
4	Time independent Schrödinger equation, Hamiltonian, stationary states	"Modern Quantum Mechanics" by J.J Sakurai. https://ocw.mit.edu/courses/physics/8-05-quantum-physics- ii-fall-2013/	Lectures, practical sessions
5	Energy eigenvalues, wave packets, momentum space wavefunction	"Advanced Quantum Mechanics" by B,S, Rajput, MIT OpenCourseWare - <u>https://ocw.mit.edu/index.htm</u>	Lectures, problem- solving sessions
6	Bound states, square well potential, simple harmonic oscillator	"A Text book of Quantum Mechanics" by P.M.Mathews& K.Venkatesan, <u>https://www.khanacademy.org/science/physics/quantum-physics/quantum-numbers-and-orbitals/a/quantum-mechanics</u>	Lectures, discussion s
7	Hermite polynomials, ground state, zero point energy	"Advanced Quantum Mechanics" by Satya Prakesh, https://ocw.uci.edu/courses/chem_131a_quantum_principles. html	Lectures, practical sessions

8	Quantum theory of hydrogen-like atoms	"Quantum Mechanics: Theory and Applications" by Ajoy Ghatak, https://openstax.org/details/books/university-physics- volume-3	Lectures, problem- solving sessions
9	Angular momentum operator & quantum numbers	"Quantum Mechanics" by Eugene Merzbacher, https://www.khanacademy.org/science/physics/quantum- physics/quantum-numbers-and-orbitals/a/quantum-mechanics	Lectures, practical sessions
10	Radial wavefunctions, s, p, d shells	"Advanced Quantum Mechanics" by B,S, Rajput, https://online.stanford.edu/courses/soe-ycphysics0002- quantum-mechanics	Lectures, discussion s
11	Atoms in Electric & Magnetic Fields, Space quantization	"Introduction to Quantum Mechanics" by D.J Griffith, https://openstax.org/details/books/university-physics- volume-3	Lectures, problem- solving sessions
12	Spin Angular Momentum, Larmor's Theorem, Spin Magnetic Moment	"Quantum Mechanics" by Eugene Merzbacher, https://www.khanacademy.org/science/physics/quantum- physics/quantum-numbers-and-orbitals/a/quantum-mechanics	Lectures, practical sessions
13	Zeeman Effect, Normal Zeeman Effect	"Advanced Quantum Mechanics" by Satya Prakesh, https://online.stanford.edu/courses/soe-ycphysics0002- quantum-mechanics	Lectures, discussion s
14	Many electron atoms, Pauli's Exclusion Principle, Fine structure	"A Text book of Quantum Mechanics" by P.M.Mathews& K.Venkatesan, https://www.khanacademy.org/science/physics/quantum- physics/quantum-numbers-and-orbitals/a/quantum-mechanics	Lectures, problem- solving sessions, course wrap-up

Facilitating the Achievement of Course Learning Outcomes

		Teaching Learning	Assessment Task Methods
Unit	Course Learning Outcomes (COs)	Activity (TLA)	(ATM)
1	Students will understand the principles of	Lectures, problem-solving	 Presentations and class
	wave function, Schrödinger equation, and the	sessions, discussions, and	discussions. • Assignments
	basics of quantum mechanics.	practical computer	and class tests. • Student
		simulations.	presentations. • Mid-term
2	Students will apply quantum mechanics to	In-depth lectures, practical	examinations. • Practical and
	bound states, potentials, and harmonic	sessions, problem-solving	viva-voce examinations. •
	oscillators.	tasks, and group discussions.	End-term examinations.
3	Students will demonstrate knowledge of the	Theoretical lectures,	
	quantum theory of hydrogen-like atoms and	practical sessions, group	
	associated quantum numbers.	discussions, and computer	
		simulations.	
4	Students will interpret the behavior of atoms	Lectures, practical sessions,	
	in electric & magnetic fields and apply	problem-solving tasks, and	
	knowledge of many electron atoms.	group discussions.	

SCPH303	DIGITAL SYSTEMS AND APPLICATIONS	L	Т	Р	C
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-	Digital Electronics				
requisites/Exposure					
Co-requisites					

Course Objectives

- 1 To acquire knowledge of Number system
- 2 Understanding the integrated and digital circuits
- 3 Better understanding of Boolean algebra and Data processing circuits
- 4 Better understanding of Flip flops ,registers and counter.

Course Outcomes

On completion of this course, the students will be able to

CO1. Recall various number systems and codes, demonstrating understanding in conversions and binary arithmetic operations.

CO2. Apply the principles of Boolean algebra in the simplification of logic circuits, employing methods like SOP, POS, and Karnaugh Map.

CO3. Design and analysis of combinational logic circuits, students will understand the operation of arithmetic building blocks, digital comparators, and multiplexers.

CO4. AnalyzE and designing sequential logic circuits, gaining knowledge in flip-flops, registers, and counters.

Catalog Description

This course is intended to cover most of the basic topics of digital electronics including Number systems, Logic gates and logic families,Boolean Algebra and Simplification, Arithmetic circuits, Data Processing Circuits, various Flip - flops, Clocks And Timers and Shift registers & counters. This course gives the circuit knowledge to students and students will be even able to start their startups. Course will also be beneficial for students in day to day life.

Course Content

UNIT-I

12 Contact Hours

15 Contact Hours

12 Contact Hours

Number systems - decimal, binary, octal and hexadecimal systems - conversion from one number system to another. Codes - BCD code - Excess 3 code, Gray code ,Binary arithmetic - Binary addition - subtraction , 1's and 2's complement - Binary multiplication and division.

UNIT-II

Boolean Algebra and Simplification Of Logic Circuits:

Laws and theorems of Boolean algebra - De Morgan's theorems and their circuit implications - Duality theorem, simplification of Boolean equations – sum of products method (SOP), product of sums methods (POS) Karnaugh map(K Map) - pairs, quads, octets - 2,3 and 4 variables ,Reduction of POS using K Map

UNIT-III

Combinational Logic Circuits : Arithmetic building blocks - Half adder - Full adder - parallel binary adder - Half subtractor - Full subtractor - The adder-subtractor - digital comparator - parity checker / generator , Multiplexers – Demultiplexers, Decoders

15 Contact Hours

UNIT-IV Sequential Logic Circuits

Flip - flops - RS Flip Flop - Clocked RS Flip-flop - D flip-flop - JK flip-flop - JK master slave flip-flop - T type flip-flop registers and counters: Types of registers - serial in serial out - serial in parallel out parallel in serial out - parallel in parallel out - ring counter

Text Books:

1. Malvino and Leech, Digital Principles and Application, 4th edition, Tata McGraw Hill, New Delhi

Reference Books:

Millman and Halkias, Integrated Electronics, International edition, McGraw Hill, New Delhi

2. Thomas L. Floyd, Digital Fundamentals (Universal Book Stall, India).

Open Educational Resources (OER)

- https://cnx.org/contents/85c4b2c4-2b3b-4b73-b36a-3e76a9b8c506@1
- https://www.mathsisfun.com/binary-decimal-hexadecimal.html
- https://www.geeksforgeeks.org/digital-electronics-binary-coded-decimal/
- https://www.khanacademy.org/computing/computer-science/algorithms/boolean-algebra
- https://www.youtube.com/playlist?list=PLBlnK6fEyqRhX6r2uhhlubuF5QextdCSM
- https://www.allaboutcircuits.com/textbook/digital/chpt-9/combinational-logic-functions/
- https://www.youtube.com/playlist?list=PLBlnK6fEyqRjMH3mWf6kwqiTbT798eAOm
- https://www.youtube.com/playlist?list=PLBlnK6fEyqRhFUZX8d6GwI5H5frkZT2lk

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code & Title	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
SCPH303	CO1	1	2		2		1					1	2		1

DIGITAL SYSTEMS AND APPLICATI ONS	CO2	2		3		2	2			3		3
	CO3	1	2	3	3	2	1	1		2	3	2
	CO4		1	3	2	3	2	1		3	2	3

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Number systems
Local	-
Regional	-
National	-
Global	Basics of digital electronics
Employability	Design of analog to digital converter kits
Entrepreneurship	-
Skill development	Design of analog to digital converter kits
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Boolean algebra and simplification of logic circuits
Local	-
Regional	-
National	-
Global	Knowledge of digital logic circuits
Employability	Design of combinational circuits
Entrepreneurship	Design of analog to digital converter kits
Skill development	Design of combinational circuits
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Combinational logic circuits
Local	-
Regional	-
National	-
Global	Design of sequential circuits
Employability	Design of sequential circuits
Entrepreneurship	-
Skill development	Design of sequential circuits
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-

sustainability	
Unit iv	Sequential logic circuits
Local	-
Regional	-
National	-
Global	Applications of digital electronics
Employability	Design of memories
	-
Entrepreneurship	-
Skill development	Design of memories
	-
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
	Promoting high-quality research
Poe/4 th IR	Use of software and simulations
	Projects and group discussion

Wee k	Topics	Reference Books / Open Education Resources	Teaching Learning Methods
1	Introduction to Number Systems	Malvino and Leech, Digital Principles and Application, https://cnx.org/contents/85c4b2c4-2b3b-4b73-b36a-3e76a9b8c506@1	Lecture, Discussion, Q&A
2	Decimal, Binary, Octal, Hexadecima 1	Malvino and Leech, Digital Principles and Application, https://cnx.org/contents/85c4b2c4-2b3b-4b73-b36a-3e76a9b8c506@1	Lecture, Examples, Problem Solving
3	Conversion between Number Systems	Malvino and Leech, Digital Principles and Application, https://www.mathsisfun.com/binary-decimal-hexadecimal.html	Lecture, Demonstrati on, Exercises
4	BCD Code, Excess-3 Code, Gray Code	Malvino and Leech, Digital Principles and Application, https://www.mathsisfun.com/binary-decimal-hexadecimal.html	Lecture, Interactive Session
5	Binary Arithmetic - Addition, Subtraction	Malvino and Leech, Digital Principles and Application, <u>https://www.geeksforgeeks.org/digital-electronics-binary-coded-decimal/</u>	Lecture, Examples, Practice Problems
6	1's and 2's Complemen t, Binary Multiplicati on	Malvino and Leech, Digital Principles and Application, https://www.geeksforgeeks.org/digital-electronics-binary-coded-decimal/	Lecture, Group Activities, Q&A
7	Binary Division, Review	Malvino and Leech, Digital Principles and Application, <u>https://www.geeksforgeeks.org/digital-electronics-binary-coded-decimal/</u>	Lecture, Revision, Q&A
8	Boolean	Millman and Halkias, Integrated Electronics,	Lecture,

	Algebra - Introduction	https://www.khanacademy.org/computing/computer- science/algorithms/boolean-algebra	Examples, Discussion
9	Boolean Laws and Theorems	Millman and Halkias, Integrated Electronics, https://www.khanacademy.org/computing/computer- science/algorithms/boolean-algebra Electronics,	Lecture, Problem Solving, Q&A
10	De Morgan's Theorems, Duality Theorem	MillmanandHalkias,IntegratedElectronics,https://www.khanacademy.org/computing/computer-science/algorithms/boolean-algebra	Lecture, Group Activities, Q&A
11	Simplificati on of Boolean Equations	ThomasL.Floyd,DigitalFundamentals,https://www.khanacademy.org/computing/computer- science/algorithms/boolean-algebrascience/algorithms/boolean-algebra	Lecture, Examples, Practice Problems
12	Karnaugh Map (K- Map)	ThomasL.Floyd,DigitalFundamentals,https://www.youtube.com/playlist?list=PLBlnK6fEyqRhFUZX8d6GwI5H5frkZT2lk	Lecture, Examples, Interactive Q&A
13	Combinatio nal Logic Circuits	ThomasL.Floyd,DigitalFundamentals,https://www.youtube.com/playlist?list=PLBlnK6fEyqRhFUZX8d6GwI5H5frkZT2lk	Lecture, Lab Sessions, Q&A
14	Sequential Logic Circuits	ThomasL.Floyd,DigitalFundamentals,https://www.youtube.com/playlist?list=PLBlnK6fEyqRjMH3mWf6kwqiTbT798eAOm	Lecture, Examples, Review, Q&A

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes (CLO)	Teaching Learning Activity	Assessment Task Methods
Ι	Understand various number systems and	Lecture sessions explaining different	 Presentations and class
	their conversions. Acquire knowledge about	number systems and their conversion.	discussions. • Assignments
	different codes and binary arithmetic.	Interactive sessions on codes and	and class tests. • Student
		binary arithmetic.	presentations. • Mid-term
II	Comprehend Boolean algebra and its laws.	Lecture and problem-solving sessions	examinations. • Practical and
	Apply Boolean algebra for the	on Boolean algebra. Practical	viva-voce examinations. •
	simplification of logic circuits.	sessions on simplification of logic	End-term examinations.
		circuits using Boolean algebra.	
III	Understand the concepts of combinational	Lectures on combinational logic	
	logic circuits. Design and analyze various	circuits theory. Lab sessions to	
	combinational logic circuits.	experiment with design and analysis	
		of these circuits.	
IV	Comprehend sequential logic circuits and	Interactive lectures on sequential	
	flip-flops. Design and analyze various	logic circuits. Lab sessions to	
	registers and counters.	implement flip-flops, registers and	
		counters.	

SCPH351	DIGITAL SYSTEMS AND APPLICATIONS LAB	L	Т	Р	С
Version 1.0		0	0	2	1
Total Contact Hours	30				
Pre-	Digital Electronics				
requisites/Exposure					
Co-requisites					

Course Objectives

- 1. To acquire knowledge of Number system
- 2. Understanding the integrated and digital circuits
- 3. Better understanding of Boolean algebra and Data processing circuits
- 4. Better understanding of Flip flops, registers and counter.

Course Outcomes

On completion of this course, the students will be able to

CO1: Analyze and Comprehend digital logic gates, truth tables, flip flops, and counters, and be able to analyze their operations.

CO2: apply their knowledge of logic design to create various digital circuits, including adders, subtractors, shift registers, and counters.

CO3: Evaluate the validity of various digital circuits by verifying their truth tables and operational efficiency.

CO4: demonstrate hands-on skills in operating specific digital components such as TTL gates, multiplexers, demultiplexers, and digital counters.

Catalog Description

This course is intended to cover most of the basic topics of digital electronics including Number systems, Logic gates and logic families, Boolean Algebra and Simplification, Arithmetic circuits, Data Processing Circuits, various Flip - flops, Clocks And Timers and Shift registers & counters. This course gives the experimental and circuit knowledge to students which will be beneficial for students in day to day life.

Course Content

- 1. Verification of the truth tables of TTL gates.
- 2. Verify the NAND and NOR gates as universal logic gates.
- 3. Design and verification of the truth tables of Half and Full adder circuits.
- 4. Design and verification of the truth tables of Half and Full subtractor circuits.
- 5. Verification of the truth table of the Multiplexer 74150.
- 6. Verification of the truth table of the De-Multiplexer 74154.
- 7. Design and test of an S-R flip-flop using NOR/NAND gates.
- 8. Verify the truth table of a J-K flip-flop (7476)
- 9. Verify the truth table of a D flip-flop (7474)
- 10. Operate the counters 7490, 7493.
- 11. Design of 4-bit shift register (shift right).
- 12. Design of modulo-4 counter using J K flip flop..

Reference Books:

- Modern Digital Electronics, R.P. Jain, 4th Edition, 2010, Tata McGraw Hill.
- Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller, 1994, Mc-Graw Hill.
- Microprocessor Architecture Programming and applications with 8085, R.S. Goankar, 2002, Prentice Hall.
- Microprocessor 8085: Architecture, Programming and interfacing, A. Wadhwa, 2010, PHI

Open Education Resources:

- <u>https://www.youtube.com/watch?v=47u7b2yh7s8&pp=ygUsdmVyaWZpY2F0aW9uIG9mIHRy</u> <u>dXRoIHRhYmxlcyBvZiBsb2dpYyBnYXRlcyA%3D</u>
- <u>https://www.youtube.com/watch?v=lqN8xLTtdaA&pp=ygVeMy4JRGVzaWduIGFuZCB2ZXJ</u> pZmljYXRpb24gb2YgdGhlIHRydXRoIHRhYmxlcyBvZiBIYWxmIGFuZCBGdWxsIGFkZGV yIGFuZCBzdWJ0cmFjdG9yIGNpcmN1aXRzLg%3D%3D
- https://www.youtube.com/watch?v=SYTDxdACf2E&pp=ygVeMy4JRGVzaWduIGFuZCB2ZX JpZmljYXRpb24gb2YgdGhlIHRydXRoIHRhYmxlcyBvZiBIYWxmIGFuZCBGdWxsIGFkZG VyIGFuZCBzdWJ0cmFjdG9yIGNpcmN1aXRzLg%3D%3D
- <u>https://www.youtube.com/watch?v=ap0RMkqHWHQ&pp=ygU1My4JMTIuCURlc2lnbiBvZiB</u> <u>tb2R1bG8tNCBjb3VudGVyIHVzaW5nIEogSyBmbGlwIGZsb3A%3D</u>
- <u>https://www.youtube.com/watch?v=Ub1VixA-</u> <u>uSE&pp=ygU1My4JMTIuCURlc2lnbiBvZiBtb2R1bG8tNCBjb3VudGVyIHVzaW5nIEogSyB</u> <u>mbGlwIGZsb3A%3D</u>
- <u>https://www.youtube.com/watch?v=q_W_qBnOZvw&pp=ygUxMTEuCURlc2lnbiBvZiA0LWJ</u> pdCBzaGlmdCByZWdpc3RlciAoc2hpZnQgcmlnaHQpLg%3D%3D
- <u>https://www.youtube.com/watch?v=GJ8xxaIoIJ0&pp=ygUfT3BlcmF0ZSB0aGUgY291bnRlcn</u> <u>MgNzQ5MCwgNzQ5Mw%3D%3D</u>
- <u>https://www.youtube.com/watch?v=p6yPvw88BJk&pp=ygUhSW50cm9kdWN0aW9uIHRvIE1</u>
 <u>1bHRpcGxleGVyIDc0MTUw</u>
- <u>https://www.youtube.com/watch?v=QKLWSs3z0C4&pp=ygUiUy1SIGZsaXAtZmxvcCB1c2lu</u> <u>ZyBOT1IvTkFORCBnYXRlcw%3D%3D</u>
- <u>https://www.youtube.com/watch?v=Ub1VixA-</u>
 <u>uSE&pp=ygUkTW9kdWxvLTQgY291bnRlciB1c2luZyBKIEsgZmxpcCBmbG9w</u>

Assessment & Evaluation

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme and Course Mapping

Course Code & Title	Course Outcome s (COs)	P 01	P O2	P 03	P O4	P O5	P O6	P O7	P O8	P 09	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
SCPH3 51	CO1	3	2	2	2	1	1	2	3	1	1	3	2	2	3
Digital system	CO2	2	3	2	3	2	3	1	2	1	1	2	3	3	3
s and applica	CO3	2	3	2	2	3	3	1	3	1	1	2	2	3	3
tions lab	CO4	1	2	1	3	3	3	1	3	2	2	1	3	3	3

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Digital systems and applications lab
Local	-
Regional	-
National	-
Global	Experimental and circuit knowledge to students which will be beneficial for students in day to day life
Employability	Design of combinational and sequential circuits/ memories/ analog to digital converter kits
Entrepreneurship	Design of combinational and sequential circuits/ memories/ analog to digital converter kits
Skill development	Design of combinational and sequential circuits/ memories/ analog to digital converter kits
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
Poe/4 th IR	Hands on experience, use of software and simulations

Weeks	Торіс	Reference Books / Open Education Resources	Teaching Learning Method
1	Introduction to Digital Electronics	Modern Digital Electronics, R.P. Jain	Lectures, Tutorials
2	Basic Concepts of TTL gates	 Modern Digital Electronics, R.P. Jain <u>https://www.youtube.com/watch?v=47u7b2yh7s8</u> <u>&pp=ygUsdmVyaWZpY2F0aW9uIG9mIHRydX</u> <u>RoIHRhYmxlcyBvZiBsb2dpYyBnYXRlcyA%3D</u> 	Lectures, Lab Work
3	Universal Logic Gates: NAND and NOR	 Modern Digital Electronics, R.P. Jain <u>https://www.youtube.com/watch?v=lqN8xLTtdaA</u> <u>&pp=ygVeMy4JRGVzaWduIGFuZCB2ZXJpZmlj</u> <u>YXRpb24gb2YgdGhlIHRydXRoIHRhYmxlcyBv</u> <u>ZiBIYWxmIGFuZCBGdWxsIGFkZGVyIGFuZC</u> <u>BzdWJ0cmFjdG9yIGNpcmN1aXRzLg%3D%3D</u> 	Lectures, Lab Work
4	Half and Full Adder Circuits	 Modern Digital Electronics, R.P. Jain https://www.youtube.com/watch?v=ap0RMkqHW HQ&pp=ygU1My4JMTIuCURlc2lnbiBvZiBtb2R 1bG8tNCBjb3VudGVyIHVzaW5nIEogSyBmbGl wIGZsb3A%3D 	Lectures, Lab Work
5	Half and Full Subtractor Circuits	 Modern Digital Electronics, R.P. Jain <u>https://www.youtube.com/watch?v=SYTDxdACf2</u> <u>E&pp=ygVeMy4JRGVzaWduIGFuZCB2ZXJpZm</u> <u>ljYXRpb24gb2YgdGhlIHRydXRoIHRhYmxlcyB</u> <u>vZiBIYWxmIGFuZCBGdWxsIGFkZGVyIGFuZC</u> <u>BzdWJ0cmFjdG9yIGNpcmN1aXRzLg%3D%3D</u> 	Lectures, Lab Work
6	Introduction to Multiplexer 74150	Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller https://www.youtube.com/watch?v=p6yPvw88BJk&pp=yg UhSW50cm9kdWN0aW9uIHRvIE11bHRpcGxleGVyIDc0 MTUw	Lectures, Lab Work
7	Introduction to De- Multiplexer 74154	Basic Electronics: A text lab manual, P.B. Zbar, A.P. Malvino, M.A. Miller https://www.youtube.com/watch?v=p6yPvw88BJk&pp=yg UhSW50cm9kdWN0aW9uIHRvIE11bHRpcGxleGVyIDc0	Lectures, Lab Work

		MTUw	
8	S-R flip-flop using NOR/NAND gates	Microprocessor Architecture Programming and applications with 8085, R.S. Goankar https://www.youtube.com/watch?v=QKLWSs3z0C4&pp=y gUiUy1SIGZsaXAtZmxvcCB1c2luZyBOT1IvTkFORCBn YXRlcw%3D%3D	Lectures, Lab Work
9	J-K flip-flop (7476)	Microprocessor Architecture Programming and applications with 8085, R.S. Goankar • <u>https://www.youtube.com/watch?v=Ub1VixA-uSE&pp=ygU1My4JMTIuCURlc2lnbiBvZiBtb2R 1bG8tNCBjb3VudGVyIHVzaW5nIEogSyBmbGl</u> wIGZsb3A%3D	Lectures, Lab Work
10	D flip-flop (7474)	Microprocessor Architecture Programming and applications with 8085, R.S. Goankar	Lectures, Lab Work
11	Counters 7490, 7493	Microprocessor 8085: Architecture, Programming and interfacing, A. Wadhwa	Lectures, Lab Work
		 <u>https://www.youtube.com/watch?v=GJ8xxaIoIJ0&</u> pp=ygUfT3BlcmF0ZSB0aGUgY291bnRlcnMgNz Q5MCwgNzQ5Mw%3D%3D 	
12	4-bit shift register (shift right)	Microprocessor 8085: Architecture, Programming and interfacing, A. Wadhwa • <u>https://www.youtube.com/watch?v=q W qBnOZv</u> <u>w&pp=ygUxMTEuCURlc2lnbiBvZiA0LWJpdCB</u> <u>zaGlmdCByZWdpc3RlciAoc2hpZnQgcmlnaHQp</u> <u>Lg%3D%3D</u>	Lectures, Lab Work
13	Modulo-4 counter using J K flip flop	Microprocessor 8085: Architecture, Programming and interfacing, A. Wadhwa https://www.youtube.com/watch?v=Ub1VixA- uSE&pp=ygUkTW9kdWxvLTQgY291bnRlciB1c2luZyBK IEsgZmxpcCBmbG9w	Lectures, Lab Work

14	Revision and Exam Preparation	All Books, Open Education Resources	Review Lectures, Problem-solving	

Facilitating the Achievement of Course Learning Outcomes

Т

Т

Course Learning Outcomes (CLOs)	Teaching Learning Activity	Assessment Task Methods
Understand the basic concepts of digital electronics and TTL gates. Comprehend the function and application of universal logic gates. Design and verify the operation of NAND and NOR gates.	Lectures, Tutorials, Lab Work	Assignments and class tests. • Student presentations. • Mid-term
Apply knowledge to design and verify half and full adder and subtractor circuits.	Lectures, Lab Work, Group Projects	 examinations. Practical and viva- voce examinations. End-term examinations.
Understand and apply the principles of operation of multiplexers and de-multiplexers.	Lectures, Lab Work, Homework assignments	
Analyze the design and operation of S-R, J-K, D flip-flops and counters. Create a 4-bit shift register and a modulo-4 counter using J K flip flop.	Lectures, Lab Work, Group Projects	

UNS106	SYNTHESIS OF NANOMATERIALS-I	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-					
requisites/Exposure					
Co-requisites					

Course outcomes

CO1: Describe the fundamental concepts and methods involved in nanotechnology, including top-down and bottom-up processes, the properties of atoms and solids, and the different classification of nanostructures.

CO2: Apply principles of nanotechnology to understand the synthesis and growth of nanoparticles through both homogeneous and heterogeneous nucleation.

CO3: Analyze various fabrication methods and their impact on the properties of nanoparticles and nanostructures.

CO4: Evaluate the effectiveness of various methods for creating one-dimensional nanostructures, such as nanowires and nanorods.

UNIT- I

Generic methodologies for nanotechnology: classification and fabrication

Introduction and classification: definition nanotechnology, Classification of nanostructures, Nanoscale architecture, Summary of the electronic properties of atoms and solids: The isolated atom Bonding between atoms, Giant molecular solids, The free electron model and energy bands, Crystalline solids, Periodicity of crystal lattices, Electronic conduction; Effects of the nanometer length scale: Changes to the system total energy, Changes to the system structure, How nanoscale dimensions affect properties, Fabrication methods: Top-down processes, Bottom-up processes, Methods for templating the growth of nanomaterials, Ordering of nanosystems, Preparation, safety and storage issues.

UNIT-II

Physical Chemistry of Solid Surfaces

Introduction, Surface Energy, Chemical Potential as a Function of Surface Curvature, Electrostatic Stabilization: Surface charge density, Electric potential at the proximity of solid surface, Van der Waals attraction potential, Interactions between two particles: DLVO theory, Solvent and polymer, Interactions between polymer layers, Mixed steric and electric interactions.

