

SCHOOL OF ENGINEERING

AND

TECHNOLOGY

Department of Computer Science and

Engineering

B.Sc. (H) (Cyber Security)

Undergraduate Course

2023-26

Preamble

Welcome to the School of Engineering and Technology at K. R. Mangalam University!

At the forefront of innovation and academic excellence, the School of Engineering and Technology is a vibrant hub of learning that nurtures aspiring engineers and technologists. Our commitment to fostering a dynamic learning environment, coupled with a passion for pushing the boundaries of knowledge, empowers our students to embark on a transformative educational journey.

With a blend of cutting-edge curriculum, state-of-the-art facilities, and a distinguished faculty, we are dedicated to equipping our students with the skills, insights, and practical experience they need to thrive in a rapidly evolving technological landscape. Our programs are designed not only to impart technical proficiency but also to cultivate critical thinking, creativity, and ethical leadership.

As we embrace the spirit of innovation and discovery, we invite students to engage in hands-on projects, collaborative research endeavours, and experiential learning opportunities. Through industry partnerships, internships, and exposure to realworld challenges, our students gain a holistic understanding of their fields, preparing them to make meaningful contributions to society.

At the School of Engineering and Technology, we believe in fostering a sense of community and camaraderie among students, faculty, and industry professionals. This collaborative ethos encourages the exchange of ideas, the pursuit of excellence, and the development of lifelong connections.

Whether you aspire to be a trailblazing engineer, a tech-savvy entrepreneur, or a visionary researcher, the School of Engineering and Technology is here to nurture your ambitions and empower you to shape a brighter future.

Welcome to a place where innovation knows no bounds, and where your journey towards academic and professional success begins.

Dean,

School of Engineering and Technology,

K. R. Mangalam University

Preface

The ability to secure information within a modern enterprise—large or small—is a growing challenge. Threats to information security are global, persistent, and increasingly sophisticated. Present pandemic situation has led to massive shift in use of digital information system for various purposes. This has fuelled the exponential increase in the cyber-related crimes. Effective information security at the enterprise level requires participation, planning, and practice. It is an ongoing effort that requires management and staff to work together from the same script. The information security community has to constantly evolve itself to develop a variety of resources, methods, and best practices to help modern enterprises address the challenge.

K.R. Mangalam University is in the process of transforming to National Educational Policy 2021. In consultation with Deans, Faculty Members, Industry Experts, and University Alumni, the Academic council constituted department-wise committees to draft the curriculum of B.Sc. (H) Cyber Security. The primary emphasis is to designing a course that addresses mathematical foundation concerning cyber security, legal and ethical perspective and practical aspects concerning enterprise security. The major thrust is on to prepare students for future careers as cyber security professionals.

The B.Sc. (H) Cyber Security course is spread over three years in six semesters. The total numbers of credits are 134. The course is designed as per LOCF guidelines laid by UGC. The core course includes specialized courses pertaining to cyber security along with few cores courses that are taught in B.Sc. (H) Computer Science. The generic electives offered deal with mathematical foundations that necessary to strengthen the

development of computer security algorithms. Departmental Specific Electives addresses the need to familiarize students with emerging areas in computer science. The laboratories, besides supplementing the theory course should also expose the student to the use of the latest software tools.

The present curriculum focuses on effectively applying analytical and critical thinking to plan and execute security measures to shield an organization's computer systems, networks, and networked devices from infiltration and cyber-attacks.

Objectives of the program

After the completion of the degree, students would

- Provide students with a solid foundation in the fundamental concepts, theories, and principles of cyber security. This includes knowledge of computer systems, networks, cryptography