UNIT-III

Zero-Dimensional Nanostructures: Nanoparticles

One-Dimensional Nanostructures: Nanowires and Nanorods

Introduction, Nanoparticles through Homogeneous Nucleation:Fundamentals of homogeneous nucleation, Subsequent growth of nuclei (Growth controlled by diffusion, Growth controlled by surface process), Synthesis of metallic nanoparticles(Influences of reduction reagents, Influences by other factors, Influences of polymer stabilizer), Synthesis of semiconductor nanoparticles, Synthesis of oxide nanoparticles (Introduction to sol-gel processing, Forced hydrolysis, Controlled release of ions), Vapor phase reactions, Solid state phase segregation;

Nanoparticles through Heterogeneous Nucleation: (Fundamentals of heterogeneous nucleation, Synthesis of nanoparticles); Kinetically Confined Synthesis of Nanoparticles:(Synthesis inside micelles or using microemulsions, Aerosol synthesis, Growth termination, Spray pyrolysis, Template-based synthesis); Epitaxial Core-Shell Nanoparticles.

UNIT IV

17 contact hours

10 contact hours

17 contact hours

20 contact hours

Introduction, Spontaneous Growth: Evaporation (dissolution)-condensation growth:(Fundamentals of evaporation (dissolution)-condensation growth, Evaporation-condensation growth, Dissolution-condensation growth);

Vapor (or solution)-liquid-solid (VLS or SLS) growth:(Fundamental aspects of VLS and SLS growth, VLS growth of various nanowires, Control of the size of nanowires, Precursors and catalysts, SLS growth);

Stress-induced recrystallization: Template-Based Synthesis: Electrochemical deposition, Electrophoretic deposition, Template filling (Colloidal dispersion filling, Melt and solution filling, Chemical vapor deposition, Deposition by centrifugation), Converting through chemical reactions; Electrospinning; Lithography.

Textbooks:

- 1. "Introduction to Nanoscience and Nanotechnology" by Gabor L. Hornyak, H.F. Tibbals, Joydeep Dutta, John J. Moore
- 2. "Nanoscale Science and Technology" by Robert Kelsall, Ian Hamley, Mark Geoghegan

Reference Books:

- 1. "Nanochemistry: A Chemical Approach to Nanomaterials" by Geoffrey A. Ozin, Andre Arsenault
- 2. "Nanotechnology: An Introduction" by Jeremy Ramsden
- 3. "The Physics of Nanoelectronics: Transport and Fluctuation Phenomena at Low Temperatures" by Tero T. Heikkila
- 4. "Nanoscale: Visualizing an Invisible World" by Kenneth S. Deffeyes, Stephen E. Deffeyes
- 5. "Nanotechnology: Principles and Practices" by Sulabha K. Kulkarni

Open Educational Resources (OER)

- <u>https://byjus.com/jee/surface-chemistry/</u>
- <u>https://onlinecourses.nptel.ac.in/noc21_cy45/preview</u>
- https://www.youtube.com/watch?v=O2So0xcdDiA
- <u>https://www.nobelprize.org/prizes/chemistry/2007/ertl/lecture/</u>
- <u>https://www.doubtnut.com/question-answer-chemistry/if-physical-adsorption-the-gas-molecules-are-held-on-solid-surface-by-46827508</u>

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course	Cou	PO	PO	PO	PO4	PO	PO	PO7	PO	PO	PO1	PSO	PSO	PSO	PS
Code	rse														
and	Out														

Title		1	2	3		5	6		8	9	0	1	2	3	04
	e														
OF	CO1	3	2	3	2	3	2	2	1	1	1	3	3	2	2
I-STALS-I	CO2	3	3	2	2	2	3	3	2	1	1	3	2	3	3
UNS106 SYNTHESIS NANOMATERIAI	CO3	3	3	2	3	3	3	3	2	1	1	3	3	3	3
UNS106 SYNTHI NANOM	CO4	3	3	3	3	3	3	3	2	1	1	3	3	3	3

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Generic methodologies for nanotechnology: classification and
	fabrication
Local	Understanding basic concepts of nanotechnology at community colleges or local
	industries.
Regional	Sharing and collaboration among regional research institutes.
National	Establishing national standards & guidelines for nanotech.
Global	Collaborative international research & global standards for nanotech.
Employability	Creation of jobs in nanotech research & development.
Entrepreneurship	Start-ups offering nano-fabrication services.
Skill development	Training in nano-fabrication techniques.
Professional ethics	Responsible nanotech development & research practices.
Gender	Promote gender equality in nanotech research roles.
Human values	Ensuring nanotech is used for the betterment of society.
Environment &	Adopting sustainable nanotech fabrication practices.
sustainability	
Unit ii	Physical Chemistry of Solid Surfaces
Local	Enhancing knowledge of solid surfaces in local industries.
Regional	Regional workshops on surface chemistry.
National	National policies on solid surface treatments & applications.
Global	International collaborations on advanced surface chemistry research.
Employability	Jobs in surface analysis, research, and application development.
Entrepreneurship	Businesses offering specialized surface treatments & analytics.
Skill development	Skill development in surface analysis techniques.
Professional ethics	Ensuring ethical practices in surface treatment & analysis.
Gender	Encourage more female scientists in surface chemistry research.
Human values	Consideration of human values in the application of surface treatments.
Environment &	Environmentally friendly surface treatments and practices.
sustainability	
Unit iii	Zero-Dimensional Nanostructures: Nanoparticles
Local	Promotion of local manufacturing & research in nanoparticles.
Regional	Regional collaborations for nanoparticle manufacturing & research.
National	Development of national manufacturing hubs for nanoparticles.
Global	Sharing and collaboration on nanoparticle synthesis at an international level.

Employability	Employment opportunities in nanoparticle manufacturing industries.
Entrepreneurship	Start-ups focusing on the production and sale of nanoparticles for various applications.
Skill development	Training programs on nanoparticle synthesis methods.
Professional ethics	Adhering to ethical standards in nanoparticle production.
Gender	Promoting gender inclusivity in nanoparticle research and development.
Human values	Using nanoparticles for applications that benefit society at large.
Environment &	Sustainable methods of nanoparticle synthesis and minimizing environmental
sustainability	impacts.
Unit iv	One-Dimensional Nanostructures: Nanowires and Nanorods
Local	Local manufacturing & research in nanowires and nanorods.
Regional	Regional advancements in nanowire and nanorod production techniques.
National	National advancements in one-dimensional nanostructures for various applications.
Global	Global research partnerships in the field of nanowires and nanorods.
Employability	Employment in industries focusing on nanowires and nanorods.
Entrepreneurship	Entrepreneurial ventures into nanowire & nanorod production and applications.
Skill development	Workshops on the fabrication of nanowires and nanorods.
Professional ethics	Maintaining ethical standards in the manufacturing of nanowires and nanorods.
Gender	Gender equality in roles related to research and development of nanowires and nanorods.
Human values	Manufacturing nanowires & nanorods keeping human needs and values in mind.
Environment &	Emphasis on green and sustainable practices in the production of nanowires and
sustainability	nanorods.
SDG	Goal 9: Industry, Innovation, and Infrastructure, Goal 12: Responsible
	Consumption and Production Goal 6: Clean Water and Sanitation, Goal 14:
	Life Below Water, Goal 3: Good Health and Well-being, Goal 7: Affordable
	and Clean Energy, Goal 11: Sustainable Cities and Communities
Nep 2020	Multidisciplinary Education Emphasis on Research and Innovation,
	Integrating Technology in Education, Focus on Experiential Learning,
	Emphasis on Practical Knowledge, Critical Thinking and Creativity
Poe/4 th IR	Advanced Materials, Nanotechnology

Week	Topics	Reference Books/Open	Teaching	Learning
		Education Resources	Method	
1	Introduction to		Lecture,	Group
	nanotechnology,	"Introduction to Nanotechnology" by Charles P. Poole	Discussion	
	classification of	Jr. and Frank J., https://byjus.com/jee/surface-		
	nanostructures	chemistry/		
		Owens		
2	Nanoscale architecture,		Lecture,	Group
	electronic properties of	"Nanostructures and Nanotechnology" by Douglas	Discussion	
	atoms and solids	Natelson,		
		https://onlinecourses.nptel.ac.in/noc21_cy45/pre		
		view		
3	The free electron		Lecture,	Group
5	model and energy	"Nanostructures and Nanotechnology" by Douglas	Discussion	oroup
	bands, crystalline	Natelson,	2100000000	
	solids, periodicity of	https://www.youtube.com/watch?v=O2So0xcdDi		
	crystal lattices	<u>A</u>		
		<u>A</u>		
4	Electronic conduction,		Lecture,	Group
	effects of the	"Nanostructures and Nanotechnology" by Douglas	Discussion	Ĩ

	nanometre length scale	Natelson, https://www.nobelprize.org/prizes/chemistry/200 7/ertl/lecture/	
5	Fabrication methods: Top-down processes, bottom-up processes	"Introduction to Nanotechnology" by Charles P. Poole Jr. and Frank J. Owens, <u>https://www.doubtnut.com/question-answer-</u> <u>chemistry/if-physical-adsorption-the-gas-</u> <u>molecules-are-held-on-solid-surface-by-</u> <u>46827508</u>	Lecture, Lab Session
6	Introduction to surface energy, chemical potential as a function of surface curvature	"Nano: The Essentials" by T. Pradeep, https://www.nobelprize.org/prizes/chemistry/200 7/ertl/lecture/	Lecture, Lab Session
7	Electrostatic Stabilization: Surface charge density, electric potential at the proximity of solid surface, Van der Waals attraction potential	"Nano: The Essentials" by T. Pradeep,, https://www.youtube.com/watch?v=O2So0xcdDi A	Lecture, Lab Session
8	Introduction to nanoparticles through homogeneous nucleation, subsequent growth of nuclei	"Nano: The Essentials" by T. Pradeep, https://onlinecourses.nptel.ac.in/noc21_cy45/pre view	Lecture, Lab Session
9	Synthesis of metallic nanoparticles, semiconductor nanoparticles, oxide nanoparticles	"Principles of Nanotechnology" by G. Ali Mansoori, https://www.doubtnut.com/question-answer- chemistry/if-physical-adsorption-the-gas- molecules-are-held-on-solid-surface-by- 46827508	Lecture, Lab Session
10	Nanoparticles through Heterogeneous Nucleation, Kinetically Confined Synthesis of Nanoparticles	"Principles of Nanotechnology" by G. Ali Mansoori, https://www.nobelprize.org/prizes/chemistry/200 7/ertl/lecture/	Lecture, Lab Session
11	Introduction to one- dimensional nanostructures, spontaneous growth, evaporation (dissolution)- condensation growth	"Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience" by Edward L. Wolf, <u>https://www.youtube.com/watch?v=O2So0xcdDi</u> <u>A</u>	Lecture, Lab Session
12	Vapor (or solution)- liquid-solid (VLS or SLS) growth, stress- induced recrystallization	"Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience" by Edward L. Wolf, <u>https://www.doubtnut.com/question- answer-chemistry/if-physical-adsorption-the- gas-molecules-are-held-on-solid-surface-by- 46827508</u>	Lecture, Lab Session

13	Template-Based Synthesis: Electrochemical deposition, Electrophoretic deposition, Template filling	"Nanophysics and Nanotechnology: An Introduction to Modern Concepts in Nanoscience" by Edward L. Wolf, <u>https://www.youtube.com/watch?v=O2So0xcdDi</u> <u>A</u>	Lecture, Lab Session
14	Revision and assessment preparation	All reference books and resources	Group Discussion, Q&A

Unit	Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
Ι	Understand the principles of nanotechnology, classification and fabrication of nanostructures, the effects of nanoscale dimensions on properties, and fabrication methods.	Lectures, group discussions, and problem-solving sessions. Students will study theoretical concepts and work on practical problems related to the fabrication of nanostructures.	 Presentations and class discussions. Assignments and class tests. Student presentations. Mid-term examinations. Practical and viva-voce examinations. End-
Π	Gain knowledge about the physical chemistry of solid surfaces, including surface energy, chemical potential, electrostatic stabilization, and DLVO theory.	Lectures and lab experiments. Students will study theoretical concepts and apply them in laboratory experiments to better understand the physical chemistry of solid surfaces.	term examinations.
III	Understand the concepts of zero- dimensional nanostructures, including the synthesis and growth of nanoparticles through homogeneous and heterogeneous nucleation, and kinetically confined synthesis.	Lectures, lab experiments, and group projects. Students will study theoretical concepts, conduct experiments, and work on projects related to the synthesis and growth of nanoparticles.	
IV	Learn about one-dimensional nanostructures, the growth processes of nanowires and nanorods, stress-induced recrystallization, and template- based synthesis techniques.	Lectures, lab experiments, and problem-solving sessions. Students will study theoretical concepts and conduct experiments related to the growth processes of nanowires and nanorods.	

UNS107	SYNTHESIS OF NANOMATERIALS-I Lab	L	Т	Р	С
Version 1.0		0	0	2	1
Total Contact Hours	26				
Pre-					
requisites/Exposure					
Co-requisites					

Course Objectives:

- 1. Understand the fundamental principles of thin film growth and the various techniques used in the fabrication of two-dimensional nanostructures.
- 2. Explore the unique properties of special nanomaterials, such as carbon fullerenes, nanotubes, mesoporous structures, and organic-inorganic hybrids.

- 3. Familiarize students with the fabrication processes and characterization techniques used in creating nanostructures through physical techniques like lithography and nanomanipulation.
- 4. Gain insight into the diverse applications of nanomaterials, including molecular electronics, nanoelectronics, catalysis, photonic crystals, and biological applications.

Course Outcomes:

- **CO1** Students will be able to explain the principles of film growth and differentiate between various deposition techniques, such as solid state reaction method, coprecipitation method, and sol-gel films.
- CO2 Students will comprehend the properties and applications of magneticl nanomaterials.
- CO3 Students will comprehend the properties and applications of dielectric nanomaterials.
- **CO4** Students will be able to identify and analyze real-world applications of nanomaterials in areas such as molecular electronics, nanoelectronics, catalysis, and photonic devices.

CATALOG DESCRIPTION

This course introduces the fundamentals of nanostructures, including their synthesis, characterization, and applications. Topics covered include thin films, carbon nanotubes, mesoporous structures, and quantum devices. A background in physics, chemistry, or materials science is recommended. Upon completion of this course, students will be able to: Understand the basic principles of nanostructure synthesis and characterization, apply these principles to the design and fabrication of nanostructures.

Course Content

- 1, Stabilization of BaTiO3 particles..
- 2. Preparation of silver wires.
- 3. Preparation of magnetite/PS composite,
- 4 Find the dielectric properties of multilayer composite material.
- 5. Prepare core-shell type nanoparticles..
- 6 Find the optical band gap of BaTiO3 nanoparticles.
- 7. Study the effect of heating rate during calcination on the optical properties of BaTiO3.
- 8. Find the X ray density of nanoparticles.

Suggested Text Books

1 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G, Cao, Imperial College Press (2003).

Advanced Readings:

1. Nanoscale Science and Technology, Robert W. Kelsall, Ian W. Hamley and Mark Geoghegan, John Wiley & Sons Ltd (2005).

2. Nanomaterials and Nanochemistry, C. Brechignac, P. Houdy, M. Lahmani, Springer-Verlag Berlin Heidelberg (2007).

3 Introduction to Nanoscale Science and Technology, Massimiliano Di Ventra, Stephane Evoy and James R. Heflin, Jr., Kluwer Academic Publishers (2004)

4. Springer handbook of nanotechnology , Bharat Bhushan (ed.) Spinger-Verlag Berlin Heidelberg New York (2004),

Open Educational Resources (OER)

https://www.youtube.com/watch?v=DnozInAi1q0 https://pubs.acs.org/doi/10.1021/acs.inorgchem.8b00381 https://pubs.rsc.org/en/content/articlelanding/2018/nr/c8nr02242a https://pubs.acs.org/doi/10.1021/acs.nanolett.0c01565 https://doi.org/10.1007/s13233-017-5065-1 https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=853840 https://onlinelibrary.wiley.com/doi/full/10.1002/advs.202102221 https://pubs.acs.org/doi/abs/10.1021/cr100449n https://pubs.rsc.org/en/content/articlelanding/2015/cs/c5cs00343a https://www.mdpi.com/2073-4360/14/21/4664

Assessment & Evaluation

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Objectives (CO)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO 2	PSO 3	PSO	4
CO1: Principles of film growth	2	2	1	1	1	1	1	1	1	1	2	1		1	1
CO2: Properties and applications	1	2	1	2	2	1	1	1	1	1	2	2		1	1
CO3: Practical skills in lithography	1	1	3	3	1	3	1	3	1	1	1	3		1	1
CO4: Identify real- world applications	1	2	1	3	1	1	1	1	1	1	1	3		1	1

(Note: The numbers 1, 2, and 3 represent "lightly mapped," "moderately mapped," and "strongly mapped," respectively. Higher numbers indicate a stronger mapping between the Course Objectives and the Program Outcomes/Program Specific Outcomes.)

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit	Course content
Local	Strengthening local materials and electronics sector with advanced nanotech
	methodologies.
Regional	Enhancing regional research and industries with material innovation, fostering tech-
	based development.
National	Contributing to national advancements in electronics, materials science, and
	research sectors.
Global	Aligning with global research trends, fostering international collaborations, and
	integrating into global electronics and materials markets.
Employability	Opening avenues in electronics, material science, R&D roles, and nano-technology
	industries.
Entrepreneurship	Empowering tech-driven startups in nanomaterial production, electronics, and
	advanced material applications.
Skill development	Imparting crucial skills in nanomaterial preparation, analysis, and research

	methodologies.
Professional ethics	Advocating for responsible research practices, ethical material sourcing, and safe
	laboratory protocols.
Gender	Encouraging inclusivity in the traditionally male-dominated fields of material
	science and research.
Human values	Emphasizing on the responsible use of knowledge for societal benefits and ethical
	considerations in research.
Environment &	Promoting green practices in material synthesis, emphasizing eco-friendly
sustainability	methodologies and waste reduction.
SDG	Aligning with goals like Industry, Innovation, Infrastructure (Goal 9), and
	Responsible Consumption and Production (Goal 12) for sustainable development.
Nep 2020	Reinforcing the emphasis on practical knowledge, critical thinking, and integration
-	of tech in education as per India's National Education Policy.
Poe/4 th IR	Preparing for the Fourth Industrial Revolution by equipping learners with skills in
	advanced materials, nanotechnology, and innovative research practices vital for the
	age of cyber-physical systems.

Teaching Plan

Week ly Teach ing Plan	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]-Chapter/ Page No./ Open Education Resources [OER]	Teachi ng- Learni ng Metho d
Week 1			Class test/pr
Week 2	Stabilization of BaTiO3 particles	https://www.youtube.com/watch?v=DnozI nAi1q0 https://pubs.acs.org/doi/10.1021/acs.in orgchem.8b00381	esentat ion/As signme nts/Qu
Week 3	Preparation of silver wires.	https://pubs.rsc.org/en/content/articlelandi ng/2018/nr/c8nr02242a https://pubs.acs.org/doi/10.1021/acs.nanole tt.0c01565	izzer/ Viva/P roject Class test/pr
Week 4	Preparation of magnetite/PS composite,	https://doi.org/10.1007/s13233-017-5065-1	esentat ion/As
Week 5	Find the dielectric properties of multilayer composite material.	https://tsapps.nist.gov/publication/get_pdf. cfm?pub_id=853840 https://onlinelibrary.wiley.com/doi/full/10. 1002/advs.202102221	signme nts/Qu izzer/ Viva/P roject
Week 6	Prepare core-shell type nanoparticles	https://pubs.acs.org/doi/abs/10.1021/cr100 449n https://pubs.rsc.org/en/content/articlelandi ng/2015/cs/c5cs00343a	

Week 7	Find the optical band gap of BaTiO3 nanoparticles.	https://www.mdpi.com/2073- 4360/14/21/4664
Week 8	Study the effect of heating rate during calcination on the optical properties of BaTiO3.	https://doi.org/10.1007/s11082-022- 04516-8
Week 9	Study the effect of heating rate during calcination on the optical properties of BaTiO3.	https://doi.org/10.1007/s11082-022- 04516-8
Week 10	Find the X ray density of nanoparticles.	https://www.mdpi.com/2073- 4360/14/21/4664
Week 11	Data analysis and interpretation for all experiments.	
Week 12	Finalize reports and presentations for each experiment.	
Week 13	Review, discussion, and presentation of experimental findings.	

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Explain the principles of film growth and differentiate between various deposition techniques, such as solid state reaction method, coprecipitation method, and sol-gel films.	(i) Each topic to be explained with illustrations. (ii) Students to be encouraged to discover the relevant concepts. (iii) Students be given homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v)	 discussions. • Assignments and class tests. • Student presentations. • Mid-term examinations. • Practical and viva-voce examinations. • End-term
2	Comprehend the properties and applications of magnetic nanomaterials.	Students to be encouraged to apply concepts to real world problems.	
3	Comprehend the properties and applications of dielectric nanomaterials.		
4	Identify and analyze real- world applications of nanomaterials in areas such as molecular electronics, nanoelectronics, catalysis, and photonic devices.		

SCPH305	Applied Optics	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Waves and Optics				
Co-requisites	Electromagnetic Theory				

Course Objectives

- 1. To prepare the students to have basic ideas in Applied Optics.
- 2. To introduce advance level experiments in the area of Fourier Optics, Fibre Optics, Lasers and holography.
- 3. To understand the working mechanism of various Laser systems and detectors.
- 4. To acquire knowledge of application areas of Fourier Optics and Fibre Optics.

Course Outcomes

On completion of this course, the students will be able to

CO1: Recall the principles of lasers, spontaneous and stimulated emissions, Einstein's coefficients, and the theory of laser action.

CO2: Apply the knowledge gained in conducting a variety of experiments involving lasers, semiconductor sources and detectors, Fourier optics, holography, and fiber optics.

CO3: Analyze the results obtained from different experiments to interpret their meaning in the broader context of laser technology and photonics.

CO4: Evaluate the effectiveness of different types of lasers and optical technologies in specific applications, and devise experiments to test the performance and properties of these technologies.

Catalog Description

This laboratory introduces the students to advanced level experiments in optics in the area of Fourier Optics, Lasers and detectors, Fibre Optics and Holography. Students are also exposed to optical sources, detector and measurement of various physical parameters using optical techniques.

Course Content

Theory includes only qualitative explanation. Minimum five experiments should be performed covering minimum three sections.

Unit I Sources and Detectors

15 Contact Hours

Lasers, Spontaneous and stimulated emissions, Theory of laser action, Einstein's coefficients, Light amplification, Characterization of laser beam, He-Ne laser, Semiconductor lasers.

Experiments on Lasers:

a. Determination of the grating radial spacing of the Compact Disc (CD) by reflection using He-Ne or solid state laser.

b. To find the width of the wire or width of the slit using diffraction pattern obtained by a He-Ne or solid state laser.

c. To find the polarization angle of laser light using polarizer and analyzer

d. Thermal expansion of quartz using laser

Experiments on Semiconductor Sources and Detectors:

a. V-I characteristics of LED

- b. Study the characteristics of solid state laser
- c. Study the characteristics of LDR
- d. Photovoltaic Cell
- e. Characteristics of IR sensor

Unit II Fourier Optics

14 Contact Hours

Concept of Spatial frequency filtering, Fourier transforming property of a thin lens

Experiments on Fourier Optics:

- a. Fourier optic and image processing
- 1. Optical image addition/subtraction
- 2. Optical image differentiation
- 3. Fourier optical filtering
- 4. Construction of an optical 4f system
- b. Fourier Transform Spectroscopy

Fourier Transform Spectroscopy (FTS) is a powerful method for measuring emission and absorption spectra, with wide application in atmospheric remote sensing, NMR spectrometry and forensic science.

Experiment:

To study the interference pattern from a Michelson interferometer as a function of mirror separation in the interferometer. The resulting interferogram is the Fourier transform of the power spectrum of the source. Analysis of experimental interferograms allows one to determine the transmission characteristics of several interference filters. Computer simulation can also be done.

Unit III Holography

10 Contact Hours

Basic principle and theory: coherence, resolution, Types of holograms, white light reflection hologram, application of holography in microscopy, interferometry, and character recognition **Experiments on Holography and interferometry:**

- 1. Recording and reconstructing holograms
- 2. Constructing a Michelson interferometer or a Fabry Perot interferometer
- 3. Measuring the refractive index of air
- 4. Constructing a Sagnac interferometer
- 5. Constructing a Mach-Zehnder interferometer
- 6. White light Hologram

Unit IV Photonics: Fibre Optics

15 Contact Hours

Optical fibres and their properties, Principal of light propagation through a fibre, The numerical aperture, Attenuation in optical fibre and attenuation limit, Single mode and multimode fibres, Fibre optic sensors: Fibre Bragg Grating

Experiments on Photonics: Fibre Optics

a. To measure the numerical aperture of an optical fibre

b. To study the variation of the bending loss in a multimode fibre

c. To determine the mode field diameter (MFD) of fundamental mode in a single-mode fibre by measurements of its far field Gaussian pattern

d. To measure the near field intensity profile of a fibre and study its refractive index profile

e. To determine the power loss at a splice between two multimode fibre.

Text Books:

- "Introduction to Optical Electronics" by Amnon Yariv and Pochi Yeh.
- "Principles of Lasers" by Orazio Svelto.
- "Introduction to Fourier Optics" by Joseph W. Goodman.

Reference Books:

- Fundamental of optics, F. A. Jenkins & H. E. White, 1981, Tata McGraw hill.
- LASERS: Fundamentals & applications, K.Thyagrajan & A.K.Ghatak, 2010, Tata McGraw Hill
- Fibre optics through experiments, M.R.Shenoy, S.K.Khijwania, et.al. 2009, Viva Books
- Nonlinear Optics, Robert W. Boyd, (Chapter-I), 2008, Elsevier.
- Optics, Karl Dieter Moller, Learning by computing with model examples, 2007, Springer.
- Optical Systems and Processes, Joseph Shamir, 2009, PHI Learning Pvt. Ltd.
- Optoelectronic Devices and Systems, S.C. Gupta, 2005, PHI Learning Pvt. Ltd.
- Optical Physics, A.Lipson, S.G.Lipson, H.Lipson, 4th Edn., 1996, Cambridge Univ. Press

Open Educational Resources (OER)

- MIT OpenCourseWare Introduction to Applied OpticsLearnOptics
- Coursera Introduction to Lasers
- edX Practical Deep Learning for Coders
- Stanford Online Holography and Lasers
- <u>https://www.khanacademy.org/science/physics/light-waves/introduction-to-light-waves/v/polarization-of-light-linear-and-circular</u>
- <u>https://scienceready.com.au/pages/diffraction</u>
- NPTEL Online Certification Course Optical Fiber Communication
- Educational YouTube videos
- https://www.youtube.com/watch?v=3FIGyj0ioPA
- <u>https://www.youtube.com/watch?v=OD7DiQ0SuJI</u>
- <u>https://www.spiedigitallibrary.org/conference-proceedings-of-spie/0/PC120050/Meta-optics-for-image-processing/10.1117/12.2609817.full</u>

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term		
		Examination		Examination		
Weightage (%)	20	20	10	50		

Programme And Course Mapping

Course Code & Title	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
SCPH3 05	CO1	3	3	2	3	3	2	2	2	1	1	3	3	3	3
Applied	CO2	3	3	2	3	3	3	2	3	1	1	3	3	3	3

Optics															
	CO3	3	3	2	3	3	3	2	3	1	1	3	3	3	3
	CO4	3	3	2	3	3	3	2	3	1	1	3	3	3	3

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Sources and detectors
Local	-
Regional	-
National	-
Global	Knowledge of working of lasers and detectors
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Fourier optics give
Local	-
Regional	-
National	-
Global	Applications of fourier optics
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Holography
Local	-
Regional	-
National	-
Global	Applications of holography in real world
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Photonics: fibre optics
Local	-
Regional	-

National	-
Global	Fundamentals of fibre optics
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	(skills for decent work, safe and inclusive learning environments)
Nep 2020	Towards a more holistic and multidisciplinary education
	Promoting high-quality research
Poe/4 th IR	Hands on experience, projects and group discussion

Teaching Plan:

Week	Topics	Reference Books/Open Education Resources	Teaching- Learning Method
1	Introduction to Lasers	LASERS: Fundamentals & applications, K.Thyagrajan & A.K.Ghatak, <u>MIT OpenCourseWare - Introduction</u> to Applied Optics	Lecture, Reading
2	Spontaneous and Stimulated Emissions, Theory of Laser Action	LASERS: Fundamentals & applications, K.Thyagrajan & A.K.Ghatak, Coursera - Introduction to Lasers:	Lecture, Reading
3	Einstein's Coefficients, Light Amplification	Fundamental of Optics, F. A. Jenkins & H. E. White, Coursera - Introduction to Lasers:	Lecture, Reading
4	Characterization of Laser Beam, He-Ne laser	Optics, Karl Dieter Moller, Learning by computing with model examples Coursera - Introduction to Lasers:	Lecture, Demonstration

5	Semiconductor Lasers, Determination of the Grating Radial Spacing of the CD	Optoelectronic Devices and Systems, S.C. Gupta, <u>MIT</u> <u>OpenCourseWare - Introduction to Applied Optics</u>	Lecture, Laboratory
6	Width of the Wire or Slit Using Diffraction Pattern	Optics, Karl Dieter Moller, Learning by computing with model examples, https://scienceready.com.au/pages/diffraction	Lecture, Laboratory
7	Polarization Angle of Laser Light, Thermal Expansion of Quartz	Optoelectronic Devices and Systems, S.C. Gupta, https://www.khanacademy.org/science/physics/light- waves/introduction-to-light-waves/v/polarization-of- light-linear-and-circular	Lecture, Laboratory
8	V-I Characteristics of LED, Study the Characteristics of Solid State Laser	Fibre Optics through Experiments, M.R.Shenoy, S.K.Khijwania, et.al., https://www.youtube.com/watch?v=OD7DiQ0SuJI	Lecture, Laboratory
9	Study the Characteristics of LDR, Photovoltaic Cell, Characteristics of IR Sensor	Optics, Karl Dieter Moller, Learning by computing with model examples, https://www.youtube.com/watch?v=3FIGyj0ioPA	Lecture, Laboratory
10	Spatial Frequency Filtering, Fourier Transforming Property of a Thin Lens	Nonlinear Optics, Robert W. Boyd, (Chapter-I), V https://ocw.mit.edu/courses/2-71-optics-spring- 2009/resources/lecture-18-spatial-filtering-lens- transfer-functions-transforms/	Lecture, Reading

11	Optical Image Addition/Subtraction, Optical Image Differentiation	Optics, Karl Dieter Moller, Learning by computing with model examples, https://www.spiedigitallibrary.org/conference- proceedings-of-spie/0/PC120050/Meta-optics-for- image-processing/10.1117/12.2609817.full	Lecture, Laboratory
12	Fourier Optical Filtering, Construction of an Optical 4f System, Fourier Transform Spectroscopy	Nonlinear Optics, Robert W. Boyd, (Chapter-I) Educational YouTube videos:	Lecture, Laboratory
13	Basic Principle and Theory of Holography, Types of Holograms, White Light Reflection Hologram	Optical Physics, A.Lipson, S.G.Lipson, H.Lipson Educational YouTube videos:	Lecture, Reading
14		Fibre Optics through Experiments, M.R.Shenoy, S.K.Khijwania, et.al., <u>NPTEL Online Certification</u> <u>Course - Optical Fiber Communication</u>	

Unit	Course Learning Outcomes	Teaching-Learning Activities	Assessment Task Methods
Ι	Understand the basic principles and working of lasers and detectors. Perform various	· · ·	 Presentations and class discussions. Assignments and class

	experiments with lasers, including diffraction patterns and grating radial spacing.	conduct experiments.	tests. • Student presentations. • Mid- term examinations. • Practical and viva-voce examinations. • End-
п	Understand the concept of spatial frequency filtering and Fourier transforming property of a thin lens.		term examinations.
ш	Understand the principles and applications of holography.	Lectures on holography and different types of holograms. Lab sessions to conduct experiments.	
IV	Understand the principles and properties of optical fibers. Understand the principle of light propagation through a fiber and the concept of numerical aperture.	Lectures on photonics and fiber optics. Lab sessions to conduct experiments.	

SCPH307	Laser Fundamentals	aser Fundamentals L T P				
Version 1.0		4	0	0	4	
Total Contact Hours	54					
Pre-requisites/Exposure	Waves and Optics					
Co-requisites	Electromagnetic Theory					

Course Outcomes

CO1: Recall and explain fundamental concepts related to lasers, including population inversion, the nature of electromagnetic radiation, absorption, and emission.

CO2: Apply their understanding of laser fundamentals and types to describe and analyze the effects of various types of lasers in different mediums (e.g., solid state, gaseous).

CO3: Compare and contrast different types of lasers (e.g., He-Ne laser, CO2 laser, Argon laser, Nd:YAG, Excimer laser, Diode laser, Fiber laser etc.) based on their characteristics.

CO4: Evaluate the appropriateness of specific laser types for various industrial applications, including measurements and material processing.

Course Content

Unit I

Unit II

Types of lasers

Laser Fundamentals

Phenomenon of population inversion. The Nature of Electromagnetic Radiation. Interaction of Electromagnetic Radiation with Matter. Absorption and Emission of Radiation by atoms, ions and molecules.

12 Contact Hours

18 Contact Hours

Laser medium (solid state medium: srystals, glass, semiconductor, gaseous medium). Types of lasers: He-Ne laser, CO2 laser, Argon laser, Nd:YAG, Excimer laser, Diode laser, Fiber laser etc.

Unit III

Optical parametric oscillator (OPO), Laser Electronics. Laser Beam Characteristics, Wavelength, Coherence, Mode and Beam Diameter, Polarisation. Laser Material Processing e.g. machining, welding, sintering, forming etc. Laser Fracture & Damage. Laser Communication

Unit IV INDUSTRIAL APPLICATION OF LASERS:

Laser for measurement of distance, length, velocity, acceleration, current, voltage and Atmospheric effect – Material processing – Laser heating, welding, melting and trimming of material – Removal and vaporization

Textbooks:

- 1. "Lasers: Principles and Applications" by K. R. Nambiar. It provides a comprehensive understanding of the fundamentals of lasers, types of lasers, and their applications.
- 2. "Laser Electronics" by Joseph T. Verdeyen. It covers a wide range of topics including laser fundamentals, laser electronics, and laser beam characteristics.
- 3. "Laser Systems and Applications" by B.B. Laud. It gives a detailed view of laser applications in various fields, particularly in the industrial context.

Reference Books:

- 1. "Fundamentals of Photonics" by Bahaa E. A. Saleh and Malvin Carl Teich. A comprehensive guide that touches on many aspects of photonics, including lasers.
- 2. "Laser Fundamentals" by William T. Silfvast. This book provides an in-depth understanding of laser fundamentals.
- 3. "Introduction to Laser Technology" by C. Breck Hitz, J. J. Ewing, and Jeff Hecht. A book focused on laser technology and its diverse applications.
- 4. "Handbook of Laser Technology and Applications" by Colin Webb and Julian Jones. This handbook provides a comprehensive overview of lasers and their broad applications.

Open Educational Resources:

- 1. MIT OpenCourseWare Introduction to Lasers
- 2. Introduction to Lasers Stanford University
- 3. Laser Basics Khan Academy
- 4. <u>RP Photonics Encyclopedia</u>
- 5. Photonics Media
- 6. Optical Society (OSA) Webinar series on Lasers
- 7. Physics of Lasers University of Southampton

12 Contact Hours

12 Contact Hours

- 8. Nobel Prize in Physics 1964 Presentation Speech
- 9. Coursera Introduction to Lasers
- 10. Laser Classroom Lesson Plans

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
SCPH307	CO1	3	2	3	2	3	2	2	1	1	1	3	3	2	2
Laser Fundament als	CO2	3	3	2	2	2	3	3	2	1	1	3	2	3	3
	CO3	3	3	2	3	3	3	3	2	1	1	3	3	3	3
	CO4	3	3	3	3	3	3	3	2	1	1	3	3	3	3

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

Teaching Plan:

Week	Topics	Reference Books/Open Education	Teaching-
		Resources	Learning Method
1	Introduction to Lasers,	"Lasers: Principles and Applications" by	Lecture, Reading
	Phenomenon of Population	K. R. Nambiar, MIT OpenCourseWare -	
	Inversion	Introduction to Lasers	
2	Nature of Electromagnetic	"Laser Electronics" by Joseph T.	Lecture, Reading
	Radiation	Verdeyen, Introduction to Lasers -	
		Stanford University	
3	Interaction of Electromagnetic	"Lasers: Principles and Applications" by	Lecture, Reading
	Radiation with Matter	K. R. Nambiar, Laser Basics - Khan	-
		Academy	
4	Absorption and Emission of	"Laser Fundamentals" by William T.	Lecture, Reading
	Radiation by Atoms, Ions, and	Silfvast, RP Photonics Encyclopedia	_

	Molecules		
5	Types of Lasers: He-Ne Laser, CO2 Laser, Argon Laser, etc.	"Laser Systems and Applications" by B.B. Laud, Photonics Media	Lecture, Demonstration
6	More Types of Lasers: Nd:YAG, Excimer Laser, Diode Laser, Fiber Laser	"Handbook of Laser Technology and Applications" by Colin Webb and Julian Jones, Optical Society (OSA) - Webinar series on Lasers	Lecture, Demonstration
7	Laser Medium: Solid State Medium (Crystals, Glass, Semiconductor, Gaseous Medium)	"Introduction to Laser Technology" by C. Breck Hitz, J. J. Ewing, and Jeff Hecht, <u>Physics of Lasers - University of</u> <u>Southampton</u>	Lecture, Reading
8	Optical Parametric Oscillator (OPO), Laser Electronics	"Laser Electronics" by Joseph T. Verdeyen, <u>Coursera - Introduction to</u> Lasers	Lecture, Reading
9	Laser Beam Characteristics: Wavelength, Coherence, Mode, Beam Diameter, Polarisation	"Lasers: Principles and Applications" by K. R. Nambiar, <u>Laser Classroom - Lesson</u> <u>Plans</u>	Lecture, Demonstration
10	Laser Material Processing: Machining, Welding, Sintering, Forming, etc.	"Laser Systems and Applications" by B.B. Laud, <u>Photonics Media</u>	Lecture, Demonstration
11	Laser Fracture & Damage, Laser Communication	"Introduction to Laser Technology" by C. Breck Hitz, J. J. Ewing, and Jeff Hecht, <u>Physics of Lasers - University of</u> Southampton	Lecture, Reading
12	Industrial Applications of Lasers: Measurements	"Laser Systems and Applications" by B.B. Laud, <u>MIT OpenCourseWare</u> - Introduction to Lasers	Lecture, Demonstration
13	Industrial Applications of Lasers: Material Processing	"Handbook of Laser Technology and Applications" by Colin Webb and Julian Jones, <u>Photonics Media</u>	Lecture, Demonstration
14	Industrial Applications of Lasers: Laser Heating, Welding, Melting, Trimming, Removal and Vaporization	"Laser Systems and Applications" by B.B. Laud, Coursera - Introduction to Lasers	Lecture, Demonstration

	Course Learning Outcomes	Teaching-Learning Activities	Assessment Task
Unit			Methods
Ι	Understand the phenomenon of population	Lectures on the fundamentals of	• Presentations and
	inversion, nature of electromagnetic	lasers, group discussions,	class discussions. •
	radiation, absorption and emission of	independent study, problem-	Assignments and
	radiation by atoms, ions, and molecules.	solving exercises.	class tests. • Student
II	Learn about various types of lasers	Lectures on different types of	presentations. •
	including He-Ne, CO2, Argon, Nd:YAG,	lasers, laboratory	Mid-term
	Excimer, Diode, and Fiber lasers.	demonstrations, group	examinations. •
		discussions.	Practical and viva-
III	Understand the concept of Optical	Lectures on OPO and laser	voce examinations.

	Parametric Oscillator (OPO), laser beam	electronics, laborator	• End-term
	characteristics.	demonstrations, grou	examinations.
		discussions, independent study.	
IV	Understand how lasers can be used for	Lectures on industria	1
	various industrial applications,	applications of lasers, gues	t
	measurements and material processing.	lectures from industry experts	,
		case studies, group discussions.	

Semester VI

S.No.	COURS E CODE	COURSE TITLE	С
1	SCPH302	Analog Systems and Applications	4
2	SCPH352	Analog Systems and Applications Lab	1
3	SCPH304	Themodynamics and Statistical Mechanics	4
4	SCPH306	Electromagnetic theory	4
5	UNS108	Characterisation techniques of nanomaterials	4
6	UNS109	Characterisation techniques of nanomaterials Lab	1
7		Select one course from a basket of course	2
8	SEC018	Electrical circuits and network skills	2
TOTAL			22

SCPH302	Analog Systems And Applications	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Basics of Physics				
Co-requisites					

Course Objectives

- Characteristics and working of pn junction.
- Two terminal devices: Rectifier diodes, Zener diode, photodiode etc
- NPN and PNP transistors: Characteristics of different configurations, biasing, stabilization and their applications.
- CE and two stage RC coupled transistor amplifier using h-parameter model of the transistor.
- Designing of different types of oscillators and their stabilities.
- Ideal and practical op-amps: Characteristics and applications.
- In the laboratory course, the students will be able to study characteristics of various diodes and BJT. They will be able to design amplifiers, oscillators and DACs. Also different applications using Op-Amp will be designed.

Course Outcomes

On completion of this course, the students will be able to

- CO1 Understand the energy level diagram and conductivity of P and N type semiconductors.
- CO2 Analyze PN junction diode behavior in forward and reverse biased modes.
- CO3 Evaluate the characteristics and applications of two-terminal devices (e.g., rectifier diode, Zener

diode, LEDs, photodiode, and solar cell).

CO4 Comprehend the working principles of bipolar junction transistors, their configurations, and amplifier circuits.

Catalog Description

This course designed to introduces the introductory concepts of semiconductor. The structure of course is planned to impart the functional knowledge of semiconductors to the device applications of semiconductors. The course includes the application of individual semiconductor part and the complex circuits of various component includes Integrated circuits. It also emphasizes on understanding of amplifiers, oscillators, operational amplifier and their applications.

Course Content

Unit I:

14 Lecture hours

Semiconductor Diodes: P and N type semiconductors. Energy Level Diagram.Conductivity and Mobility, Concept of Drift velocity. PN Junction Fabrication (Simple Idea). Barrier Formation in PN Junction Diode. Static and Dynamic Resistance. Current Flow Mechanism in Forward and Reverse Biased Diode. Drift Velocity. Derivation for Barrier Potential, Barrier Width and Current for Step Junction. Current Flow Mechanismin Forward and Reverse Biased Diode.

Two-terminal Devices and their Applications: (1) Rectifier Diode: Half-wave Rectifiers.

Centre-tapped and Bridge Full-wave Rectifiers, Calculation of Ripple Factor and Rectification Efficiency, C-filter (2) Zener Diode and Voltage Regulation. Principle and structure of (1) LEDs, (2) Photodiode and (3) Solar Cell.

Unit II:

14 Lecture hours

Bipolar Junction transistors: n-p-n and p-n-p Transistors. Characteristics of CB, CEand CC

Configurations. Current gains α and β Relations between α and β . Load Line analysis of

Transistors. DC Load line and Q-point. Physical Mechanism of Current Flow. Active, Cutoff and Saturation Regions.

Amplifiers: Transistor Biasing and Stabilization Circuits. Fixed Bias and VoltageDivider Bias. Transistor as 2-port Network. h-parameter Equivalent Circuit. Analysis of a single-stage CE amplifier using Hybrid Model. Input and Output Impedance. Current, Voltage and Power Gains. Classification of Class A, B & C Amplifiers.

Coupled Amplifier: Two stage RC-coupled amplifier and its frequency response.

Unit III:

13 Lecture hours

Feedback in Amplifiers: Effects of Positive and Negative Feedback on Input Impedance, Output Impedance, Gain, Stability, Distortion and Noise.

Sinusoidal Oscillators: Barkhausen's Criterion for self-sustained oscillations. RC Phaseshift oscillator, determination of Frequency. Hartley & Colpitts oscillators.

Unit IV:

13 Lecture hours

Operational Amplifiers (Black Box approach): Characteristics of an Ideal andPractical OpAmp. (IC 741) Open-loop and Closed-loop Gain. Frequency Response. CMRR. Slew Rate and concept of Virtual ground.

Applications of Op-Amps: (1) Inverting and non-inverting amplifiers, (2) Adder, (3)Subtractor, (4) Differentiator, (5) Integrator, (6) Log amplifier, (7) Zero crossingdetector (8) Wein bridge oscillator. Conversion: Resistive network (Weighted and R-2R Ladder). Accuracy and Resolution. A/D Conversion (successive approximation)

Text Books

TB1. Robert Boylestad, Louis Nashelsky, Electronic Devices and Circuit Theory, 8Th Edition, Pearson Education, India.

TB2. Albert P. Malvino, David J. Bates. Electronic Principles, Eighth Edition, McGraw-Hill Education, United States.

Reference Books/Materials

RB1. Electronic Communication, Rudy and Cohlen (Prentice Hall). RB2. Semiconductor Devices Physics & Technology by S. M. Sze (John Wiley).

Open Educational Resources (OER)

https://www.electronics-tutorials.ws/ https://nptel.ac.in/courses/108102112 https://nptel.ac.in/courses/108105158 https://www.learningelectronics.net/ https://www.youtube.com/watch?v=XG3cVoUh7wc&list=PLs5_Rtf2P2r674CTMNJ3odeHk9Wtb -WWl https://www.youtube.com/watch?v=EdUAecpYVWQ&list=PLwjK_iyK4LLBVM18VZ7JKWq88FAtnr8_

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	PO3	P04	204	P06	P07	P08	P09	P010	PS01	PSO2	
SCPH302 / Analog	CO1	2	2	1	1	2	2	2	2	1	3	2	2	2
Systems And	CO2	2	2	2	1	2	2	2	2	1	2	2	2	2
Applications	CO3	2	2	2	1	2	2	2	2	1	2	2	2	2
	CO4	2	2	2	2	3	2	2	2	1	2	2	2	2

1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Semiconductor diodes, two-terminal devices and their applications
Local	-
Regional	-
National	-
Global	Knowledge about semiconductor devices
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Bipolar junction transistors and amplifiers
Local	-
Regional	-
National	-
Global	Knowledge of two terminal devices like Zener diode, photodiodes etc.
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Feedback in amplifiers
Local	-
Regional	-
National	-
Global	Knowledge about bipolar junction transistor
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-

Human values	-
Environment &	-
sustainability	
Unit iv	Operational amplifiers
Local	-
Regional	-
National	-
Global	Knowledge about amplifiers
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment & sustainability	-
SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
Poe/4 th IR	Use of software and simulations
	Projects, hands on experience, internship, group discussion

Teaching Plan:

Weekly Teachi ng Plan	Topic/Unit No.	Textbook / Reference Book / OER	Teaching-Learning Method
1	Introduction to Semiconductor Diodes	TB 1	Lecture, Discussion
2	PN Junction Diode and its Characteristics	TB 1	Lecture, Practical
3	Diode Applications: Rectifiers and Zener Diode	TB 1	Lecture, Practical
4	Light Emitting Diodes (LEDs) and Photodiodes	TB 1	Lecture, Practical
5	Solar Cells and Bipolar Junction Transistors (BJTs)	TB 1	Lecture, Practical
6	BJT Characteristics and Load Line Analysis	TB 2	Lecture, Discussion
7	Transistor Biasing and	TB 2	Lecture, Practical

	Stabilization		
	Circuits		
8	Transistor	TB 2	Lecture, Discussion
	Amplifiers: CE		
	Configuration		
9	Transistor	TB 2	Lecture, Practical
	Amplifiers: CC		
	and CB		
	Configurations		
10	Amplifier	TB 2	Lecture, Practical
	Classification		
	and Coupled		
	Amplifiers		
11	Feedback in	https://www.learningelectron	Lecture, Discussion
	Amplifiers and	<u>ics.net/</u>	
	Sinusoidal		
	Oscillators		
12	Barkhausen's	https://nptel.ac.in/courses/10	Lecture, Practical
	Criterion and	<u>8105158</u>	
	RC Phase-shift		
	Oscillator		
13	Introduction to	https://nptel.ac.in/courses/10	Lecture, Discussion
	Operational	<u>8105158</u>	
	Amplifiers (Op-		
	Amps)		
14	Op-Amp	https://www.youtube.com/watch?	Lecture, Practical
	Applications	v=EdUAecpYVWQ&list=PLwjK	
	and Analog-to-	iyK4LLBVM18VZ7JKW-	
	Digital	<u>q88FAtnr8</u>	
	Conversion		
	(ADC)		

Unit No.	Course Learning Outcomes (CLO)	Teaching-Learning Activity	Assessment Task Methods
Unit I	Understand the principles of semiconductor diodes and their applications.	Lecture, Discussion, Practical	 Presentations and class discussions. Assignments and class

			tests. • Student presentations. • Mid-term
	Analyze the behavior of PN junction diodes in various biasing conditions.		examinations. • Quizzes Practical and viva-voce examinations. • End-term examinations
	Derive the barrier potential, barrier width, and current for step junction.		
Unit II	Comprehend the working of bipolar junction transistors in different modes.	Lecture, Practical, Demonstration	
	Analyze the load line and operating point of transistors.		
	Examine the characteristics of amplifiers and their classifications.		
Unit III	Explore the effects of feedback in amplifiers and oscillation principles.	Lecture, Discussion, Practical	
	Determine the frequency of sinusoidal oscillators using Barkhausen's Criterion.		
	Analyze the working of RC Phase-shift, Hartley, and Colpitts oscillators.		
Unit IV	Understand the characteristics and applications of operational amplifiers.	Lecture, Practical, Demonstration	
	Analyze the frequency response and other parameters of operational amplifiers.		

	Explore various applications of operational amplifiers.	
1	Study the concept of resistive network conversion and A/D conversion.	

NOTICES: All notices for the course will be displayed on A-Block, 2nd Floor Notice Board.

GLOSSARY AND NOTES

Programme Outcomes: POs are statements that describe what the students graduating from any of the educational Programmes of the institution should be able to do on completion.

Programme Specific Outcomes: PSOs are statements that describe what the graduates of a specific educational Programme should be able to do on completion.

Course Outcomes: COs are statements that describe what students should be able to do on completion of the course.

Program Articulation Matrix: Program articulation matrix gives the correlation among CO & PO and CO & PSO. The strength of correlation is interpreted in three levels: weakly mapped (1), moderately mapped (2), strongly mapped (3).

***Teaching** –Learning Methods: Teaching –Learning Methods may include Lecture/Group Discussion/Presentation/Case-study/Demonstration using simulation or a tool/ Interview/ Quiz/Debate/Project/Field Project/Experiment etc.

****Mode of Evaluation**: Mode of Evaluation may include Assignment/Quiz/Test/Interview/Peer Review/Report/Presentation/Open Book Test/Evaluated Discussion Forum etc.

SCPH352	Analog systems and applications lab	L	Т	Р	С
Version 1.0		0	0	2	1
Total Contact Hours	30				
Pre-requisites/Exposure	Exposure Basics of Physics				
Co-requisites					

Course Objectives

- 1. Dedicated demonstration cum laboratory sessions on the construction, functioning and uses of different electrical bridge circuits, and electrical devices like the ballistic galvanometer. To learn how charges behave through electric circuits.
- 2. Sessions on the review of scientific laboratory report writing, and on experimental data analysis.
- 3. Expand and exercise the students' physical intuition and thinking process through the experiments.
- 4. Interpretation of experimental data

Course Outcomes

On completion of this course, the students will be able to

CO1: Develop an understanding of various electronic components such as diodes, transistors, and opamps, and analyze their characteristics in different configurations.

CO2: Apply theoretical knowledge to design and test electronic circuits such as amplifiers, oscillators, and converters as per given specifications, reflecting synthesis and evaluation skills.

CO3: Demonstrate the practical application of complex mathematical concepts in electronics, such as differentiating and integrating functions using op-amps.

CO4: Evaluate the performance of designed circuits and components such as solar cells and amplifiers, understanding the relationship between theory and practice in electronics.

Catalog Description

This course imparts the basic concepts of experimental physics. The course is design to give knowledge how to use basic instruments in laboratory and laboratory experiment protocols. The main focus is on data collection techniques and the data interpretation. For this purpose a series of experiments have been set. The difficulty level of experiments is set easy to moderate level due to introductory physics.

Course Content

At least 08 experiments from the following:

- 1. To study the V-I characteristics of a Zener diode and its use as voltage regulator.
- 2. Study of V-I & power curves of solar cells, and find maximum power point & efficiency.
- 3. To study the characteristics of a Bipolar Junction Transistor in CE configuration.
- 4. To study the various biasing configurations of BJT for normal class A operation.
- 5. To design a CE transistor amplifier of a given gain (mid-gain) using voltage divider bias.

6. To study the frequency response of voltage gain of a two stage RC-coupled transistor amplifier.

7. To design a Wien bridge oscillator for given frequency using an op-amp.

- 8. To design a phase shift oscillator of given specifications using BJT.
- 9. To design a digital to analog converter (DAC) of given specifications.
- 10. To design a precision Differential amplifier of given I/O specification using Op-amp.
- 11. To investigate the use of an op-amp as an Integrator.
- 12. To investigate the use of an op-amp as a Differentiator.

13. To design a circuit to simulate the solution of simultaneous equation and 1st/2ndorder differential equation.

References for Laboratory Work:

1. Basic Electronics: A text lab manual, P.B.Zbar, A.P.Malvino, M.A.Miller, 1994, Mc-Graw Hill. OP-Amps

Open Educational Resources:

- 1. <u>https://www.youtube.com/watch?v=BxbXnYFqygU&pp=ygVTdG8gc3R1ZHkgdGhlIHYtaSBjaGFyY</u> <u>WN0ZXJpc3RpY3Mgb2YgYSB6ZW5lciBkaW9kZSBhbmQgaXRzIHVzZSBhcyB2b2x0YWdlIHJlZ3</u> VsYXRvciA%3D
- 2. https://www.youtube.com/watch?v=9GuB1SgHXEc&pp=ygVXLiBTdHVkeSBvZiBWLUkgJiBwb3dlci BjdXJ2ZXMgb2Ygc29sYXIgY2VsbHMsIGFuZCBmaW5kIG1heGltdW0gcG93ZXIgcG9pbnQgJiBlZm ZpY2llbmN5
- 3. https://www.youtube.com/watch?v=BsbqB07Mwmo&pp=ygVSLIRvIHN0dWR5IHRoZSBjaGFyYWN 0ZXJpc3RpY3Mgb2YgYSBCaXBvbGFyIEp1bmN0aW9uIFRyYW5zaXN0b3IgaW4gQ0UgY29uZmln dXJhdGlvbg%3D%3D
- 4. <u>https://www.youtube.com/watch?v=E58rxqJB5kA&list=PL-IC1WV10E4n9gVU3bQfBWsQhnmICRKYM</u>
- 5. <u>https://www.youtube.com/watch?v=ZZomhoZL-</u> <u>18&pp=ygVbVG8gZGVzaWduIGEgQ0UgdHJhbnNpc3RvciBhbXBsaWZpZXIgb2YgYSBnaXZlbiBn</u>

YWluIChtaWQtZ2FpbikgdXNpbmcgdm9sdGFnZSBkaXZpZGVyIGJpYXMuIA%3D%3D

- 6. <u>https://www.youtube.com/watch?v=QAHsqK8La1c&pp=ygVhVG8gc3R1ZHkgdGhlIGZyZXF1ZW5je</u> <u>SByZXNwb25zZSBvZiB2b2x0YWdlIGdhaW4gb2YgYSB0d28gc3RhZ2UgUkMtY291cGxlZCB0cmFu</u> <u>c2lzdG9yICBhbXBsaWZpZXIuIA%3D%3D</u>
- 7. <u>https://www.youtube.com/watch?v=eg884iSHGok&pp=ygVGVG8gZGVzaWduIGEgcGhhc2Ugc2hpZn_Qgb3NjaWxsYXRvciBvZiBnaXZlbiBzcGVjaWZpY2F0aW9ucyB1c2luZyBCSlQuIA%3D%3D</u>
- 8. <u>https://www.youtube.com/watch?v=_TD0xG5FbCs&pp=ygVIVG8gZGVzaWduIGEgV2llbiBicmlkZ2U</u>gb3NjaWxsYXRvciBmb3IgZ2l2ZW4gZnJlcXVlbmN5IHVzaW5nIGFuIG9wLWFtcC4g
- 9. <u>https://www.youtube.com/watch?v=upvw2uLJDeI&pp=ygVFVG8gZGVzaWduIGEgZGlnaXRhbCB0byBhbmFsb2cgY29udmVydGVyIChEQUMpIG9mIGdpdmVuIHNwZWNpZmljYXRpb25z</u>
- 10. <u>https://www.youtube.com/watch?v=2Gb16xH6g7g&pp=ygVXIFRvIGRlc2lnbiBhIHByZWNpc2lvbiBE</u> <u>aWZmZXJlbnRpYWwgYW1wbGlmaWVyIG9mIGdpdmVuIEkvTyBzcGVjaWZpY2F0aW9uIHVzaW5</u> <u>nIE9wLWFtcC4g</u>
- 11. <u>https://www.youtube.com/watch?v=PRPkvGjUFO4&pp=ygVKIFRvIGludmVzdGlnYXRIIHRoZSB1c2</u> <u>Ugb2YgYW4gb3AtYW1wIGFzIGFuIEludGVncmF0b3IgYW5kIERpZmZlcmVudGlhdG9yLiA%3D</u>
- 12. <u>https://www.youtube.com/shorts/nxThhTE1fVg</u>

Assessment & Evaluation

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme and Course Mapping

Course Code& Title		PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
SCPH352 Analog	CO 1	3	3	2	3	2	3	1	2	1	1	3	3	2	3
systems and applicatio ns lab	CO 2	2	3	2	3	3	3	2	2	1	1	3	3	3	3
	CO 3	2	3	3	3	3	3	2	3	2	1	3	3	3	3
	CO 4	2	3	3	3	3	3	2	3	2	2	3	3	3	3

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Analog systems and applications lab
Local	-
Regional	-
National	-
Global	The course will impart knowledge on how to use basic instruments in laboratory and laboratory experiment
Employability	-
Entrepreneurship	-
Skill development	Construction, functioning and uses of different electrical circuits, and e- electrical devices
Professional ethics	-
Gender	-
Human values	-
Environment & sustainability	-
SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
Poe/4 th IR	Use of software and simulations

Teaching Plan:

Week	Topics	Reference Books/OER	Teaching/Learni ng Method
1	Introduction to Zener Diodes	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill, <u>https://www.youtube.com/watch?v=BxbXnYFqygU&pp=</u> <u>ygVTdG8gc3R1ZHkgdGhIIHYtaSBjaGFyYWN0ZXJpc3</u> <u>RpY3Mgb2YgYSB6ZW5lciBkaW9kZSBhbmQgaXRzIH</u> <u>VzZSBhcyB2b2x0YWdIIHJIZ3VsYXRvciA%3D</u>	Lecture and Lab
2	Study of V-I characteristics of a Zener diode	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill, <u>https://www.youtube.com/watch?v=BxbXnYFqygU&pp=</u> <u>ygVTdG8gc3R1ZHkgdGhlIHYtaSBjaGFyYWN0ZXJpc3</u> <u>RpY3Mgb2YgYSB6ZW5lciBkaW9kZSBhbmQgaXRzIH</u> <u>VzZSBhcyB2b2x0YWdlIHJlZ3VsYXRvciA%3D</u>	Lecture and Lab

3	Zener diode as a Voltage regulator	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill <u>https://www.youtube.com/watch?v=BxbXnYFqygU&pp=</u> ygVTdG8gc3R1ZHkgdGhlIHYtaSBjaGFyYWN0ZXJpc3 <u>RpY3Mgb2YgYSB6ZW5lciBkaW9kZSBhbmQgaXRzIH</u> <u>VzZSBhcyB2b2x0YWdIIHJIZ3VsYXRvciA%3D</u>	Lecture and Lab
4	Introduction to Solar Cells and their V-I & power curves	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill, https://www.youtube.com/watch?v=9GuB1SgHXEc&pp= ygVXLiBTdHVkeSBvZiBWLUkgJiBwb3dlciBjdXJ2ZX Mgb2Ygc29sYXIgY2VsbHMsIGFuZCBmaW5kIG1heGlt dW0gcG93ZXIgcG9pbnQgJiBlZmZpY2llbmN5	Lecture and Lab
5	Finding maximum power point & efficiency of Solar Cells	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc-Graw Hill,	Lecture and Lab
6	Introduction to Bipolar Junction Transistor (BJT) in CE configuration	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill https://www.youtube.com/watch?v=BsbqB07Mwmo&pp= ygVSLIRvIHN0dWR5IHRoZSBjaGFyYWN0ZXJpc3Rp Y3Mgb2YgYSBCaXBvbGFyIEp1bmN0aW9uIFRyYW5z aXN0b3IgaW4gQ0UgY29uZmlndXJhdGlvbg%3D%3D	Lecture and Lab
7	Study of various biasing configurations of BJT	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill https://www.youtube.com/watch?v=BsbqB07Mwmo&pp= ygVSLIRvIHN0dWR5IHRoZSBjaGFyYWN0ZXJpc3Rp Y3Mgb2YgYSBCaXBvbGFyIEp1bmN0aW9uIFRyYW5z aXN0b3IgaW4gQ0UgY29uZmlndXJhdGlvbg%3D%3D	Lecture and Lab
8	Designing a CE transistor amplifier of a given gain (mid- gain)	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill <u>https://www.youtube.com/watch?v=ZZomhoZL- 18&pp=ygVbVG8gZGVzaWduIGEgQ0UgdHJhbnNpc3R</u> vciBhbXBsaWZpZXIgb2YgYSBnaXZlbiBnYWluIChtaW QtZ2FpbikgdXNpbmcgdm9sdGFnZSBkaXZpZGVyIGJp YXMuIA%3D%3D	Lecture and Lab

9	Study of frequency response of voltage	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill https://www.youtube.com/watch?v=QAHsqK8La1c&pp=y gVhVG8gc3R1ZHkgdGhlIGZyZXF1ZW5jeSByZXNwb2	Lecture and Lab
	gain of a two-stage RC-coupled transistor amplifier	<u>5zZSBvZiB2b2x0YWdlIGdhaW4gb2YgYSB0d28gc3RhZ</u> 2UgUkMtY291cGxlZCB0cmFuc2lzdG9yICBhbXBsaWZ pZXIuIA%3D%3D	
10	Designing a Wien bridge oscillator and a phase-shift oscillator using op- amps	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill https://www.youtube.com/watch?v= TD0xG5FbCs&pp=y gVIVG8gZGVzaWduIGEgV2llbiBicmlkZ2Ugb3NjaWxs YXRvciBmb3IgZ2l2ZW4gZnJlcXVlbmN5IHVzaW5nIG FuIG9wLWFtcC4g	Lecture and Lab
11	Designing a digital to analog converter (DAC)	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill <u>https://www.youtube.com/watch?v=upvw2uLJDeI&pp=yg</u> <u>VFVG8gZGVzaWduIGEgZGlnaXRhbCB0byBhbmFsb2c</u> <u>gY29udmVydGVyIChEQUMpIG9mIGdpdmVuIHNwZW</u> <u>NpZmljYXRpb25z</u>	Lecture and Lab
12	Designing a precision Differential amplifier using Op-amp	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill, https://www.youtube.com/watch?v=2Gb16xH6g7g&pp=y gVXIFRvIGRlc2lnbiBhIHByZWNpc2lvbiBEaWZmZXJI bnRpYWwgYW1wbGlmaWVyIG9mIGdpdmVuIEkvTyB zcGVjaWZpY2F0aW9uIHVzaW5nIE9wLWFtcC4g https://www.youtube.com/watch?v=2Gb16xH6g7g&pp=y gVXIFRvIGRlc2lnbiBhIHByZWNpc2lvbiBEaWZmZXJI bnRpYWwgYW1wbGlmaWVyIG9mIGdpdmVuIEkvTyB zcGVjaWZpY2F0aW9uIHVzaW5nIE9wLWFtcC4g	Lecture and Lab
13	Op-amp as an Integrator and	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill <u>https://www.youtube.com/watch?v=PRPkvGjUFO4&pp=y</u> gVKIFRvIGludmVzdGlnYXRlIHRoZSB1c2Ugb2YgYW 4gb3AtYW1wIGFzIGFuIEludGVncmF0b3IgYW5kIERp ZmZlcmVudGlhdG9yLiA%3D 162	Lecture and Lab

	Differentiator		
14	Designing a circuit to simulate the solution of simultaneous equations and 1st/2nd order differential equations	Basic Electronics: A text lab manual, P.B.Zbar et al, Mc- Graw Hill <u>https://www.youtube.com/shorts/nxThhTE1fVg</u>	Lecture and Lab

Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
Understand the fundamentals of diodes and demonstrate the application of Zener diode as a voltage regulator.	Lectures, Lab exercises	Presentations and class discussions. • Assignments and class tests. • Student presentations. • Mid-term examinations. • Practical
Analyze the characteristics of BJT in CE configuration, design a transistor amplifier, and study the frequency response of voltage gain.	Lectures, Lab exercises	and viva-voce examinations. • End-term examinations.
Construct Wien bridge and phase shift oscillators, and design a digital to analog converter (DAC).	Lectures, Lab exercises	
Design a differential amplifier, utilize an op-amp as an Integrator and Differentiator, and design circuits to solve simultaneous and differential equations.	Lectures, Lab exercises	

SCPH304	Themodynamics and Statistical Mechanics	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				

Pre-requisites/Exposure	Classical Mechanics
Co-requisites	

Course Objectives

- 1. To make them learn about the classical statistics and its applications.
- 2. To enable them to use classical theory of radiation to solve some problems of physics.
- 3. To give knowledge of quantum theory of radiation.
- 4. To impart knowledge about Bose Einstein statistics and Fermi Dirac statistics.

Course Outcomes

CO1: Understand the fundamental principles of thermodynamics and the laws governing energy interactions.

CO2: Analyze and apply the First and Second Laws of Thermodynamics to various thermodynamic processes and systems.

CO3: Comprehend the concept of entropy and its role in thermodynamic processes, including the Third Law.

CO4: Familiarity with statistical mechanics and its application to ideal gases, Bose-Einstein and Fermi-Dirac statistics, and their thermodynamic functions..

Catalog Description

This course imparts the basic concepts of classical statistics and its applications. It enables them to use classical theory of radiation to solve some problems of physics. This course give knowledge of quantum theory of radiation. The course introduces the basic concepts about Bose Einstein statistics and Fermi Dirac statistics.

Course Content

UNIT-I

13 Lecture Hours

Zeroth and First Law of Thermodynamics: Extensive and intensive Thermodynamic Variables, Thermodynamic Equilibrium, Zeroth Law of Thermodynamics & Concept of Temperature, Concept of Work & Heat, State Functions, First Law of Thermodynamics and its differential form, Internal Energy, First Law & various processes, Applications of First Law: General Relation between C_P and C_V , Work Done during Isothermal and Adiabatic Processes, Compressibility and Expansion Co-efficient.

UNIT-II

15 Lecture Hours

Second Law of Thermodynamics: Reversible and Irreversible process with examples. Conversion of Work into Heat and Heat into Work, Heat Engines, Carnot's Cycle, Carnot engine & efficiency. Refrigerator & coefficient of performance, 2nd Law of Thermodynamics: Kelvin- Planck and Clausius Statements and their Equivalence. Carnot's Theorem, Applications of Second Law of Thermodynamics: Thermodynamic Scale of Temperature and its Equivalence to Perfect Gas Scale.

Entropy: Concept of Entropy, Clausius Theorem. Clausius Inequality, Second Law of Thermodynamics in terms of Entropy, Entropy of a perfect gas, Entropy Changes in Reversible and Irreversible processes with examples, Entropy of the Universe, Temperature–Entropy diagrams for Carnot's Cycle, Third Law of Thermodynamics, Unattainability of Absolute Zero.

165

12 Lecture Hours

Classical Statistics: Macrostate & Microstate, Elementary Concept of Ensemble, PhaseSpace, Entropy and Thermodynamic Probability, Maxwell-Boltzmann Distribution Law, Partition Function, Thermodynamic Functions of an Ideal Gas, Classical Entropy Expression, Gibbs Paradox, Sackur Tetrode equation, Law of Equipartition of Energy – Applications to Specific Heat and its Limitations, Thermodynamic Functions of a Two-Energy Levels System.

UNIT-IV

14 Lecture Hours

Bose-Einstein Statistics: B-E distribution law, Thermodynamic functions of a strongly Degenerate Bose Gas, Bose Einstein condensation, properties of liquid He (qualitative description), Radiation as a photon gas and Thermodynamic functions of photon gas.

Fermi-Dirac Statistics: Fermi-Dirac Distribution Law, Thermodynamic functions of a Completely and strongly Degenerate Fermi Gas, Fermi Energy, Electron gas in a Metal, Specific Heat of Metals, Relativistic Fermi gas.

Text Book:

TB1: Thermal Physics, Agarwal and Prakash, Pragati Prakashan Educational Publishers.

TB2: Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill

TB3: Modern Thermodynamics with Statistical Mechanics, Carl S. Helrich, 2009, Springer

Reference Books:

RB1: Statistical Mechanics, R.K. Pathria, Butterworth Heinemann: 2nd Ed., 1996, Oxford University Press.

RB2: Statistical Physics, Berkeley Physics Course, F. Reif, 2008, Tata McGraw-Hill

RB3: Statistical and Thermal Physics, S. Lokanathan and R.S. Gambhir. 1991, Prentice Hall

RB4: Thermodynamics, Kinetic Theory and Statistical Thermodynamics, Francis W. Sears and Gerhard L. Salinger, 1986, Narosa.

RB5: An Introduction to Statistical Mechanics & Thermodynamics, R.H. Swendsen, 2012, Oxford Univ. Press

Open Educational Resources (OER)

https://byjus.com/physics/thermodynamics/

https://www.youtube.com/watch?v=8N1BxHgsoOw

https://www.youtube.com/watch?v=NyOYW07-L5g

https://www.youtube.com/watch?v=8xRFqrNyJCg&list=PLyqSpQzTE6M9iXvWVCopr67kKt61ntzIl https://www.youtube.com/watch?v=Qz5D2bUQk4c&list=PLQCYtYck4nKwkiEyJ_mzuzz9aQla1Kvdh https://www.youtube.com/watch?v=o1EinUCgFsw&list=PL74Pz7AXMAnOSPWBIzmZOpSs2KgchH 3dP

Assessment & Evaluation

UNIT-III

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	PO2	PO3	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2
SCPH304 / Themodynamics	CO1	1	1	0	0	0	0	0	0	0	1	3	3
and Statistical Mechanics	CO2	0	1	0	0	0	0	0	0	0	1	3	3
	CO3	1	0	0	0	0	0	0	0	0	1	3	3
	CO4	0	1	1	0	0	0	0	0	0	1	2	2

1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped

Teaching Plan:

Week ly Teach ing Plan	Topic/Unit No.	Textbook / Reference Book / OER	Teaching-Learning Method
Week 1	Introduction to Thermodynamics	TB1	Lecture, Discussion
Week 2	Zeroth Law of Thermodynamics	TB1	Lecture, Discussion
Week 3	First Law of Thermodynamics	https://byjus.com/physics/thermod ynamics/	Lecture, Discussion
Week 4	Applications of the First Law	https://www.youtube.com/watch?v =8N1BxHgsoOw	Lecture, Discussion
Week 5	Second Law of Thermodynamics	https://www.youtube.com/watch?v =NyOYW07-L5g	Lecture, Discussion
Week 6	Carnot Cycle and Efficiency	TB2	Lecture, Discussion
Week 7	Entropy and Clausius Theorem	TB2/RB2	Lecture, Discussion
Week 8	Entropy Changes and Second Law	RB2	Lecture, Discussion
Week 9	Third Law of Thermodynamics	RB1	Lecture, Discussion
Week	Classical Statistics and	RB3	Lecture, Discussion

10	Macrostate/Microstate		
Week	Maxwell-Boltzmann Distribution	Textbook	Lecture, Discussion
11	Law		
Week	Partition Function and Ideal Gas	TB2	Lecture, Discussion
12			
Week	Bose-Einstein Statistics and	TB3	Lecture, Discussion
13	Degenerate Bose Gas		
Week	Fermi-Dirac Statistics and	https://www.youtube.com/watch?v	Lecture, Discussion
14	Degenerate Fermi Gas	=Qz5D2bUQk4c&list=PLQCYtY	
		ck4nKwkiEyJ mzuzz9aQla1Kvdh	

Unit No.	Course Learning Outcomes (CLO)	Teaching-Learning Activity	Assessment Task Methods
Unit - I	Understand thermodynamics principles and laws	Lectures, Class Discussions	Class Tests, Quizzes
	Analyze thermodynamic processes and systems	Problem Solving Sessions, Worked Examples	Homework Assignments, In-class Exercises
	Comprehend entropy and its role in processes		
	Apply statistical mechanics to ideal gases and particles		
Unit - II	Understand thermodynamics principles and laws	Lectures, Class Discussions	Class Tests, Quizzes
	Analyze thermodynamic processes and systems	Problem Solving Sessions, Worked Examples	Homework Assignments, In-class Exercises
	Comprehend entropy and its role in processes		
	Apply statistical mechanics to ideal gases and particles		
Unit - III	Understand thermodynamics principles and laws	Lectures, Class Discussions	Class Tests, Quizzes
	Analyze thermodynamic processes and systems	Problem Solving Sessions, Worked Examples	Homework Assignments, In-class Exercises
	Comprehend entropy and its role in processes		
	Apply statistical mechanics to ideal gases and particles		
Unit - IV	CO1: Understand thermodynamics principles and laws	Lectures, Class Discussions	Class Tests, Quizzes
	CO2: Analyze thermodynamic processes and systems	Problem Solving Sessions, Worked Examples	Homework Assignments, In-class Exercises
	CO3: Comprehend entropy and its role in processes		
	CO4: Apply statistical mechanics to ideal gases and particles		

SCPH306	ELECTROMAGNETIC THEORY	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	54				
Pre-requisites/Exposure	Electricity and Magnetism				
Co-requisites					

Course Objectives

1. To familiarize the student with the fundamentals of electromagnetic waves, Maxwell's equations and electromagnetic energy density associated with electromagnetic waves.

2. To understand the factors governing the propagation of EM waves in unbounded and bounded media.

3. To acquire knowledge of polarization of electromagnetic waves.

4. Applications of wave guides and optical fibres.

Course Outcomes

On completion of this course, the students will be able to

- CO1: understand the concepts related to Electromagnetic Wave Propagation in both bounded and unbounded media, ideas of different polarization of Electromagnetic waves, the principle of rotatory polarization and Fresnel's theory of optical rotation.
- CO2: Apply Maxwell's equations and the concept of Electromagnetic Energy Density to solve problems in electromagnetism, the laws of reflection and refraction, Brewster's law, and the concept of total internal reflection in practical applications.
- CO3: Analyze wave propagation in different media using Maxwell's equations, gauge transformations, and boundary conditions, evaluate optical rotation phenomena using Biot's laws for Rotatory Polarization and Fresnel's Theory.
- CO4: Construct and evaluate solutions for wave propagation in different media, and polarization phenomena, create their understanding and interpretation of the Fresnel's Theory of optical rotation and will be able to design experiments for its verification

Catalog Description

This course is intended to cover the concepts of electromagnetic waves and their properties and propagation. It discusses the propagation of electromagnetic waves through bounded and unbounded media. This course also makes a foundation for advanced courses such as optical fiber communication and waveguides.

Course Content

Unit 1

20 Contact Hours

Maxwell Equations: Review of Maxwell's equations. Displacement Current. Vectorand Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge. Boundary Conditions at Interface between Different Media. Wave Equations. Plane Waves in Dielectric Media. Poynting Theorem and Poynting Vector. Electromagnetic (EM) Energy Density. Physical Concept of Electromagnetic Field Energy Density (12 Lectures)

Unit II

12 Contact Hours

EM Wave Propagation in Unbounded Media: EM Wave Propagation in Unbounded Media, Plane EM waves through vacuum and isotropic dielectric medium, transverse nature of plane EM waves, refractive index and dielectric constant, wave impedance. Propagation through conducting media, relaxation time, skin depth.

EM Wave in Bounded Media: Boundary conditions at a plane interface between two media. Reflection & Refraction of plane waves at plane interface between two dielectric media, Laws of

Reflection & Refraction, Brewster's law, Total internal reflection,

Unit III

12 Contact Hours

Polarization of Electromagnetic Waves: Description of Linear, Circular and Elliptical Polarization, Fresnel's Formula. Uniaxial and Biaxial Crystals. Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction. Nicol Prism. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates.

Unit IV

10 Contact Hours

Rotatory Polarization: Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation, Calculation of angle of rotation, Experimental verification of Fresnel's theory, Specific rotation nad Laurent's half-shade polarimeter. (5 Lectures)

Text books:

1. Introduction to Electrodynamics, D.J. Griffiths, 3rd Ed., 1998, Benjamin Cummings.

Reference book

1. Elements of Electromagnetics, M.N.O. Sadiku, 2001, Oxford University Press.

- 2. Introduction to Electromagnetic Theory, T.L. Chow, 2006, Jones & Bartlett Learning
- 3. Fundamentals of Electromagnetics, M.A.W. Miah, 1982, Tata McGraw Hill
- 4. Electromagnetic field Theory, R.S. Kshetrimayun, 2012, Cengage Learning
- 5. Engineering Electromagnetic, Willian H. Hayt, 8th Edition, 2012, McGraw Hill.
- 6. Electromagnetic Field Theory for Engineers & Physicists, G. Lehner, 2010, Springer

Additional Books for Reference

1. Electromagnetic Fields & Waves, P.Lorrain & D.Corson, 1970, W.H.Freeman & Co.

2. Electromagnetics, J.A. Edminster, Schaum Series, 2006, Tata McGraw Hill.

3. Electromagnetic field theory fundamentals, B. Guru and H. Hiziroglu, 2004, Cambridge University Press

Open Education Resources

- https://www.khanacademy.org/science/electrical-engineering/ee-electromagnetic-fields/ee-magneticcircuits/v/maxwell-s-equations-introduction
- https://phet.colorado.edu/en/simulation/em-waves
- https://phet.colorado.edu/en/simulation/polarization
- <u>https://www.physicsclassroom.com/class/refrn</u>
- https://www.youtube.com/watch?v=LF3qn9uTdkc
- https://nptel.ac.in/courses/115/105/115105068/
- <u>https://www.youtube.com/watch?v=az9x-wrObYg</u>

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme and Course Mapping

.Course Code & Title	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
SCPH306 Electromagn etic Theory	CO1	3	3	2	1	2	2	2	1	1	2	3	1	2	2
	CO2	2	3	2	2	3	3	3	2	1	2	3	3	3	3
	CO3	2	3	3	2	3	3	3	3	2	2	3	2	3	3
	CO4	2	3	2	3	3	3	3	3	2	2	3	3	3	3

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Maxwell equations
Local	-
Regional	-
National	-
Global	Fundamentals of electromagnetic waves, Maxwell's equations and electromagnetic energy density associated with electromagnetic waves.
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment & sustainability	-
Unit ii	EM wave propagation
Local	-

Regional	-
National	_
Global	Understanding of the factors governing the propagation of EM waves in
	unbounded and bounded media
Employability	-
Entrepreneurship	_
Skill development	_
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Polarization of electromagnetic waves
Local	-
Regional	-
National	-
Global	Knowledge of polarization of electromagnetic waves
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Wave guides
Local	-
Regional	-
National	-
Global	Insight about wave guides and optical fibres
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
	Promoting high-quality research
Poe/4 th IR	Use of software and simulations

Teaching Plan

Week	Topics	Reference Books/OER	Teaching Learning Method
------	--------	---------------------	--------------------------------

1	Review of Maxwell's equations. Displacement Current	D.J. Griffiths; M.N.O. Sadiku; <u>https://www.khanacademy.org/science/electrical-</u> engineering/ee-electromagnetic-fields/ee-magnetic- circuits/v/maxwell-s-equations-introduction	Lectures; Interactive discussion
2	Vector and Scalar Potentials. Gauge Transformations: Lorentz and Coulomb Gauge	D.J. Griffiths; T.L. Chow, https://www.khanacademy.org/science/electrical- engineering/ee-electromagnetic-fields/ee-magnetic- circuits/v/maxwell-s-equations-introduction	Lectures; Problem-solving sessions
3	Boundary Conditions at Interface between Different Media	M.A.W. Miah; https://phet.colorado.edu/en/simulation/em-waves	Lectures; Demonstrations
4	Wave Equations. Plane Waves in Dielectric Media	D.J. Griffiths; M.N.O. Sadiku, https://phet.colorado.edu/en/simulation/em-waves	Lectures; Problem-solving sessions
5	Poynting Theorem and Poynting Vector	D.J. Griffiths; G. Lehner, https://nptel.ac.in/courses/115/105/115105068/	Lectures; Interactive discussion
6	Electromagnetic (EM) Energy Density	D.J. Griffiths; Willian H. Hayt; https://nptel.ac.in/courses/115/105/115105068/	Lectures; Demonstrations
7	EM Wave Propagation in Unbounded Media, Plane EM waves through vacuum and isotropic dielectric medium	M.N.O. Sadiku; T.L. Chow, https://www.physicsclassroom.com/class/refrn	Lectures; Problem-solving sessions

8	Propagation through conducting media, relaxation time, skin depth	M.A.W. Miah; R.S. Kshetrimayun, https://www.physicsclassroom.com/class/refrn	Lectures; Demonstrations
9	Reflection & Refraction of plane waves at plane interface between two dielectric media, Laws of Reflection & Refraction, Brewster's law, Total internal reflection	M.A.W. Miah; Willian H. Hayt; https://www.physicsclassroom.com/class/refrn	Lectures; Interactive discussion
10	Description of Linear, Circular and Elliptical Polarization, Fresnel's Formula	D.J. Griffiths; G. Lehner; <u>University of Colorado Boulder</u> - <u>Physics Department</u>	Lectures; Demonstrations
11	Light Propagation in Uniaxial Crystal. Double Refraction. Polarization by Double Refraction	D.J. Griffiths; M.N.O. Sadiku, https://www.youtube.com/watch?v=az9x-wrObYg	Lectures; Problem-solving sessions
12	Nicol Prism. Production & detection of Plane, Circularly and Elliptically Polarized Light. Phase Retardation Plates: Quarter-Wave and Half-Wave Plates	D.J. Griffiths; G. Lehner, https://www.youtube.com/watch?v=az9x-wrObYg	Lectures; Demonstrations
13	Optical Rotation. Biot's Laws for Rotatory Polarization. Fresnel's Theory of optical rotation	D.J. Griffiths; T.L. Chow; https://www.youtube.com/watch?v=LF3qn9uTdkc	Lectures; Problem-solving sessions

14 Calculation of angle rotation, Experimen verification of Fresne theory, Specific rotat and Laurent's has shade polarimeter
--

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes (CLO)	Teaching Learning Activity (TLA)	Assessment Task Methods (ATM)
Ι	Understand the basic principles of Maxwell's equations and displacement current. Apply vector and scalar potentials in various contexts. Analyze different media using the boundary conditions. Calculate electromagnetic field energy density based on given conditions.	Lectures, Problem-solving sessions, Demonstrations, Group discussions.	Presentations and class discussions. • Assignments and class tests. • Student presentations. • Mid- term examinations. • Practical and viva-voce examinations. • End- term examinations.
П	CLO1: Understand the principles of electromagnetic wave propagation in unbounded media. Analyze the behavior of electromagnetic waves in vacuum and isotropic dielectric medium.	Lectures, Problem-solving sessions, Demonstrations, Group discussions.	
Ш	CLO1: Identify different types of electromagnetic wave polarization. Understand and analyze light propagation in uniaxial crystals.	Lectures, Problem-solving sessions, Demonstrations, Group discussions.	
IV	Understand the principles of rotatory polarization and optical rotation. Calculate the angle of rotation based on Fresnel's theory.	Lectures, Problem-solving sessions, Demonstrations, Group discussions.	

					-	
UNS108	Characterization	Techniques	of I	L T	Р	C

	Nanomaterials							
Version 1.0		4	0	0	4			
Total Contact Hours	54	54						
Pre-requisites/Exposure	Basic knowledge in Materials Science, Physic	cs, C	Chei	mist	ry,			
	Chemical Engineering, and Nanotechnology.							
Co-requisites								

Course Description

This course is an introduction to the principles of instrumental techniques for characterization of nanomaterials. This course aims at teaching the students underlying principles of analytical techniques that are commonly used for the evaluation of structural, morphological, optical, thermal, mechanical and electrical properties of nanomaterials.

Course Outcomes

- CO1: Identify and describe the various types of characterization techniques, including microscopy, spectroscopy, X-ray techniques, and methods for measuring mechanical, magnetic, electrical, and thermal properties of materials.
- CO2: Apply the knowledge learned to determine the appropriate characterization technique for a given material or situation.
- CO3: Synthesize the knowledge acquired from different characterization techniques to form a comprehensive understanding of the material's properties.
- CO4: Design an experiment utilizing one or more characterization techniques based on the material's properties and the information required.

Unit 1.

15 Contact Hours

Basics of Characterization Techniques: Types of characterization techniques, Basics, Importance. Structural and compositional characterization tools, Difference between Microscopy and Spectroscopy, Optical Microscopy, Atomic Force Microscopy, Scanning Electron Microscopy, Transmission electron Microscopy, Scanning Tunneling Microscopy.

<u>Unit</u> 2.

12 Contact Hours

12 Contact Hours

20 Contact Hours

Spectroscopy: UV visible spectroscopy, Infrared Spectroscopy and Fourier Transform Infrared Spectroscopy, Raman Spectroscopy, Photoluminescence (PL), Photoelectron Spectroscopy (X-Ray Photoelectron Spectroscopy, Auger Electron Spectroscopy & Ultra Violet Photoelectron Spectroscopy).

Unit 3.

X-ray techniques: X-ray diffraction (XRD) technique, particle size determination using XRD, Applications of XRD, Electron diffraction and its application, neutron diffraction and its applications, X-Ray Photoelectron Spectroscopy, Auger Electron Spectroscopy.

Unit 4.

Mechanical, Magnetic, electrical and Thermal properties measurement: Nanoindentation principles- elastic and plastic deformation -mechanical properties of materials in small dimensions, Hardness testing of thin films and coatings, Vibration Sample Magnetometer, Impedance Spectroscopy- PPMS, - Measurement of Magnetic and electrical properties of Nanomaterials, Dielectric constant measurement, Differential Thermal Analysis (DTA), Differential scanning calorimetry (DSC).

Reference Books

- 1. Elements of X-ray Diffraction B. D. Cullity, Addison Wesley, 1977
- 2. Transmission Electron Microscopy: A Textbook for Materials Science David B Williams, C Barry Carter, (1996) Plenum Press, New York
- Impedance Spectroscopy: Theory, Experiment, and Applications,
 E. Barsoukov and J. Ross Macdonald (Editors) (2000) John Wiley & Sons (P)Ltd.
- 4. Fundamentals of Fourier Transform Infrared Spectroscopy, Brian C Smith, (1995) CRC Press
- 5. Nanoindentation, By Anthony C Fischercripps, Anthony C., Springer science and Bussiness media publications, 2011
- 6. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, Elsevier, 2009

Open Education Resources

- https://ocw.mit.edu/courses/materials-science-and-engineering/3-14-materials-laboratory-forengineers-spring-2009/
- https://nanohub.org/
- <u>https://phys.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/</u> Supplemental_Modules_(Physical_and_Theoretical_Chemistry)/Spectroscopy
- https://www.msm.cam.ac.uk/teaching/part-ii-courses/characterisation-materials
- https://www.merlot.org/merlot/viewMaterial.htm?id=637562
- https://www.khanacademy.org/science/physics/light-waves
- http://demonstrations.wolfram.com/XRayDiffractionOfCrystals/
- https://ncl.cancer.gov/resources/assay-cascade-protocols
- https://openstax.org/details/books/college-physics-ap-courses
- https://www.coursera.org/learn/material-behavior

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme and Course Mapping

Course Code & Title	Course Outco me	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PS O1	PS O2	PS O3	PS O4
UNS108 Characterisa	CO1	3	2	2	1	2	1	1	2	1	1	3	2	2	2

tion techniques of nanomateria	CO2	2	3	2	2	3	2	2	3	1	1	3	3	3	3
1s	CO3	2	2	3	2	3	2	2	3	1	1	3	3	3	3
	CO4	2	2	2	3	3	3	2	3	2	2	3	3	3	3

Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Relevant Course Content
-
-
-
Microscopy techniques like optical microscopy and electron microscopy
practical skills in materials characterization using Microscopic techniques.
innovation in materials technology.
materials science and characterization.
-
-
responsible materials development in alignment with sustainability goals.
Complies with the national education framework and curriculum guidelines.
integration of advanced materials science into the evolving technological landscape.
py:
Relevant Course Content
-
-
-
Spectroscopy techniques like UV-VIS spectroscopy, FTIR spectroscopy
practical skills in materials characterization using Spectroscopic techniques.
innovation in materials technology.
materials science and characterization.
-
-

Unit 1: Basics of Characterization Techniques

Environment Sustainability	&	
SDG		responsible materials development in alignment with sustainability goals.
Nep 2020		Complies with the national education framework and curriculum guidelines.
Poe/4th IR		integration of advanced materials science into the evolving technological landscape.

Unit 3: X-ray techniques

Indicator	Relevant Course Content
Local	-
Regional	-
National	-
Global	X-Ray diffraction
Employability	practical skills in materials characterization using X-Ray techniques.
Entrepreneurship	innovation in materials technology.
Skill Development	materials science and characterization.
Professional Ethics	-
Gender	-
Human Values	
Environment & Sustainability	
SDG	responsible materials development in alignment with sustainability goals.
Nep 2020	Complies with the national education framework and curriculum guidelines.
Poe/4th IR	integration of advanced materials science into the evolving technological landscape.
Unit 4: Mechanica	l, Magnetic, electrical and Thermal properties measurement:
Indicator	Relevant Course Content
Local	-
Regional	-
National	-
Global	Properties measurement using UV-VIS spectroscopy, TGA, DSC, VSM etc.
Employability	practical skills in materials property measurement.
Entrepreneurship	innovation in materials technology.
Skill Development	materials science and characterization.
Professional Ethics	-
Gender	-
Ochuci	

Teaching Plan:

Human Values Environment

Sustainability

Poe/4th IR

SDG Nep 2020 &

	Торіс	Reference Books/OER	Teaching/Learning
Wee	k		Method

responsible materials development in alignment with sustainability goals.

Complies with the national education framework and curriculum guidelines.

integration of advanced materials science into the evolving technological landscape.

1	Introduction to Characterization Techniques	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, <u>https://ocw.mit.edu/courses/materials-science-and-engineering/3-14-materials-laboratory-for-engineers-spring-2009/</u>	Lectures
2	Types of characterization techniques, Basics, Importance	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, https://nanohub.org/	Lectures and group discussions
3	Structural and compositional characterization tools	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, <u>https://www.msm.cam.ac.uk/teaching/part-ii-courses/characterisation-materials</u>	Lectures and lab exercises
4	Microscopy Techniques: Optical, Atomic Force, Scanning Electron	Transmission Electron Microscopy: A Textbook for Materials Science, <u>https://ncl.cancer.gov/resources/assay-cascade-protocols</u>	Lectures and lab demonstrations
5	Transmission electron Microscopy and Scanning Tunneling Microscopy	Transmission Electron Microscopy: A Textbook for Materials Science, https://nanohub.org/	Lectures and hands- on lab sessions
6	Introduction to Spectroscopy: UV visible spectroscopy	Fundamentals of Fourier Transform Infrared Spectroscopy, https://phys.libretexts.org/Bookshelves/Physical and Th eoretical_Chemistry_Textbook_Maps/Supplemental_Mo dules_(Physical_and_Theoretical_Chemistry)/Spectrosco py	Lectures and lab exercises
7	Infrared Spectroscopy and Fourier Transform Infrared Spectroscopy	Fundamentals of Fourier Transform Infrared Spectroscopy, https://phys.libretexts.org/Bookshelves/Physical_and_Th eoretical_Chemistry_Textbook_Maps/Supplemental_Mo dules_(Physical_and_Theoretical_Chemistry)/Spectrosco py	Lectures and lab exercises
8	Raman Spectroscopy, Photoluminescence (PL), Photoelectron Spectroscopy	Impedance Spectroscopy: Theory, Experiment, and Applications, https://www.khanacademy.org/science/physics/light- waves	Lectures and hands- on lab sessions

9	Introduction to X-ray techniques: X-ray diffraction (XRD)	Elements of X-ray Diffraction, http://demonstrations.wolfram.com/XRayDiffractionOfC rystals/	Lectures and lab exercises
10	Particle size determination using XRD, Applications of XRD	Elements of X-ray Diffraction, http://demonstrations.wolfram.com/XRayDiffractionOfC rystals/	Lectures and group discussions
11	Electron diffraction and its application, neutron diffraction and its applications	Elements of X-ray Diffraction, http://demonstrations.wolfram.com/XRayDiffractionOfC rystals/	Lectures and hands- on lab sessions
12	Introduction to Measurement of Mechanical, Magnetic, electrical and Thermal	Nanoindentation, https://www.coursera.org/learn/material-behavior	Lectures and lab demonstrations
13	Nanoindentation principles, Hardness testing, Vibration Sample Magnetometer, Impedance Spectroscopy	Nanoindentation, <u>Coursera – Material Behavior</u> <u>https://www.coursera.org/learn/material-behavior</u>	Lectures and hands- on lab sessions
14	Measurement of Magnetic and electrical properties of Nanomaterials, Dielectric constant measurement, Differential Thermal	Nanoindentation, <u>Coursera – Material Behavio</u> <u>https://www.coursera.org/learn/material-behavior</u>	Lectures and lab exercises

Facilitating the Achievement of Course Learning Outcomes

Unit	Learning Outcome	Teaching/Learning Activity	Assessment Task
1.	Students will understand the types, basics,	Lecture on types of characterization	Presentations and class

	and importance of characterization techniques, and distinguish between microscopy and spectroscopy.	techniques, labs for microscopy techniques.	discussions. • Assignments and class tests. • Student
2.	Students will understand and apply the principles of various spectroscopy techniques (UV, IR, Raman, PL, and Photoelectron Spectroscopy).	Lecture on spectroscopy principles, labs for different spectroscopy techniques.	presentations. • Mid- term examinations. • Practical and viva-voce examinations. • End- term examinations.
3.	Students will understand and apply X-ray diffraction techniques, including particle size determination and applications of XRD, electron diffraction, and neutron diffraction.	Lecture on X-ray techniques, labs on XRD, electron diffraction, and neutron diffraction.	
4.	Students will comprehend the principles of measurement techniques for mechanical, magnetic, electrical and thermal properties.	Lecture on principles of property measurement, labs for hardness testing, impedance spectroscopy, dielectric constant measurement, DTA, and DSC.	

UNS109	Characterization Techniques of	L	Т	Р	С
	Nanomaterials-I Lab				
Version 1.0		0	0	2	1
Total Contact Hours	30				
Pre-requisites/Exposure	Basic knowledge in Materials Science	e,	Ph	ysic	cs,
	Chemistry, Chemical Engineeri	ng,		a	nd
	Nanotechnology.				
Co-requisites					

Course Description

This course is an introduction to the principles of instrumental techniques for characterization of nanomaterials. This course aims at teaching the students underlying principles of analytical techniques that are commonly used for the evaluation of structural, morphological, optical, thermal, mechanical and electrical properties of nanomaterials.

Course Outcomes

CO1: Evaluate and interpret structural and morphological properties of nanomaterials using X-Ray Diffraction and SEM/EDX/TEM techniques, demonstrating an ability to link these properties to material composition and structure.

CO2: Perform and interpret composition and thermal analysis of nanomaterials using FTIR spectroscopy and TGA/DSC, applying this understanding to infer material stability and transformations under thermal stress.

CO3: Apply UV-VIS spectrophotometry to study the optical properties of nanomaterials, focusing on determining the bandgap, and comprehend its impact on material performance in various applications.

CO4: Conduct and analyze mechanical property tests on nanomaterials through nanoindentation/hardness tests, using these outcomes to comprehend the relationship between material structure, composition, and mechanical performance.

List of Experiments

1. To analyse the structural properties such as crystallite size and lattice parameters using X-Ray Diffraction technique.

2. To study the morphological properties of nanomaterials using SEM/EDX/TEM.

3. To perform composition analysis using FTIR spectroscopy.

4. To Study thermal properties of nanomaterials using TGA/DSC.

5. To study the optical properties such as bandgap of a nanomaterial using UV-VIS spectrophotometer.

6. To study the mechanical properties of nanomaterials using nanoindentation/hardness test.

Reference Books

1. Elements of X-ray Diffraction B. D. Cullity, Addison Wesley, 1977

2. Transmission Electron Microscopy: A Textbook for Materials Science

David B Williams, C Barry Carter, (1996) Plenum Press, New York

3. Impedance Spectroscopy: Theory, Experiment, and Applications,

E. Barsoukov and J. Ross Macdonald (Editors) (2000) John Wiley & Sons (P)Ltd.

4. Fundamentals of Fourier Transform Infrared Spectroscopy, Brian C Smith, (1995) CRC

Press

5. Nanoindentation, By Anthony C Fischercripps, Anthony C., Springer science and

Bussiness media publications, 2011

6. Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, Daniel L.

Schodek, Paulo Ferreira, Michael F. Ashby, Elsevier, 2009

Open Education Resources

- <u>https://www.youtube.com/watch?v=IeH0lhn7uHY&pp=ygV3VG8gYW5hbHlzZSB0aGUgc3R</u> ydWN0dXJhbCBwcm9wZXJ0aWVzIHN1Y2ggYXMgY3J5c3RhbGxpdGUgc2l6ZSBhbmQgb GF0dGljZSBwYXJhbWV0ZXJzIHVzaW5nIFgtUmF5IERpZmZyYWN0aW9uIHR1Y2huaXF1 ZS4%3D
- <u>https://www.youtube.com/watch?v=ye-fdS4WS-</u> <u>Y&pp=ygVJVG8gc3R1ZHkgdGhlIG1vcnBob2xvZ2ljYWwgcHJvcGVydGllcyBvZiBuYW5vb</u> <u>WF0ZXJpYWxzIHVzaW5nIFNFTS9FRFgvVEVNLg%3D%3D</u>
- <u>https://www.youtube.com/watch?v=QsQ-</u> <u>LYGt0fc&pp=ygVJVG8gc3R1ZHkgdGhlIG1vcnBob2xvZ2ljYWwgcHJvcGVydGllcyBvZiBu</u> YW5vbWF0ZXJpYWxzIHVzaW5nIFNFTS9FRFgvVEVNLg%3D%3D
- <u>https://www.youtube.com/watch?v=eOPS2AAUwOU&pp=ygVAVG8gc3R1ZHkgdGhlIG1vcn</u> Bob2xvZ2ljYWwgcHJvcGVydGllcyBvZiBuYW5vbWF0ZXJpYWxzIHVzaW5nIEVEWA%3 D%3D
- <u>https://www.youtube.com/watch?v=XBsiH9_R4hQ&pp=ygU4VG8gcGVyZm9ybSBjb21wb3N</u> pdGlvbiBhbmFseXNpcyB1c2luZyBGVElSIHNwZWN0cm9zY29weS4%3D
- <u>https://www.youtube.com/watch?v=nZ0d9za2YCs&pp=ygVhVG8gc3R1ZHkgdGhlIG9wdGljY</u> <u>WwgcHJvcGVydGllcyBzdWNoIGFzIGJhbmRnYXAgb2YgYSBuYW5vbWF0ZXJpYWwgdX</u> <u>NpbmcgVVYtVklTIHNwZWN0cm9waG90b21ldGVyLg%3D%3D</u>
- <u>https://www.youtube.com/watch?v=gjqG-</u> voAems&pp=ygVYVG8gc3R1ZHkgdGhlIG11Y2hhbmljYWwgcHJvcGVydGllcyBvZiBuYW5 vbWF0ZXJpYWxzIHVzaW5nIG5hbm9pbmRlbnRhdGlvbi9oYXJkbmVzcyB0ZXN0Lg%3D% 3D

Assessment & Evaluation

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme and Course Mapping

Course Code& Title	CO/P O, PSO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
UNS10 9	CO1	2	2	1	2	2	3	2	3	1	1	3	2	2	2
Charac terizati on	CO2	2	3	2	2	2	3	2	3	1	1	3	2	3	2

Techni ques of Nano	CO3	2	3	2	2	2	3	2	3	1	1	3	2	3	3
materi als-I Lab	CO4	2	2	1	2	3	3	2	3	1	1	3	2	3	3

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Indicator	Relevant Course Content
Local	-
Regional	-
National	-
Global	Characterisation techniques I.e. XRD, FTIR, SEM, TEM
Employability	practical skills in materials characterization
Entrepreneurship	innovation in materials technology.
Skill Development	materials science and characterization.
Professional Ethics	-
Gender	-
Human Values	
Environment & Sustainability	
SDG	responsible materials development in alignment with sustainability goals.
Nep 2020	Complies with the national education framework and curriculum guidelines.
Poe/4th IR	integration of advanced materials science into the evolving technological landscape.

Teaching Plan:

Week	Topics	Reference Books/Open Educational Resources	Teaching- Learning Method
1	Introduction to X-Ray	ElementsofX-rayDiffractionB.D.Cullityhttps://www.youtube.com/watch?v=IeH0lhn7uHY&pp=ygV3VG8gYW5hbHlzZSB0aGUgc3RydWN0dXJhbCBwcm9wZXJ0aWVzIHN1Y2ggYXMgY3J5c3RhbGxpdGUgc2l6ZSBhbmQgbGF0dGljZSBwYXJhbWV0ZXJzIHVz	Lecture, Group

	Diffraction	aW5nIFgtUmF5IERpZmZyYWN0aW9uIHR1Y2huaXF1ZS4%3D	Discussion
2	In-depth understanding of X-Ray Diffraction	Elements of X-ray Diffraction B. D. Cullity, https://www.youtube.com/watch?v=IeH0lhn7uHY&pp=ygV3VG8gYW5hb HlzZSB0aGUgc3RydWN0dXJhbCBwcm9wZXJ0aWVzIHN1Y2ggYXMgY 3J5c3RhbGxpdGUgc2l6ZSBhbmQgbGF0dGljZSBwYXJhbWV0ZXJzIHVz aW5nIFgtUmF5IERpZmZyYWN0aW9uIHR1Y2huaXF1ZS4%3D	Lecture, Practical Session
3	SEM/EDX/TE M: Basic Concepts	Transmission Electron Microscopy: A Textbook for Materials Science, David B Williams, C Barry Carter, <u>https://www.youtube.com/watch?v=ye-fdS4WS-</u> <u>Y&pp=ygVJVG8gc3R1ZHkgdGhlIG1vcnBob2xvZ2ljYWwgcHJvcGVydGll</u> <u>cyBvZiBuYW5vbWF0ZXJpYWxzIHVzaW5nIFNFTS9FRFgvVEVNLg%3</u> <u>D%3D</u> <u>https://www.youtube.com/watch?v=QsQ-</u> <u>LYGt0fc&pp=ygVJVG8gc3R1ZHkgdGhlIG1vcnBob2xvZ2ljYWwgcHJvcG</u> <u>VydGllcyBvZiBuYW5vbWF0ZXJpYWxzIHVzaW5nIFNFTS9FRFgvVEV</u>	Lecture, Practical Session
4	Advanced study of SEM/EDX/TE M	<u>NLg%3D%3D</u> <u>https://www.youtube.com/watch?v=eOPS2AAUwOU&pp=ygVAVG8gc3R</u> <u>1ZHkgdGhIIG1vcnBob2xvZ2ljYWwgcHJvcGVydGllcyBvZiBuYW5vbWF</u> <u>0ZXJpYWxzIHVzaW5nIEVEWA%3D%3D</u> Transmission Electron Microscopy: A Textbook for Materials Science, David B Williams, C Barry Carter <u>https://www.youtube.com/watch?v=ye-fdS4WS-</u> <u>Y&pp=ygVJVG8gc3R1ZHkgdGhlIG1vcnBob2xvZ2ljYWwgcHJvcGVydGll</u> <u>cyBvZiBuYW5vbWF0ZXJpYWxzIHVzaW5nIFNFTS9FRFgvVEVNLg%3</u> <u>D%3D</u>	Lecture, Practical Session
		https://www.youtube.com/watch?v=QsQ- LYGt0fc&pp=ygVJVG8gc3R1ZHkgdGhlIG1vcnBob2xvZ2ljYWwgcHJvcG VydGllcyBvZiBuYW5vbWF0ZXJpYWxzIHVzaW5nIFNFTS9FRFgvVEV NLg%3D%3D https://www.youtube.com/watch?v=eOPS2AAUwOU&pp=ygVAVG8gc3R 1ZHkgdGhlIG1vcnBob2xvZ2ljYWwgcHJvcGVydGllcyBvZiBuYW5vbWF 0ZXJpYWxzIHVzaW5nIEVEWA%3D%3D	
5	Introduction to FTIR Spectroscopy	Fundamentals of Fourier Transform Infrared Spectroscopy, Brian C Smith, https://www.youtube.com/watch?v=XBsiH9_R4hQ&pp=ygU4VG8gcGVyZ m9ybSBjb21wb3NpdGlvbiBhbmFseXNpcyB1c2luZyBGVEISIHNwZWN0c m9zY29weS4%3D	Lecture, Group Discussion
6	In-depth understanding of FTIR Spectroscopy	Fundamentals of Fourier Transform Infrared Spectroscopy, Brian C Smith, https://www.youtube.com/watch?v=XBsiH9_R4hQ&pp=ygU4VG8gcGVyZ m9ybSBjb21wb3NpdGlvbiBhbmFseXNpcyB1c2luZyBGVEISIHNwZWN0c m9zY29weS4%3D	Lecture, Practical Session

r			
7	Midterm Review and Examination	All References	Review, Examination
8	TGA/DSC: Basic Concepts	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, <u>https://www.youtube.com/watch?v=bENSsj4rfJc&pp=ygU7VG8gU3R1ZHk</u> <u>gdGhlcm1hbCBwcm9wZXJ0aWVzIG9mIG5hbm9tYXRlcmlhbHMgdXNpb</u> <u>mcgVEdBL0RTQy4%3D</u>	Lecture, Group Discussion
9	Advanced study of TGA/DSC	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, https://www.youtube.com/watch?v=bENSsj4rfJc&pp=ygU7VG8gU3R1ZHk gdGhlcm1hbCBwcm9wZXJ0aWVzIG9mIG5hbm9tYXRlcmlhbHMgdXNpb mcgVEdBL0RTQy4%3D	Lecture, Practical Session
10	Introduction to UV-VIS Spectrophotome try	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, https://www.youtube.com/watch?v=nZ0d9za2YCs&pp=ygVhVG8gc3R1ZH kgdGhlIG9wdGljYWwgcHJvcGVydGllcyBzdWNoIGFzIGJhbmRnYXAgb2 YgYSBuYW5vbWF0ZXJpYWwgdXNpbmcgVVYtVklTIHNwZWN0cm9w aG90b21ldGVyLg%3D%3D	Lecture, Group Discussion
11	In-depth understanding of UV-VIS Spectrophotome try	Nanomaterials, Nanotechnologies and Design: An Introduction for Engineers, Daniel L. Schodek, Paulo Ferreira, Michael F. Ashby, <u>https://www.youtube.com/watch?v=nZ0d9za2YCs&pp=ygVhVG8gc3R1ZH</u> <u>kgdGhlIG9wdGljYWwgcHJvcGVydGllcyBzdWNoIGFzIGJhbmRnYXAgb2</u> <u>YgYSBuYW5vbWF0ZXJpYWwgdXNpbmcgVVYtVklTIHNwZWN0cm9w</u> <u>aG90b21ldGVyLg%3D%3D</u>	Lecture, Practical Session
12	Introduction to Nanoindentation /hardness test	Nanoindentation, By Anthony C Fischercripps, https://www.youtube.com/watch?v=gjqG- voAems&pp=ygVYVG8gc3R1ZHkgdGhlIG11Y2hhbmljYWwgcHJvcGVyd GllcyBvZiBuYW5vbWF0ZXJpYWxzIHVzaW5nIG5hbm9pbmRlbnRhdGlv bi9oYXJkbmVzcyB0ZXN0Lg%3D%3D	Lecture, Group Discussion

13	In-depth understanding of Nanoindentation /hardness test	Nanoindentation, By Anthony C Fischercripps, <u>https://www.youtube.com/watch?v=gjqG-</u> <u>voAems&pp=ygVYVG8gc3R1ZHkgdGhlIG11Y2hhbmljYWwgcHJvcGVyd</u> <u>GllcyBvZiBuYW5vbWF0ZXJpYWxzIHVzaW5nIG5hbm9pbmRlbnRhdGlv</u> <u>bi9oYXJkbmVzcyB0ZXN0Lg%3D%3D</u>	Lecture, Practical Session
14	Review of all Topics and Final Examination Preparation	All References	Review, Examination Preparation

Facilitating the Achievement of Course Learning Outcomes

Learning Outcomes	Teaching & Learning Activities	Assessment Methods
Evaluate and interpret structural properties of nanomaterials, with an understanding of crystallite size and lattice parameters.	Lectures on the principles and applications of X-ray diffraction, followed by laboratory experiments.	Presentations and class discussions. • Assignments and class tests. • Student presentations. •
Perform and interpret composition and morphological analysis of nanomaterials, linking these properties to material composition and structure.	Lectures on the theory and practical aspects of SEM/EDX/TEM and FTIR, with subsequent practical sessions in the lab.	Mid-term examinations. • Practical and viva- voce examinations. • End-term examinations.
Analyze the thermal and optical properties of nanomaterials, understanding material stability under thermal stress and the concept of bandgap.	Lectures on the principles and uses of TGA/DSC and UV-VIS Spectrophotometry, followed by lab experiments.	
Assess the mechanical properties of nanomaterials, understanding the link between material structure, composition, and mechanical performance.	Lectures on the principles and applications of nanoindentation/hardness tests, followed by lab experiments.	

SEC018	Electrical circuits and network skills	L	Т	Р	С
Version 1.0		2	0	0	2
Total Contact Hours	27				
Pre-requisites/Exposure	Basics of Electronics				
Co-requisites					

Course Description

The aim of this course is to recall the basic concepts of resistance, current, voltage in electricity and applying them in solving electrical circuits. Next, recalling the semiconductor devices like diodes. Further, this course aims in moving to advanced stages by applying the learnt knowledge in understanding clipper and clamper circuits to modify the input waveform in various ways.

Course Outcomes

CO1: Apply Ohm's law and Kirchhoff's laws to analyze basic electrical circuits.

CO2: Analyze DC and AC sourced electrical circuits, including inductance, capacitance, and impedance.

CO3: Utilize diodes in various applications, including voltage regulation, clipping, and clamping circuits.

UNIT-I

Basic Electricity Principles: Voltage, Current, Resistance, and Power. Ohm's law. Series, parallel, and series-parallel combinations. AC Electricity and DC Electricity. Familiarization with mustimeter, voltmeter and ammeter. Kirchhoff's voltage and current laws. Voltage divider and current divider circuits.

UNIT-II

Understanding Electrical Circuits: Main electric circuit elements and their combination. Rules to analyse DC sourced electrical circuits. Current and voltage drop across the DC circuit elements. Inductance, capacitance, and impedance. Rules to analyse AC sourced electrical circuits. Real, imaginary and complex power components of AC source.

UNIT-III

10 Lectures

10 Lectures

7 Lectures

Diodes: Mathematical modelling of diode, forward and reverse biasing in diodes, Zener diode and its application in voltage regulation. Application of diodes in clipper and clamper circuits.

Electrical Wiring: Different types of conductors and cables. Basics of wiring-Star and delta connection. Relationship between phase voltages, currents and line voltages, currents respectively. Conversion of star to delta network and delta to star network.

Text Books

TB1: A text book in Electrical Technology - B L Theraja - S Chand & Co. TB2. A text book of Electrical Technology - A K Theraja.

Reference Books/Materials

RB1: Performance and design of AC machines - M G Say ELBS Edn.

Open Educational Resources (OER)

https://nptel.ac.in/courses/108104139 https://nptel.ac.in/courses/108102097 https://www.youtube.com/watch?v=EdUAecpYVWQ&list=PLwjK_iyK4LLBj2yTYPYKFKdF6kIg0cc P2 https://www.youtube.com/watch?v=GHhcyH99inE

Assessment & Evaluation

Components	Assignment	Mid Term	Attendance	End Term
		Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	POI		P02	PO3	P04	PO5	P06	P07	PO8	P09	PO10	PS01	PSO2	
SEC018/	CO1	3	3		2	2	2	1	1	2	1	1	-	-	_
Electrical circuits	CO2	3	3		2	2	2	1	2	2	1	1	-	-	-
and network skills	CO3	1	1		1	3	3	2	1	1	2	2	-	-	Ι

Key: 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped.

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Basic electricity principles and circuits
Local	-
Regional	-
National	-
Global	Demonstration of the utility of voltmeter, ammeter and multimeter in
	measurement of voltage, current, power and impedance of any circuit
Employability	Designing of voltmeter, ammeter and multimeter
Entrepreneurship	
Skill development	Working of voltmeter, ammeter and multimeter
Professional ethics	Professional competence and due care
Gender	-

Human values	
Environment &	
sustainability	
Unit ii	Electrical drawing and symbols
Local	
Regional	
National	
Global	- Familiarization with the working of electrical machines such as transformer,
	generator and motors etc.
Employability	Troubleshooting any fault in an electrical circuit using multimeter and other tools
Entrepreneurship	-
Skill development	Troubleshooting any fault in an electrical circuit using multimeter and other tools
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Solid-state devices
Local	-
Regional	-
National	-
Global	Familiarization with the working of electrical machines such as transformer, generator and motors etc.
Employability	Troubleshooting any fault in an electrical circuit using multimeter and other tools
Entrepreneurship	-
Skill development	Troubleshooting any fault in an electrical circuit using multimeter and other tools
Professional ethics	Professional competence and due care
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Electrical wiring
Local	-
Regional	-
National	-
Global	Design and trouble shoots the electrical circuits and networks
Employability	Knowledge of electrical wiring, connectors and cables,
Entrepreneurship	-
Skill development	Knowledge of electrical wiring, connectors and cables,
Professional ethics	Professional competence and due care
Gender	-
Human values	_
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry, innovation and infrastructure (9)
Nep 2020	Promoting high-quality research
1	Vocational education

Teaching Plan:

Week	Topic/Unit No.	Textbook / Reference Book / OER	Teaching-Learning Method
1	UNIT-I: Basic Electricity Principles	TB1	Lecture, Discussions, Examples
2	UNIT-I (Contd.): Ohm's Law, Series-Parallel Combinations	TB1	Lecture, Practical/Lab
3	UNIT-I (Contd.): AC and DC Electricity	https://nptel.ac.in /courses/108104 139 https://nptel.ac.in /courses/108102 097	Lecture, Practical/Lab
4	UNIT-I (Contd.): Kirchhoff's Laws	TB2	Lecture, Discussions, Practical/Lab
5-6	UNIT-I (Contd.): Voltage and Current Divider Circuits	TB2	Lecture, Practical/Lab
7	UNIT-II: Understanding Electrical Circuits	https://nptel.ac.in /courses/108102 097	Lecture, Discussions, Examples
8	UNIT-II (Contd.): Rules to Analyze DC Sourced Circuits	TB2	Lecture, Practical/Lab
9	UNIT-II (Contd.): Inductance, Capacitance, and Impedance	TB2	Lecture, Discussions, Practical/Lab
10	UNIT-II (Contd.): Rules to Analyze AC Sourced Circuits	TB2	Lecture, Practical/Lab

11	UNIT-II (Contd.): Real, Imaginary and Complex Power	TB2	Lecture, Practical/Lab
12	UNIT-III: Diodes - Mathematical Modelling and Biasing	https://www.yout ube.com/watch? v=EdUAecpYV WQ&list=PLwj K_iyK4LLBj2y TYPYKFKdF6k Ig0ccP2	Lecture, Discussions, Practical/Lab
13	UNIT-III (Contd.): Application of Diodes in Circuits	TB2	Lecture, Practical/Lab
14	UNIT-III (Contd.): Electrical Wiring - Types of Conductors and Cables	https://www.yout ube.com/watch? v=GHhcyH99in E	Lecture, Discussions, Practical/Lab

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes (CLOs)	Teaching-Learning Activities	Assessment Task Methods
UNIT-	Apply Ohm's law and Kirchhoff's laws to analyze basic electrical circuits.	Lectures, discussions, and examples on Ohm's law, Kirchhoff's laws, and circuit analysis.	Presentations and class discussions. Assignments and class tests Student presentations. Mid-term
	Analyze DC and AC electrical circuits with inductance, capacitance, and impedance.	Hands-on experiments with electrical circuits and components.	examinations. Quizzes End-term
	Utilize diodes in various applications, including voltage regulation, clipping, and clamping circuits.	Simulation exercises and practical demonstrations of diode circuits.	examinations
UNIT- II	Understand the main electric circuit elements and their combinations.	Lectures on circuit elements and their behavior in circuits.	
	Analyze DC sourced electrical circuits, including current and voltage drop across circuit elements.	Circuit analysis exercises and solving problems related to DC circuits.	

	Analyze AC sourced electrical	Practical experiments on AC circuits
	circuits, including real, imaginary,	and power calculations.
	and complex power components.	
UNIT-	Understand the mathematical	Theoretical discussions and
III	modeling and forward/reverse	derivations of diode characteristics.
	biasing in diodes.	
	Apply Zener diode for voltage	Practical applications of Zener
	regulation and diodes in	diodes in voltage regulation.
	clipper/clamper circuits.	
	Understand different types of	Demonstrations and discussions on
	conductors, cables, and basics of	various types of conductors and
	electrical wiring.	wiring connections.
	Understand the relationship	Interactive sessions on star and
	between phase voltages, currents,	delta connections in electrical
	and line voltages, currents.	systems.

S.No.	COURSE CODE	COURSE TITLE	С
1	SCPH401	Nuclear Physics	4
2	SCPH403	Classical dynamics	4
3	SCCH401	Research Methodology	4
4	UNS110	Synthesis of Nanomaterials-II	4
5	UNS111	Synthesis of Nanomaterials-II lab	1
Total	17	Total	

Semester VII

SCPH401	Nuclear Physics	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	56				
Pre-requisites/Exposure	Basic Modern Physics				
Co-requisites					

Course Objectives

- 1. To familiarize students with the constituents of the nucleus and their intrinsic properties, such as mass, radii, charge density, binding energy, average binding energy, and their variations with mass number.
- 2. To provide a comprehensive understanding of the main features of the binding energy versus mass number curve and the N/A plot.
- 3. To introduce the concepts of angular momentum, parity, magnetic moment, and electric moments in nuclei.
- 4. To explore nuclear excited states and their characteristics.

Course Outcomes

On completion of this course, the students will be able to

- CO1. Understand and Apply Nuclear Models.
- CO 2. Describe Radioactivity Decay Processes.
- CO 3. Analyze Nuclear Reactions
- CO 4. Understand Interaction of Nuclear Radiation with Matter.

Catalog Description

This course is intended to cover the concepts of nucleus, its constituents, properties and interactions of its constituents. It discusses the radioactive decay, elementary particles and various conservation laws governing the interaction of elementary particles. This course also makes a foundation for advanced courses on Nuclear and Particle physics and Nuclear Radiations.

Course Content

Unit I:

14 Contact Hours

General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.

Nuclear Models: Liquid drop model approach, semi empirical mass formula and significance of its various terms, condition of nuclear stability, two nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of shell model.

Radioactivity decay: (a) Alpha decay: basics of α -decay processes, theory of α -emission, Gamow factor, Geiger Nuttall law, α -decay spectroscopy. (b) β -decay: energy kinematics for β - decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.

Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross section, Concept of compound and direct Reaction, resonance reaction,.

Unit III:

14 Contact Hours

Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.

Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of photo-multiplier tube (PMT). Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.

Unit IV:

1 Contact Hours

Particle Accelerators: Accelerator facility available in India: Van-de Graaff Generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.

Particle physics: Particle interactions; basic features, types of particles and its families. Symmetries and Conservation Laws: energy and momentum, angular momentum, parity, baryon number, Lepton number, Isospin, Strangeness and charm, concept of quarkmodel, color quantum number and gluons.

Suggested Text Books:

1. Nuclear Physics by S N Ghoshal, First edition, S. Chand Publication, 2010.

Advanced Readings [RB]:

1Introductory nuclear Physics by Kenneth S. Krane (Wiley India Pvt. Ltd., 2008).

2 Concepts of nuclear physics by Bernard L. Cohen. (Tata Mcgraw Hill, 1998).

- 3 Introduction to the physics of nuclei & particles, R.A. Dunlap. (Thomson Asia, 2004).
- 4 Introduction to High Energy Physics, D.H. Perkins, Cambridge Univ. Press
- 5 Introduction to Elementary Particles, D. Griffith, John Wiley & Sons

6 Quarks and Leptons, F. Halzen and A.D. Martin, Wiley India, New Delhi

7 Basic ideas and concepts in Nuclear Physics - An Introductory Approach by K. Heyde (IOP Institute of Physics Publishing, 2004).

8 Radiation detection and measurement, G.F. Knoll (John Wiley & Sons, 2000).

9 Physics and Engineering of Radiation Detection, Syed Naeem Ahmed (Academic Press, Elsevier, 2007).

10 Theoretical Nuclear Physics, J.M. Blatt & V.F.Weisskopf (Dover Pub.Inc., 1991)

Open Educational Resources (OER)

https://www.youtube.com/watch?v=MnPJgXyXHW8 https://www.youtube.com/watch?v=RTIThUySwUE https://www.youtube.com/watch?v=Rd0CJje59bE

https://www2.lbl.gov/abc/wallchart/chapters/03/2.html

https://www.iaea.org/newscenter/news/cyclotrons-what-are-they-and-where-can-you-find-them#:~:text=A%20cyclotron%20is%20a%20type,are%20bombarded%20by%20these%20protons. https://www.physik.uni-hamburg.de/en/iexp/gruppe-schleper/lehre/detectors-methods-ss18/documents/detectors-and-analysis-methods-ss-18-notes-04.pdf

Assessment & Evaluation

Components	Quiz/Presentati	Mid Term	Attendance	End Term
	on / Assignment	Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Objectives (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1: Understand and Apply Nuclear Models		2	1	1	1	2	1	1	1	1	2	1	1	1
CO2: Describe Radioactivity Decay Processes		2	1	1	1	2	1	1	1	1	2	1	1	1
CO3: Analyze Nuclear Reactions	2	2	1	1	0	2	1	1	1	1	2	1	0	0
CO4: Interaction of Nuclear Radiation		2	0	0	1	2	1	1	1	1	2	0	1	1

1= "lightly mapped," 2= "moderately mapped," and 3="strongly mapped,"

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Nuclei models
Local	-
Regional	-
National	-
Global	Understanding of constituents of nucleus, their intrinsic properties and
	nuclear models.
Employability	-
Entrepreneurship	-
Skill development	-

Professional ethics	-
Gender	
Human values	-
Environment &	-
sustainability	
Unit ii	Nuclear reactions
Local	-
Regional	-
National	-
Global	Understanding the processes involved in radioactive decay and types of nuclear reactions
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Interaction of nuclear radiation with matter radioactivity decay
Local	
Regional	-
National	
Global	Knowledge of interaction of nuclear radiation with matter, detectors and
	accelerators for nuclear radiations
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Particle physics give heading of the unit here (if applicable)
Local	-
Regional	-
National	-
Global	Insight about various types of elementary particles and their interactions
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8), industry,
	innovation and infrastructure (9)
Nep 2020	Towards a more holistic and multidisciplinary education
1	Promoting high-quality research
Poe/4 th IR	Use of software and simulations

Teaching Plan

Week ly Teac hing Plan	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]- Chapter/ Page No./ Open Education Resources [OER]	Teaching- Learning Method
Week 1	General Properties of Nuclei: Constituents of nucleus and their Intrinsic properties, quantitative facts about mass, radii, charge density (matter density), binding energy, average binding energy and its variation with mass number, main features of binding energy versus mass number curve, N/A plot, angular momentum, parity, magnetic moment, electric moments, nuclear excites states.	TB1/CH2 20.5 Energy of Nuclear Reactions & Nuclear Binding Energy General	Class test/presen tation/Assi gnments/Q uizzer/ Viva/Proje ct Class test/presen tation/Assi gnments/Q
Week 2	Nuclear Models: Liquid drop model approach, semi-empirical mass formula and significance of its various terms, condition of nuclear stability, two-nucleon separation energies, Fermi gas model (degenerate fermion gas, nuclear symmetry potential in Fermi gas), evidence for nuclear shell structure, nuclear magic numbers, basic assumption of the shell model.	TB1/CH9 https://www.y outube.com/wa tch?v=RTIThU ySwUE https://www.y outube.com/wa tch?v=Rd0CJje 59bE	uizzer/ Viva/Proje ct
Week 3	Radioactivity decay: (a) Alpha decay: basics of α -decay processes, theory of α -emission, Gamow factor, Geiger- Nuttall law, α -decay spectroscopy. (b) β -decay: energy kinematics for β -decay, positron emission, electron capture, neutrino hypothesis. (c) Gamma decay: Gamma rays emission & kinematics, internal conversion.	TB1/CH3-6 https://www2.1 bl.gov/abc/wal lchart/chapters/ 03/2.html	
Week 4	Nuclear Reactions: Types of Reactions, Conservation Laws, kinematics of reactions, Q-value, reaction rate, reaction cross- section, Concept of compound and direct Reaction, resonance	TB1/CH10-11	

	reaction.	
Week 5	Interaction of Nuclear Radiation with matter: Energy loss due to ionization (Bethe-Block formula), energy loss of electrons, Cerenkov radiation. Gamma ray interaction through matter, photoelectric effect, Compton scattering, pair production, neutron interaction with matter.	
Week 6	Detector for Nuclear Radiations: Gas detectors: estimation of electric field, mobility of particle, for ionization chamber and GM Counter. Basic principle of Scintillation Detectors and construction of a photo-multiplier tube (PMT).	TB1/CH7 https://www.p hysik.uni- hamburg.de/en /iexp/gruppe- schleper/lehre/ detectors- methods- ss18/document s/detectors- and-analysis- methods-ss-18- notes-04.pdf
Week 7	Detector for Nuclear Radiations (Continued): Semiconductor Detectors (Si and Ge) for charge particle and photon detection (concept of charge carrier and mobility), neutron detector.	TB1/CH7
Week 8	Particle Accelerators: Accelerator facility available in India: Van-de-Graaff Generator (Tandem accelerator), Linear accelerator, Cyclotron, Synchrotrons.	TB1/CH12 https://www.ia ea.org/newsce nter/news/cycl otrons-what- are-they-and- where-can- you-find- them#:~:text= A%20cyclotro n%20is%20a% 20type,are%20
Week 9	Particle physics: Particle interactions; basic features, types of particles and their families. Symmetries and Conservation Laws: energy and momentum, angular momentum,	bombarded%2 0by%20these %20protons TB1/CH18

Week 10	parity, baryon number, Lepton number, Isospin, Strangeness, and charm, concept of the quark model, color quantum number, and gluons.	TB1/CH18	Class test/presen tation/Assi
Week 11	Particle physics (Continued): Fundamental forces and their carriers, elementary particle interactions and decays.	TB1/CH18	gnments/Q uizzer/ Viva/Proje
Week 12	Particle physics (Continued): Particle accelerators and colliders, high-energy particle physics experiments.	TB1/CH18	ct
Week 13	Particle physics (Continued): Beyond the Standard Model (BSM) physics,.	TB1/CH18	-
Week 14	dark matter, and cosmology, Revision and Review of Key Concepts	TB1/CH19	

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Gain proficiency in comprehending and applying nuclear models.	with illustrations. (ii) Students to be encouraged to deliver	discussions. • Assignments and class tests. • Student presentations.
2	Develop the ability to describe various radioactivity decay processes.	lecture on the relevant topic. (iii) Students be given homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v)	 Mid-term examinations. Practical and viva-voce examinations. End-term examinations.
3	Acquire the skill to analyze different types of nuclear reactions.	Students to be encouraged to apply concepts to real world problems.	
4	Understand the interaction between nuclear radiation and matter.		

SCPH403	Classical Dynamics	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	52				
Pre-requisites/Exposure	Basic Mathematical Physics				
Co-requisites					

Course Objectives

1. To familiarize the student with the e drawbacks of Newtonian approach and necessity of new approaches to solve problems involving the classical mechanical systems.

2. To understand the mechanics of small amplitude oscillations and normal modes of oscillations.

3. To acquire knowledge of special theory of relativity and understand two-body decay of an unstable particle.

4. To understand the concepts of fluid dynamics in terms of classical mechanics.

Course Outcomes

On completion of this course, the students will be able to

CO1. Define and understand basic mechanical concepts involving the dynamic motion of classical mechanical systems.

CO2. Solve the problems related to potential energy, oscillations and normal mode of oscillations of classical mechanical systems.

CO3. Solve problems of special theory of relativity using the Lagrangian and Hamiltonian formulations of classical mechanics

CO4. Apply classical dynamics to the problems in fluid dynamics.

Catalog Description

This course is intended to familiarize the students about the drawbacks of Newtonian mechanics and solve the problems using classical mechanics. It discusses the motion of a mechanical system using Lagrange-Hamilton formalism. It also presents the classical formalism of special theory of relativity and fluid dynamics.

Course Content

UNIT I

Hours

Classical Mechanics of Point Particles: Review of Newtonian Mechanics; Applicationto the motion of a charge particle in external electric and magnetic fields- motion in uniform electric field, magnetic field- gyroradius and gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates and velocities, Hamilton's principle, Lagrangian and the Euler-Lagrange equations, one-dimensional examples of the Euler-Lagrange equations- one dimensional Simple Harmonic Oscillations and falling body in uniform gravity; applications to simple systems such as coupled oscillators

UNIT II

Hours

Hamiltonian formulation: Canonical momenta & Hamiltonian. Hamilton's equations of motion. Hamiltonian for a harmonic oscillator, solution of Hamilton's equation for Simple Harmonic

Oscillations; particle in a central force field- conservation of angular momentum and energy. Small Amplitude Oscillations: Minima of potential energy and points of stable equilibrium, expansion

16 Contact

14 Contact

of the potential energy around a minimum, small amplitude oscillations about the minimum, normal modes of oscillations example of N identical masses connected in a linear fashion to (N - 1) - identical springs.

UNIT III Hours

Special Theory of **Relativity:** Postulates of Special Theory Relativity. of Lorentz Transformations. Minkowski space. The invariant interval, light world cone and lines. Spacetime diagrams. Time -dilation, length contraction and twin paradox. Four-vectors: spacelike. time-like and light-like. Four-velocity and acceleration. Metric and alternating tensors. Fourmomentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of four-force. Conservation of four-momentum. Relativistic kinematics. Application to two-body decay of an unstable particle. (33 Lectures)

UNIT IV Hours

10 Contact

12 Contact

Fluid Dynamics: Density and pressure P in a fluid, an element of fluid and its velocity, continuity equation and mass conservation, stream-lined motion, laminar flow, Poiseuille's equation for flow of a liquid through a pipe, Navier-Stokes equation, qualitative description of turbulence, Reynolds number.

Suggested Text Books

- 1. Classical Mechanics, H.Goldstein, C.P. Poole, J.L. Safko, 3rd Edn. 2002, Pearson Education.
- 2. Classical Mechanics, J.C. Upadhyaya, 2nd Edn. 2005, Himalaya Publishing House

Advanced Readings

- 1. Mechanics, L. D. Landau and E. M. Lifshitz, 1976, Pergamon.
- 2. Classical Electrodynamics, J.D. Jackson, 3rd Edn., 1998, Wiley.
- 3. Classical Mechanics, P.S. Joag, N.C. Rana, 1st Edn., McGraw Hall.
- 4. Classical Mechanics, R. Douglas Gregory, 2015, Cambridge University Press.
- 5. Classical Mechanics: An introduction, Dieter Strauch, 2009, Springer.
- 6 Solved Problems in classical Mechanics, O.L. Delange and J. Pierrus, 2010, Oxford Press
- 7. Mechanics, D.S.Mathur, 2012, S.Chand

Open Educational Resources (OER)

https://en.wikipedia.org/wiki/Spacetime_diagram https://en.wikipedia.org/wiki/Four-force https://www.researchgate.net/profile/Mohamed_Mourad_Lafifi/post/In_a_robust_control_system_desig n_using_mixedsensitivity_approach_the_sensitivity_is_constant_at_0_db_isnt_is_supposed_to_be_highpass_filter/attachment/59d63ab079197b8077997c75/AS:407064284286977@1474063096225/downloa

d/NotesCh12+Coupled+Oscillators+and+Normal+Modes.pdf

https://mathsci.kaist.ac.kr/~nipl/am621/lecturenotes/Euler-Lagrange_equation.pdf

Assessment & Evaluation

Components	Quiz/Presentati on /		Attendance	End Term
	Assignment	Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Objectives (CO)	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1	2	2	1	1	1	3	1	1	1	1	2	1	1	1
CO2	2	2	1	1	1	3	1	1	1	1	2	1	1	1
CO3	2	2	1	1	1	3	1	1	1	1	2	1	1	1
CO4:	2	2	1	1	1	3	1	1	1	1	2	1	1	1

(Note: The numbers 1, 2, and 3 represent "lightly mapped," "moderately mapped," and "strongly mapped," respectively. Higher numbers indicate a stronger mapping between the Course Objectives and the Program Outcomes/Program Specific Outcomes.)

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Classical mechanics of point particles
Local	-
Regional	-
National	-
Global	Problems involving the classical mechanical systems
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit ii	Small amplitude oscillations
Local	-
Regional	-
National	-
Global	Problems related to potential energy, oscillations
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iii	Special theory of relativity
Local	-

Regional	-
National	-
Global	Knowledge of special theory of relativity
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
Unit iv	Fluid dynamics
Local	-
Regional	-
National	-
Global	Concepts of fluid dynamics in terms of classical mechanics
Employability	-
Entrepreneurship	-
Skill development	-
Professional ethics	-
Gender	-
Human values	-
Environment &	-
sustainability	
SDG	Quality education (4), decent work and economic growth (8)
Nep 2020	Towards a more holistic and multidisciplinary education
	Promoting high-quality research
Poe/4 th IR	Projects and group discussion

Teaching Plan

Weekly Teaching Plan	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]- Chapter/ Page No./ Open Education Resources [OER]	Teaching- Learning Method
Week1	Review of Newtonian Mechanics; Motion of a charge particle in electric and magnetic fields - gyroradius and gyrofrequency, motion in crossed electric and magnetic fields. Generalized coordinates and velocities, Hamilton's principle, Lagrangian and the Euler-Lagrange equations.	TB1/CH2 TB2/CH2	Class test/presentation /Assignments/Q uizzer/ Viva/Project
Week 2	One-dimensional examples of the Euler-Lagrange equations - Simple Harmonic Oscillations and falling body in uniform gravity. Applications to simple systems such as coupled oscillators.	TB2/CH2 https://math sci.kaist.ac. kr/~nipl/am 621/lecturen otes/Euler-	Class test/presentation /Assignments/Q uizzer/ Viva/Project

		1_	
		Lagrange_e	
		quation.pdf	
Week3	Hamiltonian formulation: Canonical momenta &	TB1/CH8	
	Hamiltonian. Hamilton's equations of motion. Hamiltonian		
	for a harmonic oscillator, solution of Hamilton's equation	TB2/CH3	
	for Simple Harmonic Oscillations.		
Week 4	Particle in a central force field - conservation of angular	TB2/CH9	
	momentum and energy. Small Amplitude Oscillations:		
	Minima of potential energy and points of stable equilibrium,	https://www	
	expansion of the potential energy around a minimum, small	<u>.researchgat</u>	
	amplitude oscillations about the minimum, normal modes of	<u>e.net/profile</u>	
	oscillations.	/Mohamed_	
		Mourad_La	
		<u>fifi/post/In_</u>	
		<u>a_robust_co</u>	
		ntrol syste	
		<u>m_design_u</u>	
		sing_mixed-	
		sensitivity_	
		approach th	
		<u>e_sensitivit</u>	
		<u>y is consta</u>	
		nt_at_0_db_	
		<u>isnt_is_supp</u>	
		osed_to_be	
		<u>high-</u>	
		pass_filter/a	
		ttachment/5	
		<u>9d63ab0791</u>	
		<u>97b8077997</u>	
		c75/AS:407	
		0642842869	
		77@147406	
		3096225/do	
		wnload/Not	
		esCh12+Co	
		upled+Oscil	
		lators+and+	
		Normal+M	
		odes.pdf	
Week 5	Example of N identical masses connected in a linear fashion	TB2/CH9	
	to $(N-1)$ - identical springs. Review of concepts covered so		
	far.		
Week 6	Special Theory of Relativity: Postulates of Special Theory	TB2/CH12	
	of Relativity, Lorentz Transformations, Minkowski space,		
	the invariant interval, light cone, and world lines.		
Week 7	Spacetime diagrams, Time-dilation, length contraction, and	TB2/CH12	
,, con /	twin paradox. Four-vectors: space-like, time-like, and light-	TB1/CH7	
	like. Four-velocity and acceleration. Metric and alternating	https://en.wi	
	tensors.	kipedia.org/	
		wiki/Spaceti	
		-	
		me_diagram	

Week 8	Four-momentum and energy-momentum relation. Doppler effect from a four-vector perspective. Concept of four-force.	TB2/CH14
	Conservation of four-momentum. Relativistic kinematics.	https://en.wi
		kipedia.org/
		wiki/Four-
		force
Week 9	Application to two-body decay of an unstable particle. Fluid	TB2/CH14
	Dynamics: Density and pressure P in a fluid,	
Week 10	. an element of fluid and its velocity, , Poiseuille's equation	RB7/CH15
	for the flow of a liquid through a pipe.	
Week 11	continuity equation and mass conservation, streamline	RB7/CH15
	motion, laminar flow, Review and Recap of all topics	
Week 12	Navier-Stokes equation, qualitative description of	RB7/CH15
	turbulence, Reynolds number.	
Week 13	Practice problems and problem-solving session.	

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Define and comprehend fundamental mechanical concepts related to the dynamic motion of classical mechanical systems.	(i) Each topic to be explained with illustrations. (ii) Students to be encouraged to deliver lecture on the relevant topic. (iii) Students be given	 class tests. • Student presentations. Mid-term examinations. • Practical and viva-voce
2	Apply problem-solving skills to address issues concerning potential energy, oscillations, and normal modes of classical systems.	homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v) Students to be encouraged to apply concepts to real world problems.	examinations. • End-term examinations.
3	Utilize Lagrangian and Hamiltonian formulations of classical mechanics to solve problems involving special theory of relativity.		
4	Apply principles of classical dynamics to solve problems within the realm of fluid dynamics.		

SCCH401	Research Methodology	L	Т	Р	C
Version 1.0		4	0	0	4
Total Contact Hours	52				
Pre-requisites/Exposure	Basics of Nanomaterial				
Co-requisites					

COURSE OBJECTIVES

The course will enable the student-teacher to:

- Master literature survey techniques for efficient chemical information retrieval.
- Develop proficiency in ethical scientific communication and proper citation practices.
- Acquire knowledge of safe chemical handling and disposal, adhering to ethical guidelines.
- Gain expertise in accurate data analysis, utilizing statistical tools and chemometrics.
- Foster research aptitude through understanding the scientific method and experimental design in chemistry.

COURSE OUTCOMES (CO)

On completion of this course, the student-teacher will be able to:

CO1: Learn to find and use various types of chemical information sources.

CO2: Digital Proficiency: Utilize digital tools for accessing and staying updated on chemistry research.

CO3: Scientific Writing: Develop skills for writing research papers with integrity and precision.

CO4: Safety and Ethics: Understand and practice safe chemical handling and ethical conduct.

CO5: Data Analysis: Gain expertise in analyzing chemical data using statistical techniques.

CO6: Research Competence: Build a solid foundation for conducting meaningful chemistry research.

CATALOG DESCRIPTION

This course introduces students to essential research methodologies in chemistry. It covers effective information sourcing from diverse print and digital resources, emphasizing literature survey techniques, accessing e-journals, and utilizing databases. Scientific writing skills are honed through proper citation practices, methods description, and ethical considerations. Chemical safety protocols, hazardous material handling, and ethical waste disposal are comprehensively addressed. Statistical data analysis techniques, including correlation, regression, and ANOVA, are taught for sound research interpretation. The course cultivates research aptitude, emphasizing the scientific method, experimental design, and critical analysis in the context of chemistry.

COURSE CONTENT

UNIT I: Literature Survey:

Print: Sources of information: Primary, secondary, tertiary sources; Journals: Journal abbreviations, abstracts, current titles, reviews, monographs, dictionaries, text-books, current contents, Introduction to Chemical Abstracts and Beilstein, Subject Index, Substance Index, Author Index, Formula Index, and other Indices with examples. Digital: Web resources, E-journals, Journal access, TOC alerts, Hot articles, Citation index, Impact factor, H-index, E-consortium, UGC infonet, E-books, Internet discussion groups and communities, Blogs, Preprint servers, Search engines, Scirus, Google Scholar, ChemIndustry, Wiki- Databases, ChemSpider, Science Direct, SciFinder, Scopus.

UNIT II

Information Technology and Library Resources: The Internet and World Wide Web. Internet resources for chemistry. Finding and citing published information.

Writing scientific papers – justification for scientific contributions, bibliography, description of methods, conclusions, the need for illustration, style, publications of scientific work. Writing ethics. Avoiding plagiarism.

UNIT III

Chemical Safety and Ethical Handling of Chemicals:

Safe working procedure and protective environment, protective apparel, emergency procedure and first aid, laboratory ventilation. Safe storage and use of hazardous chemicals, procedure for working with substances that pose hazards, flammable or explosive hazards, procedures for working with gases at pressures above or below atmospheric – safe storage and disposal of waste chemicals, recovery, recycling and reuse of laboratory chemicals, procedure for laboratory disposal of explosives, identification, verification and segregation of laboratory waste, disposal of chemicals in the sanitary sewer system, incineration and transportation of hazardous chemicals.

UNIT IV

Data Analysis

The Investigative Approach: Making and Recording Measurements. SI Units and their use. Scientific method and design of experiments. Analysis and Presentation of Data: Descriptive statistics. Choosing and using statistical tests. Chemometrics. Analysis of variance (ANOVA), Correlation and regression, Curve fitting, fitting of linear

equations, simple linear cases, weighted linear case, analysis of residuals, General polynomial fitting, linearizing transformations, exponential function fit, r and its abuse. Basic aspects of multiple linear regression analysis

Suggested Text Books

"Chemical Information for Chemists: A Primer" by Judith N. Currano and Dana L. Roth

"Scientific Writing and Communication: Papers, Proposals, and Presentations" by Angelika H. Hofmann

"Chemistry Safety for Students and Practitioners: Laboratory Safety for Chemistry Students" by Robert H. Hill Jr. and David C. Finster

"Basic Statistics for the Behavioral Sciences" by Gary W. Heiman

"Experimental Design for the Life Sciences" by Graeme D. Ruxton and Nick Colegrave

Open Educational Resources (OER)

ChemCollective - Provides virtual labs and scenarios for teaching chemistry concepts: ChemCollective

ChemGuide - A collection of online chemistry resources including tutorials and quizzes: ChemGuide

MIT OpenCourseWare: Principles of Chemical Science - Offers free course materials, including lecture notes and assignments: MIT OCW - Principles of Chemical Science

ChemCollective Virtual Labs - Interactive virtual labs for various chemistry topics: ChemCollective Virtual Labs

Project Gutenberg - Provides free access to a wide range of classic scientific literature: Project Gutenberg

Merlot Chemistry Portal - A collection of chemistry resources from various universities and institutions: Merlot Chemistry

Chem1 Virtual Textbook - An extensive collection of chemistry tutorials and explanations: Chem1 Virtual Textbook

ChemCollective Concept Tests - Interactive concept tests for assessing understanding of chemistry concepts: ChemCollective Concept Tests

OpenStax Chemistry - A comprehensive open-source chemistry textbook: OpenStax Chemistry

Khan Academy Chemistry - Offers free video lessons and practice exercises on various chemistry topics: Khan Academy Chemistry

Assessment & Evaluation

Components	Assignment	Mid Term Examination	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Code and Title	Course Outcome	P01	P02	P03	P04	P05	P06	P07	P08	P09	P010	PS01	PSO2	PSO3	PSO4
	CO1	2	2	1	3	1	2	2	1	1	1	3	2	1	2
.H401	CO2	1	2	1	2	1	2	2	2	1	1	2	3	1	2
y / SCC	CO3	2	2	2	2	2	3	1	2	2	2	2	1	1	2
Research Methodology / SCCH401	CO4	2	1	1	3	3	2	1	1	2	2	2	2	1	2
ch Metl	CO5	2	2	1	2	1	2	1	1	1	1	1	2	1	2
Resear	CO6	1	3	1	2	1	2	2	3	2	3	3	2	1	3

Teaching Plan:

Weekly Teaching Plan	Topic/Unit No.	Textbook[TB]/ReferenceBook[RB]-Chapter/PageNo./OpenEducationResources[OER]	Teaching- Learning Method
1-2	Unit I - Literature Survey	TB-Chapters 1-2	Lectures, Discussions
3-4	Unit I - Literature Survey (cont.)	TB-Chapters 3-4	Lectures, Case Studies
5-6	Unit II - Information Technology	TB-Chapters 5-6	Lectures, Group Discussions
7-8	Unit II - Information Technology (cont.)	TB-Chapters 7-8	Lectures, Case Studies
9-10	Unit III - Chemical Safety	TB-Chapters 9-10	Lectures, Guest Lecture
11-12	Unit III - Chemical Safety (cont.)	TB-Chapters 11-12	Lectures, Practical Demonstrations
13-14	Unit IV - Data Analysis	TB-Chapters 13-14	Lectures, Field Trip

Facilitating the Achievement of Course Learning Outcomes

Unit	Course Learning Outcomes	Teaching Learning	Assessment Task				
No.		Activity	Methods				
1	Literature Survey: Students will learn to navigate various chemical literature sources, from print to digital, distinguishing	with illustrations. (ii) Students to be encouraged to discover	class discussions. • Assignments and				

	1	Steelewitz 1	
	between primary, secondary, and	Students be given	presentations. • Mid-
	tertiary sources. They will	homework/assignments. (iv)	term examinations.
	effectively utilize databases,	Discuss and solve the	Practical and viva-
	grasp journal abbreviations, and	theoretical and practical	voce examinations. •
	understand abstracts for staying	problems in the class. (v)	End-term
	updated with current research.	Students to be encouraged to	examinations.
		apply concepts to real world	
2	Unit II - Information Technology	problems.	
	and Library Resources: Through		
	this unit, students will develop		
	digital proficiency, accessing e-		
	journals, web resources, and tools		
	for scientific research. They will		
	master ethical scientific writing,		
	ensuring clear communication		
	through proper citations, both		
	orally and in writing.		
	Unit III - Chemical Safety and		
3	Ethical Handling: This unit will		
5	equip students with essential		
	chemical safety knowledge,		
	enabling them to work safely in		
	labs. They will also gain an		
	8		
	considerations related to		
	chemical research and		
	responsible waste disposal.		
4	Unit IV - Data Analysis: Students		
	will acquire expertise in accurate		
	measurement, statistics, and data		
	analysis relevant to chemistry.		
	They will learn to interpret		
	results effectively, supporting		
	evidence-based conclusions and		
	contributing to scientific		
	discussions.		

UNS110	Synthesis of Nanomaterials-II	Т	Р	С	
Version 1.0		4	0	0	4
Total Contact Hours	52				
Pre-requisites/Exposure	Basics of Nanomaterial				
Co-requisites					

Course Objectives:

- 1. Understand the fundamental principles of thin film growth and the various techniques used in the fabrication of two-dimensional nanostructures.
- 2. Explore the unique properties of special nanomaterials, such as carbon fullerenes, nanotubes, mesoporous structures, and organic-inorganic hybrids.
- 3. Familiarize students with the fabrication processes and characterization techniques used in creating nanostructures through physical techniques like lithography and nanomanipulation.
- 4. Gain insight into the diverse applications of nanomaterials, including molecular electronics, nanoelectronics, catalysis, photonic crystals, and biological applications.

Course Outcomes:

- **CO1** Students will be able to explain the principles of film growth and differentiate between various deposition techniques, such as PVD, CVD, ALD, and sol-gel films.
- **CO2** Students will comprehend the properties and applications of carbon fullerenes, nanotubes, ordered and random mesoporous structures, and other special nanomaterials.
- **CO3** Students will acquire practical skills in lithography and nanomanipulation techniques like STM, AFM, and soft lithography for nanostructure fabrication.
- **CO4** Students will be able to identify and analyze real-world applications of nanomaterials in areas such as molecular electronics, nanoelectronics, catalysis, and photonic devices.

CATALOG DESCRIPTION

This course introduces the fundamentals of nanostructures, including their synthesis, characterization, and applications. Topics covered include thin films, carbon nanotubes, mesoporous structures, and quantum devices. A background in physics, chemistry, or materials science is recommended. Upon completion of this course, students will be able to: Understand the basic principles of nanostructure synthesis and characterization, apply these principles to the design and fabrication of nanostructures.

Course Content

UNIT-I

Two-Dimensional Nanostructures: Thin Films

Introduction; Fundamentals of Film Growth; Vacuum Science; Physical Vapor Deposition (PVD): (Evaporation, Molecular beam epitaxy (MBE), Sputtering, Comparison of evaporation and sputtering); Chemical Vapor Deposition (CVD):(Typical chemical reactions,Reaction kinetics,Transport phenomena,5CVD methods,Diamond films by CVD);

Atomic Layer Deposition (ALD); Superlattices; Self-Assembly: (Monolayers of organosilicon or alkylsilane derivatives, Monolayers of alkanethiols and sulfides, Monolayers of carboxylic acids, amines

14 Lectures

alkylsilane derivativesand alcohols); Langmuir-Blodgett Films; Electrochemical Deposition; Sol-Gel Films

UNIT-II

Special Nanomaterials

Introduction; Carbon Fullerenes and Nanotubes (Carbon fullerenes, Fullerene-derived crystals, Carbon nanotubes); Ordered mesoporous structures; Random mesoporous structures; Crystalline microporous materials: zeolites: Metal-oxide structures: Metal-polymer structures: Oxide-polymer structures: Organic-Inorganic Hybrids :(Class I hybrids, Class II hybrids);Intercalation Compounds; Nanocomposites and Nanograined Materials;

UNIT-III

Nanostructures Fabricated by Physical Techniques

Introduction;Lithography:(Photolithography,Phase-shifting photolithography, Electron beam lithography,X-ray lithography,Focused ion beam (FIB) lithography,Neutral atomic beam lithography); Nanomanipulation and Nanolithography : (Scanning tunneling microscopy (STM), Atomic force microscopy Near-field scanning optical (AFM) microscopy (NSOM) ,Nanomanipulation,Nanolithography); Soft Lithography: (Microcontact printing, Molding, Nanoimprint, Dip-pen nanolithography); Assembly of Nanoparticles and Nanowires: (Capillary forces, Dispersion interactions, Shear force assisted assembly, Electric-field assisted assembly, Covalently linked assembly, Gravitational field assisted assembly, Template-assisted assembly); Other Methods for Microfabrication

UNIT IV

Applications of Nanomaterials

Introduction; Molecular Electronics and Nanoelectronics; Nanobots; Biological Applications of Nanoparticles; Catalysis by Gold Nanoparticles; Band Gap Engineered Quantum Devices: (Quantum well devices, Quantum dot devices); Nanomechanics; Carbon Nanotube Emitters; Photoelectrochemical Cells; Photonic Crystals and Plasmon Waveguides: (Photonic crystals, Plasmon waveguides)

Suggested Text Books

1 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G, Cao, Imperial College Press (2003).

Advanced Readings:

Nanoscale Science and Technology, Robert W. Kelsall, Ian W. Hamley and Mark Geoghegan, 1. John Wiley & Sons Ltd (2005).

Nanomaterials and Nanochemistry, C. Brechignac, P. Houdy, M. Lahmani, Springer-Verlag Berlin 2. Heidelberg (2007).

Introduction to Nanoscale Science and Technology, Massimiliano Di Ventra, Stephane Evoy and 3 James R. Heflin, Jr., Kluwer Academic Publishers (2004)

4. Springer handbook of nanotechnology, Bharat Bhushan (ed.) Spinger-Verlag Berlin Heidelberg New York (2004),

Open Educational Resources (OER)

https://news.mit.edu/2015/explained-chemical-vapor-deposition-0619

14 Lectures

14 Lectures

10 Lectures

https://www.nanowerk.com/nanotechnology/introduction/introduction to nanotechnology_22.php https://www.youtube.com/watch?v=aOVU2aqgqe8 https://www.youtube.com/watch?v=dw9IvpilfUo https://www.youtube.com/watch?v=1WGEMYDLsNs https://en.wikipedia.org/wiki/Nanocomposite#:~:text=Nanocomposite% 20is% 20a% 20multiphase% 20soli d,that% 20make% 20up% 20the% 20material.

Assessment & Evaluation

Components	Quiz/Presentati	Mid Term	Attendance	End Term
	on / Assignment	Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course (CO)	Objectives	PO1	PO2	PO3	PO4	PO5	PO6	P07	PO8	PO9	PO10	PSO1	PSO2	PSO3	PSO4
CO1		2	2	1	1	1	1	1	1	1	1	2	1	1	1
CO2		1	2	1	2	2	1	1	1	1	1	2	2	1	1
CO3		1	1	3	3	1	3	1	3	1	1	1	3	1	1
CO4		1	2	1	3	1	1	1	1	1	1	1	3	1	1

(Note: The numbers 1, 2, and 3 represent "lightly mapped," "moderately mapped," and "strongly mapped," respectively. Higher numbers indicate a stronger mapping between the Course Objectives and the Program Outcomes/Program Specific Outcomes.)

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit i	Two-Dimensional Nanostructures: Thin Films
Local	Enhancing local industries with advanced thin film technologies.
Regional	Contributing to regional growth in electronics, surface treatments, and material science research.
National	Supporting national industries in electronics, advanced materials, and research & development.
Global	Aligning with global electronics & communications market trends and

	technological advancements.
Employability	Preparing students for careers as thin film technologists, surface engineers,
2	or researchers in the field.
Entrepreneurship	Enabling entrepreneurial ventures in nano-film production and advanced
Lintepreneursinp	surface treatments.
Skill development	Developing skills in film growth, PVD, CVD, ALD techniques, and thin film
Skill development	characterization methods.
Professional ethics	Promoting ethical methods in nano-film production, material sourcing, and
FIOLESSIONAL ETHICS	
Candan	laboratory practices.
Gender	Encouraging gender diversity in nanotechnology roles through equal
XX 1	opportunities.
Human values	Emphasizing the responsible use of nanotechnology for the betterment of
	society.
Environment &	Promoting eco-friendly methodologies and waste reduction in thin film
sustainability	production.
Unit ii	Special Nanomaterials
Local	- Enhancing local materials and electronics sectors with specialized
	nanomaterials like carbon fullerenes, nanotubes, and ordered mesoporous
	structures.
Regional	- Contributing to regional academic and industrial research capabilities in
	material science, electronics, and advanced materials.
National	Supporting national advancements in material science, electronics, and
	research & development sectors.
Global	Aligning with global trends in research and development of specialized
	nanomaterials, encouraging international collaborations.
Employability	- Providing career opportunities in electronics, materials science, and R&D
1 5 5	roles with expertise in specialized nanomaterials.
Entrepreneurship	Fostering entrepreneurial ventures in the production and research of
2	advanced nanomaterials.
Skill development	Developing skills in the synthesis and characterization of specialized
Shin development	nanomaterials like carbon fullerenes, nanotubes, and mesoporous structures.
Professional ethics	Promoting ethical practices in material sourcing, research, and responsible
1 Toresstonar ethies	handling of advanced nanomaterials.
Gender	Encouraging gender diversity in material science research and applications,
Uclider	ensuring equal opportunities.
Human values	Emphasizing the responsible and ethical use of specialized nanomaterials for
Human values	
Environment &	societal benefits.
Environment &	Encouraging eco-friendly practices in the synthesis and application of
sustainability	specialized nanomaterials.
Unit iii	Nanostructures Fabricated by Physical Techniques
Local	Strengthening local research institutions and industries with knowledge of
	advanced fabrication techniques like lithography, nanomanipulation, and
	nanolithography.
Regional	Enhancing regional research and industrial capabilities in microfabrication,
	advanced materials, and surface science.
National	Contributing to national advancements in microfabrication, electronics, and
	nanotechnology research sectors.
Global	Aligning with global trends in microfabrication techniques, fostering

	international research collaborations.
Employability	Providing career opportunities in research and development, electronics
	manufacturing, and microfabrication industries.
Entrepreneurship	Enabling entrepreneurial ventures in microfabrication and advanced material
	production using techniques such as soft lithography and nanomanipulation.
Skill development	Developing practical skills in lithography, nanolithography, and
	nanomanipulation, essential for microfabrication and material research.
Professional ethics	Emphasizing ethical practices in research, laboratory work, and responsible handling of advanced materials.
Gender	Encouraging gender diversity in material science research and
	microfabrication roles.
Human values	Promoting the responsible and ethical use of advanced fabrication techniques
	for societal benefits.
Environment &	Encouraging eco-friendly practices in microfabrication, including waste
sustainability	reduction and sustainable materials.
Unit iv	Applications of Nanomaterials
Local	Enhancing local research institutions and industries with applications in
D 1	molecular electronics, nanobots, and advanced materials.
Regional	Contributing to regional technological advancements in electronics,
	biotechnology, and nanomechanics.
National	Supporting national innovation in electronics, biotechnology, and materials
Global	science, driving economic growth.
Global	Aligning with global trends in nanoelectronics, biotechnological applications, and quantum devices.
Employability	Preparing students for diverse career opportunities in nanoelectronics,
Linployaointy	biotechnology, catalysis, and advanced material applications.
Entrepreneurship	Fostering entrepreneurial ventures in nanotechnology applications,
Lindepreneursnip	molecular electronics, and advanced material innovations.
Skill development	Developing skills in the practical application of nanomaterials in diverse
1	sectors like electronics, medicine, and energy.
Professional ethics	Emphasizing ethical considerations in the application of nanomaterials,
	ensuring safety, and responsible practices.
Gender	Encouraging gender diversity in nanotechnology applications and research,
	ensuring equal opportunities for all.
Human values	Promoting the responsible and ethical application of nanomaterials for the
	betterment of society.
Environment &	Encouraging sustainable practices in the application of nanomaterials,
sustainability	including eco-friendly energy solutions and biodegradable materials.
SDG	Supporting SDG goals like Goal 3 (Good Health and Well-being), Goal 7
	(Affordable and Clean Energy), Goal 9 (Industry, Innovation, and
	Infrastructure), and Goal 11 (Sustainable Cities and Communities) through
New 2020	diverse applications of nanomaterials.
Nep 2020	Aligning with the National Education Policy's emphasis on multidisciplinary
Dec/4 th ID	education, application-based learning, and critical thinking.
Poe/4 th IR	Preparing students for the Fourth Industrial Revolution with knowledge of
	applications of nanomaterials in the age of cyber-physical systems, IoT, and
	biotechnological advancements.

Teaching Plan

Week ly Teach ing Plan	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]-Chapter/ Page No./ Open Education Resources [OER]	Teaching- Learning Method
Week 1	Introduction to Two-Dimensional Nanostructures: Thin Films,Fundamentals of Film Growth,Vacuum Science and Importance in Thin Film Deposition	TB1/CH5	Class test/presentat ion/Assignm ents/Quizzer/ Viva/Project
Week 2	Physical Vapor Deposition (PVD) Techniques: Evaporation.Molecular Beam Epitaxy (MBE) and its Applications,	https://www.youtube.com/watch ?v=aOVU2aqgqe8 TB1/CH5	Class test/presentat ion/Assignm
Week 3	Sputtering Technique and Comparison with Evaporation, Introduction to Chemical Vapor Deposition (CVD) and its Basics	TB1/CH5 https://news.mit.edu/2015/explai ned-chemical-vapor-deposition- 0619	ents/Quizzer/ Viva/Project
Week 4	Typical Chemical Reactions in CVD, Reaction Kinetics and Transport Phenomena in CVD, Different CVD Methods and their Advantages/Disadvantages	TB1/CH5	
Week 5	Diamond Films by Chemical Vapor Deposition (CVD), Introduction to Atomic Layer Deposition (ALD) and its Mechanism	TB1/CH5	
Week 6	Langmuir-Blodgett Films: Preparation and Characterization, Electrochemical Deposition of Nanostructures	TB1/CH5	
Week 7	superlattices: Fabrication and Properties, Self- Assembly of Nanostructures: Monolayers and their Applications	TB1/CH5	
Week 8	Sol-Gel Films: Synthesis and Applications, Introduction to Special Nanomaterials	TB1/CH5	

Week 9	Carbon Fullerenes: Structure and Properties, Carbon Nanotubes: Types and Applications	TB1/CH6 RB4/CH3 https://www.nanowerk.com/nanotec hnology/introduction/introduction_t o_nanotechnology_22.php RB3.CH4-6	
Week 10	Ordered and Random Mesoporous Structures, Crystalline Microporous Materials: Zeolites and their Uses	TB1/CH6 <u>https://www.youtube.com/watch</u> <u>?v=1WGEMYDLsNs</u> <u>https://www.youtube.com/watch</u> <u>?v=1WGEMYDLsNs</u>	
Week 11	Metal-Oxide Structures: Synthesis and Properties, Metal-Polymer and Oxide-Polymer Nanocomposites	TB1/CH6	
Week 12	Organic-Inorganic Hybrids: Class I and Class II Hybrids, Intercalation Compounds and their Applications	TB1/CH6	
Week 13	Nanostructures Fabricated by Physical Techniques, Lithography Techniques: Photolithography, Electron Beam Lithography, and more	TB1/CH7 <u>https://www.youtube.com/watch</u> <u>?v=dw9IvpilfUo</u> RB3/CH1	

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Learn how to fabricate thin films	(i) Each topic to be explained with illustrations. (ii) Students	• Presentations, quizzers and class discussions. • Assignments and
2	Students will comprehend the properties and applications of special nanomaterials like grapheme, CNT etc	to be encouraged to discover the relevant concepts. (iii) Students be given homework/assignments. (iv)	class tests. • Student presentations. • Mid-term examinations. • Practical and viva-voce examinations. • End-term

3	Students will acquire practical skills in lithography and nanomanipulation techniques.	theoretical and practical problems in the class. (v) Students to be encouraged to	examinations.
4	Students will be able to identify and analyze real- world applications of nanomaterials	apply concepts to real world problems.	

UNS111	Synthesis of Nanomaterials-II Lab	L	Т	Р	C
Version 1.0		0	0	2	1
Total Contact Hours	26				
Pre-requisites/Exposure					
Co-requisites	Synthesis of Nanomaterials				

Course Objectives:

- 1. Understand the fundamental principles of thin film growth and the various techniques used in the fabrication of two-dimensional nanostructures.
- 2. Explore the unique properties of special nanomaterials, such as carbon fullerenes, nanotubes, mesoporous structures, and organic-inorganic hybrids.
- 3. Familiarize students with the fabrication processes and characterization techniques used in creating nanostructures through physical techniques like lithography and nanomanipulation.
- 4. Gain insight into the diverse applications of nanomaterials, including molecular electronics, nanoelectronics, catalysis, photonic crystals, and biological applications.

Course Outcomes:

- **CO1** Students will be able to explain the principles of film growth and differentiate between various deposition techniques, such as solid state reaction method, coprecipitation method, and sol-gel films.
- CO2 Students will comprehend the properties and applications of magneticl nanomaterials.
- CO3 Students will comprehend the properties and applications of dielectric nanomaterials.
- **CO4** Students will be able to identify and analyze real-world applications of nanomaterials in areas such as molecular electronics, nanoelectronics, catalysis, and photonic devices.

CATALOG DESCRIPTION

This course introduces the fundamentals of nanostructures, including their synthesis, characterization, and applications. Topics covered include thin films, carbon nanotubes, mesoporous structures, and quantum devices. A background in physics, chemistry, or materials science is recommended. Upon completion of this course, students will be able to: Understand the basic principles of nanostructure synthesis and characterization, apply these principles to the design and fabrication of nanostructures.

Course Content

- 1, Preparation of Polystyrene film using solvent evaporation technique.
- 2. Preparation of magnetite particles using coprecipitation method.
- 3. Preparation of ferrofluid using water and magnetite particles,
- 4 Study the stability of magnetite particles in water and vegetable oil.
- 5. Prepare calcium titanate using solid state reaction method.
- 6 Find the opticle band gap of magnetite particles.
- 7. Make pallet of calcium titanate powder, sinter and polish.
- 8. Find the density of pallet using Archimedes principle.

Suggested Text Books

1 Nanostructures and Nanomaterials: Synthesis, Properties and Applications, G, Cao, Imperial College Press (2003).

Advanced Readings:

1. Nanoscale Science and Technology, Robert W. Kelsall, Ian W. Hamley and Mark Geoghegan, John Wiley & Sons Ltd (2005).

2. Nanomaterials and Nanochemistry, C. Brechignac, P. Houdy, M. Lahmani, Springer-Verlag Berlin Heidelberg (2007).

3 Introduction to Nanoscale Science and Technology, Massimiliano Di Ventra, Stephane Evoy and James R. Heflin, Jr., Kluwer Academic Publishers (2004)

4. Springer handbook of nanotechnology, Bharat Bhushan (ed.) Spinger-Verlag Berlin Heidelberg New York (2004),

Open Educational Resources (OER)

https://doi.org/10.1021/ma001440d

https://pubs.acs.org/doi/abs/10.1021/ma000094x https://www.sciencedirect.com/science/article/abs/pii/S0927775708000721 https://www.sciencedirect.com/science/article/abs/pii/S0167577X08005740 https://pubs.acs.org/doi/abs/10.1021/ed076p943 https://www.sciencedirect.com/science/article/abs/pii/S0304885305011406 https://www.sciencedirect.com/science/article/abs/pii/S0021979705004935

https://www.sciencedirect.com/science/article/abs/pii/S0021979705005515

https://doi.org/10.1063/1.108974

https://link.springer.com/article/10.1007/s10853-006-0103-y https://www.youtube.com/watch?v=4q9Bh48RTxg

https://www.youtube.com/watch?v=YpbNyDzpB3A

Assessment & Evaluation

Components	Conduct of Experiment	Lab Record/Viva Voce	Attendance	End Term Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Course Objectives (CO)		PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PSO1	PSO 2	PSO 3	PSO	4
CO1: Principles of film growth	2	2	1	1	1	1	1	1	1	1	2	1		1	1
CO2: Properties and applications	1	2	1	2	2	1	1	1	1	1	2	2		1	1
CO3: Practical skills in lithography	1	1	3	3	1	3	1	3	1	1	1	3		1	1
CO4: Identify real- world applications	1	2	1	3	1	1	1	1	1	1	1	3		1	1

(Note: The numbers 1, 2, and 3 represent "lightly mapped," "moderately mapped," and "strongly mapped," respectively. Higher numbers indicate a stronger mapping between the Course Objectives and the Program Outcomes/Program Specific Outcomes.)

RELEVANCE OF THE COURSE TO VARIOUS INDICATORS

Unit	Course Content
Local	Supports local industries in materials development and advanced fabrication
	methods, fostering innovation.
Regional	Augments regional academic and industrial capabilities in materials science,
	enhancing tech-based development.
National	Contributes to the nation's technological progress, especially in material
	science and advanced manufacturing sectors.
Global	Aligns with global material science trends, fostering international
	collaborations and technology integration.
Employability	Equips students for roles in materials science, R&D, manufacturing, and
	nanotechnology industries.
Entrepreneurship	Enables startups in advanced material manufacturing, nanotechnology, and
	applied research.
Skill development	Imparts hands-on skills in material preparation, characterization, and
	advanced fabrication methods.

Professional ethics	Advocates for responsible material sourcing, ethical research practices, and
	safe laboratory protocols.
Gender	Promotes inclusivity in material science research, fostering equal
	opportunities regardless of gender.
Human values	Emphasizes ethical use of knowledge for societal benefits, considering the
	broader societal implications and benefits.
Environment &	Stresses eco-friendly practices in material synthesis, promoting sustainability
sustainability	and aligning with SDG goals.
SDG	Supporting SDG goals like Goal 3 (Good Health and Well-being), Goal 7
	(Affordable and Clean Energy), Goal 9 (Industry, Innovation, and
	Infrastructure), and Goal 11 (Sustainable Cities and Communities) through
	diverse applications of nanomaterials.
Nep 2020	Aligns with India's National Education Policy's focus on practical
	knowledge, research, and innovative applications.
Poe/4 th IR	Prepares for the Fourth Industrial Revolution with expertise in advanced
	materials and nanotechnology, essential for emerging tech sectors.

Teaching Plan

Week ly Teach ing Plan	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]-Chapter/ Page No./ Open Education Resources [OER]	Teachi ng- Learni ng Metho d
Week 1	Introduction to laboratory safety procedures and overview of the experiments.	TB1/CH5	Class test/pr esentat
Week 2	Experiment 1: Preparation of Polystyrene film using solvent evaporation technique.	https://doi.org/10.1021/ma001440d https://pubs.acs.org/doi/abs/10.1021/ma00 0094x	ion/As signme nts/Qu
Week 3	Experiment 2: Preparation of magnetite particles using coprecipitation method.	https://www.sciencedirect.com/science/article/abs/pii/S0927775708000721	izzer/ Viva/P
		https://www.sciencedirect.com/science/article/abs/pii/S0304885305005433	roject Class test/pr
		https://www.sciencedirect.com/science/article/abs/pii/S0167577X08005740	esentat ion/As
Week 4	Experiment 3: Preparation of ferrofluid using water and magnetite particles.	https://pubs.acs.org/doi/abs/10.1021/ed076 p943 https://www.sciencedirect.com/science/arti	signme nts/Qu izzer/

		cle/abs/pii/S0304885305011406	Viva/P roject
Week 5	Experiment 4: Study the stability of magnetite particles in water and vegetable oil.	https://www.sciencedirect.com/science/ article/abs/pii/S0021979705004935 https://www.sciencedirect.com/science/ article/abs/pii/S0021979705005515	
Week 6	Experiment 5: Prepare calcium titanate using solid state reaction method.	https://doi.org/10.1063/1.108974 https://link.springer.com/article/10.1007/s1 0853-006-0103-y	
Week 7	Experiment 6: Find the optical band gap of magnetite particles.	https://doi.org/10.1016/j.jallcom.2023.17081 1	-
Week 8	Experiment 7: Make pallet of calcium titanate powder, sinter, and polish.	https://fluxana.com/images/Whitepaper/P DF/Whitepaper_Making_Pressed_Pellets.p df https://patents.google.com/patent/US42603 49	
		https://www.youtube.com/watch?v=o8nok 8N5eso	
Week 9	Experiment 7: Continue pallet preparation and sintering process.	https://fluxana.com/images/Whitepaper/P DF/Whitepaper_Making_Pressed_Pellets.p df	
		https://patents.google.com/patent/US42603 49	
		https://www.youtube.com/watch?v=o8nok 8N5eso	
Week 10	Experiment 8: Find the density of pallet using Archimedes principle.	https://www.youtube.com/watch?v=4q 9Bh48RTxg https://www.youtube.com/watch?v=Yp bNyDzpB3A	
Week 11	Data analysis and interpretation for all experiments.		

Week 12	Finalize reports and presentations for each experiment.	
Week 13	Review, discussion, and presentation of experimental findings.	

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Learning Outcomes	Teaching Learning Activity	Assessment Task Methods
1	Explain the principles of film growth and differentiate between various deposition techniques for thin films.	with illustrations. (ii) Students to be encouraged to discover the relevant concepts. (iii) Students be given	• Presentations, quizzers and class discussions. • Assignments and class tests. • Student presentations. • Mid- term examinations. • Practical and viva-voce examinations. • End-term
2	Understand the properties and applications of magnetic nanomaterials.	homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v) Students to be encouraged to	examinations.
3	Understand the properties and applications of dielectric nanomaterials.	apply concepts to real world problems.	
4	Identify, analyze, and relate real-world applications of nanomaterials in areas like molecular electronics, nanoelectronics, catalysis, and photonic devices.		

Semester VIII

S.No. COURSE CODE	COURSE TITLE	С
-------------------	--------------	---

1	SCPH402	Atomic, and Molecular Physics	4
2		Research Project- II	12
Total			16

SCPH402	Atomic and Molecular Physics	L	Т	Р	С
Version 1.0		4	0	0	4
Total Contact Hours	50				
Pre-requisites/Exposure					
Co-requisites					

Course Objectives:

To understand the fundamental models of the atom: Rutherford scattering experiment, Bohr model, Sommerfeld relativistic model, and quantum (vector) model. Students will learn about the evolution of these models and their significance in explaining atomic spectra and spectral series.

To explore the quantum nature of electrons in atoms and the effect of magnetic fields. Students will learn about quantum numbers, atomic excitation, selection rules, and the Zeeman effect. The exclusion principle and the concept of bosons and fermions will be introduced.

To study the production and characteristics of X-rays. Students will learn about Laue's experiment, Bragg's law, and the classification of X-ray spectra (continuous and characteristic). The Auger effect and X-ray absorption spectra will also be covered.

To gain insights into molecular physics, including molecular bonding, rotational energy levels, vibrational energy levels, and electronic spectra. Students will explore the energy states and selection rules governing molecular transitions, as well as applications like fluorescence and phosphorescence.

Course Outcomes:

- CO1 Explain the historical development of atom models and their impact on our understanding of atomic structures and spectral phenomena. Students will be able to describe the key features of Rutherford scattering, Bohr model, Sommerfeld relativistic model, and quantum model.
- CO2 Analyze the quantum nature of electrons and magnetic effects on atoms. Students will be able

to apply quantum numbers, interpret atomic excitation and radiative transitions, and understand the Zeeman effect and spin-orbit coupling.

- **CO3** Interpret X-ray production, Bragg's law, and the characteristics of X-ray spectra. Students will understand the Mosley's law, Auger effect, and X-ray absorption spectra.
- **CO4** Describe the molecular bonding and electronic transitions in complex molecules. Students will be able to analyze rotational, vibrational, and electronic spectra, including fluorescence and phosphorescence, and understand the determination of internuclear distances.

CATALOG DESCRIPTION

By the end of the course, students will have gained a comprehensive understanding of atomic and molecular physics, enabling them to analyze and interpret atomic and molecular phenomena, spectral data, and various spectroscopic techniques. They will also develop critical thinking skills, mathematical proficiency, and an appreciation for the quantum nature of matter.

COURSE CONTENT

Unit I:

Atom Models: Rutherford scattering experiment and the nuclear model of the atom, size of the nucleus, atomic spectra and spectral series.

Bohr model of the atom: energy levels and spectral series, line spectra, discovery of deuterium, correspondence principle, nuclear (reduced) mass and its effect of the atomic spectra: discovery of deuterium, positronium and muonic atom energy levels compared to hydrogen energy levels, critical potentials, atomic excitation, Franck-Hertz experiments. Sommerfeld relativistic model and fine structure of hydrogen.Quantum (Vector) model of the hydrogen atom (no derivation) and quantum numbers, principal quantum number, orbital quantum number, magnetic quantum number, probabilistic electronic orbits (radial and angular), radiative transitions, selection rules.

Unit II:

14 Contact Hours

14 Contact Hours

Effect of Magnetic Fields and Many Electron Atoms: Normal Zeeman effect, gyro-magnetic ratio, Bohr magneton, spin of the electron, spin angular momentum, magnetic dipole moments due to orbital motion and spin of the electron, exclusion principle, Stern-Gerlach experiment. Symmetric and anti-symmetric wave functions, bosons and fermions, atomic shells, subshells and periodic table Spin-orbit coupling, anomalous Zeeman effect, Paschen-Back effect, Stark effect, total angular momentum, LS coupling, j-j coupling, singlet, doublet, triplet, term symbols. Atomic spectra of hydrogen and sodium.

Unit III:

14 Contact Hours

X-Ray Spectra: X-rays: production, Laue's experiment, Bragg's law, X-ray spectra: continuous and characteristic spectra, Mosley's law and X-ray series, Auger effect, X-ray absorption spectra, absorption edges.

Lasers

Einstein's A and B coefficients, Metastable states, Spontaneous and Stimulated emissions, Optical Pumping and Population Inversion, Three-Level and Four-Level Lasers, Ruby Laser and He-Ne Laser, Unit IV: 14 Contact Hours

Molecular Physics: Molecular bond, covalent bond, H2+ molecular ion, Hydrogen molecule, complex

molecules, hybrid orbitals: ethylene, benzene, Rotational Energy levels, Selection Rules and Pure Rotational Spectra of a Molecule, Vibrational Energy Levels, Selection Rules and Vibration Spectra, Rotation-Vibration Energy Levels, Selection Rules and Rotation-Vibration Spectra, Determination of Internuclear Distance, electronic spectra: fluorescence, phosphorescence.

Raman Effect: Quantum Theory of Raman Effect, Characteristics of Raman Lines, Stoke's and Anti-Stoke's Lines, Complimentary Character of Raman and infrared Spectra;'

Suggested Text Books

1. Modern Physics, R. Murugeshan and Kiruthiga Sivaprasath, 17th Ed., S. Chand & Company Pvt. Ltd.

2. Atomic and Molecular Spectra : Laser, Rajkumar, 2020, Knrn

Advanced Readings:

- 1. Concepts of Modern Physics by Arthur Beiser (McGraw-Hill Book Company, 1987)
- 2. Atomic physics by J,B,Rajam& foreword by Louis De Broglie, (S,Chand& Co., 2007),
- 3. Atomic Physics by J,H,Fewkes& John Yarwood, Vol, II (Oxford Univ, Press, 1991),
- 4. Physics of Atoms and Molecules, Bransden and Joachein,
- 5. Molecular Spectroscopy, Banwell,
- 6. Optoelectronics by Ghatak and Thyagarajan, Principles of Lasers by Svelto

Open Educational Resources (OER)

https://www.geeksforgeeks.org/rutherfords-alpha-scattering-experiment/

http://labs.plantbio.cornell.edu/wayne/pdfs/Fine% 20structure.pdf

https://en.wikipedia.org/wiki/Gyromagnetic_ratio#:~:text=In%20physics%2C%20the%20gyromagnetic%20ratio,by%20the%20symbol%20%CE%B3%2C%20gamma.

https://www.youtube.com/watch?v=_1S6KfMzOH8

https://www.radiologymasterclass.co.uk/tutorials/physics/x-ray_physics_production

https://eng.libretexts.org/Bookshelves/Electrical_Engineering/Electro-

Optics/Direct Energy (Mitofsky)/07%3A Lamps%2C LEDs%2C and Lasers/7.01%3A Absorption%2 C Spontaneous Emission%2C Stimulated Emission

https://chem.libretexts.org/Bookshelves/Physical_and_Theoretical_Chemistry_Textbook_Maps/Book%3 A_Quantum_States_of_Atoms_and_Molecules_(Zielinksi_et_al)/07%3A_Rotational_States

Assessment & Evaluation

Components	Quiz/Presentati	Mid Term	Attendance	End Term
	on / Assignment	Examination		Examination
Weightage (%)	20	20	10	50

Programme And Course Mapping

Sure, here's the mapping of Course Objectives (CO) with Program Outcomes (PO) and Program Specific Outcomes (PSO) in tabular form:

0 470	(<i>.</i> .		101111	-									
CO	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO1 0	PSO 1	PSO 2	PSO 3	PSO 4
CO 1	3	3	2	2	1	1	1	1	1	1	1	1	1	1
CO 2	2	2	2	2	1	1	1	1	1	1	1	2	1	1
CO 3	1	1	3	1	1	1	1	1	1	1	1	1	1	1
CO 4	1	1	2	3	3	2	2	2	2	2	2	3	2	3

(Note: The mapping is done on a scale of 1=Lightly Mapped, 2=Moderately Mapped, 3=Strongly Mapped)

Teaching Plan

Weekly Teaching Plan	Topic/Unit No.	Textbook [TB]/ Reference Book [RB]-Chapter/ Page No./ Open Education Resources [OER]	Teaching- Learning Method
Week 1	Atom Models: Rutherford scattering experiment and the nuclear model of the atom, size of the nucleus, atomic spectra, and spectral series.	TB1/CH6 TB2/CH2 https://www.geek sforgeeks.org/ruth erfords-alpha- scattering- experiment/	Class test/present ation/Assig nments/Qu izzer/ Viva/Proje ct Class
Week 2	Bohr model of the atom: energy levels and spectral series, line spectra, discovery of deuterium, correspondence principle, nuclear (reduced) mass and its effect on atomic spectra, discovery of deuterium, positronium, and muonic atom energy levels compared to hydrogen energy levels, critical potentials, atomic excitation, Franck-Hertz experiments.	TB1/CH6 TB2/CH2 <u>http://labs.plantbi</u> <u>o.cornell.edu/way</u> <u>ne/pdfs/Fine%20s</u> <u>tructure.pdf</u>	test/present ation/Assig nments/Qu izzer/ Viva/Proje ct

Week 3	Sommerfeld relativistic model and fine structure of hydrogen.	TB2/CH2
Week 4	Quantum (Vector) model of the hydrogen atom (no derivation) and quantum numbers, principal quantum number, orbital quantum number, magnetic quantum number, probabilistic electronic orbits (radial and angular), radiative transitions, selection rules.	TB2/CH3
Week 5	Effect of Magnetic Fields and Many Electron Atoms: Normal Zeeman effect, gyro-magnetic ratio, Bohr magneton, spin of the electron, spin angular momentum, magnetic dipole moments due to orbital motion and spin of the electron, exclusion principle, Stern-Gerlach experiment.	TB2/CH4 https://en.wikiped ia.org/wiki/Gyro magnetic_ratio#:~ :text=In%20physi cs%2C%20the%2 0gyromagnetic%2 0ratio,by%20the %20symbol%20 %CE%B3%2C% 20gamma
Week 6	Symmetric and anti-symmetric wave functions, bosons, and fermions, atomic shells, subshells, and periodic table. Spin-orbit coupling, anomalous Zeeman effect, Paschen- Back effect, Stark effect, total angular momentum,.	TB2/CH6 TB2/CH12 <u>https://www.yout</u> <u>ube.com/watch?v</u> = 1S6KfMzOH8
Week 7	LS coupling, j-j coupling, singlet, doublet, triplet, term symbols. Atomic spectra of hydrogen, sodium. X-Ray Spectra: X-rays: production, Laue's experiment, Bragg's law.	TB1/CH7 TB2/CH9
Week 8	X-ray spectra: continuous and characteristic spectra, Mosley's law and X-ray series, Auger effect, X-ray absorption spectra, absorption edges.	TB1/CH7 TB2/CH16 https://www.radio logymasterclass.c o.uk/tutorials/phy sics/x- ray_physics_prod uction
Week 9	Lasers: Einstein's A and B coefficients, Metastable states, Spontaneous and Stimulated emissions, Optical Pumping and Population Inversion, Three-Level and Four-Level Lasers, Ruby Laser, and He-Ne Laser.	TB2/CH31 TB2/CH32 https://eng.librete xts.org/Bookshelv es/Electrical_Engi neering/Electro-

		Optics/Direct_En ergy_(Mitofsky)/
		07%3A_Lamps% 2C_LEDs%2C_a
		nd_Lasers/7.01% 3A_Absorption%
		<u>2C_Spontaneous</u> Emission%2C_Sti
		<u>mulated Emissio</u>
		<u>n</u>
Week 10	Molecular Physics: Molecular bond, covalent bond, H2+ molecular ion, Hydrogen molecule, complex molecules, hybrid orbitals: ethylene, benzene.	TB2/CH28
Week 11	Rotational Energy levels, Selection Rules and Pure	TB1/CH23
	Rotational Spectra of a Molecule, Vibrational Energy Levels, Selection Rules, and Vibration Spectra.	https://chem.libret
		exts.org/Bookshel
		ves/Physical_and _Theoretical_Che
		mistry_Textbook
		<u>Maps/Book%3A</u>
		<u>Quantum States</u> of Atoms and
		Molecules (Zieli
		<u>nksi_et_al)/07%3</u>
		<u>A_Rotational_Sta</u> tes
Week 12	Rotation-Vibration Energy Levels, Selection Rules and	TB1/CH23
	Rotation-Vibration Spectra, Determination of Internuclear Distance, electronic spectra: fluorescence, phosphorescence.	TB1/CH19
Week 13	Raman Effect: Quantum Theory of Raman Effect,	TB1/CH19
	Characteristics of Raman Lines, Stoke's and Anti-Stoke's Lines, Complimentary Character of Raman and infrared	TB2/CH20
	Spectra.	

Facilitating the Achievement of Course Learning Outcomes

Unit No.	Course Outcomes	Learning		Teaching Learning Activity	Assessment Task Methods
1	Understand	the	historical	(i) Each topic to be explained	• Presentations and class

2	development of atomic models, from Rutherford's scattering experiment to the Quantum (Vector) model, and explain their significance in shaping our understanding of the atom. Analyze and interpret atomic spectra and spectral series, including line spectra, by applying the principles of Bohr's model, Sommerfeld's relativistic model, and Quantum (Vector) model, as well as the selection rules for radiative transitions.	with illustrations. (ii) Students to be encouraged to deliver lecture on the relevant topic. (iii) Students be given homework/assignments. (iv) Discuss and solve the theoretical and practical problems in the class. (v) Students to be encouraged to apply concepts to real world problems.	discussions. • Assignments and class tests. • Student presentations. • Mid-term examinations. • Practical and viva-voce examinations. • End- term examinations.
3	Demonstrate a comprehensive understanding of the interaction of atoms with magnetic fields and the behavior of many- electron atoms, including the Zeeman effect, spin-orbit coupling, Paschen-Back effect, and atomic spectra of hydrogen, sodium, helium, and mercury.		
4	Explain the principles of X-ray spectra, including the production of X-rays, Bragg's law, continuous and characteristic spectra, Mosley's law, X-ray absorption spectra, and the Auger effect. Additionally, describe the working principles of lasers, including Einstein's A and B coefficients, Metastable states, Spontaneous and Stimulated emissions, and the operation of Three-Level and Four-Level Lasers like Ruby Laser and He- Ne Laser.		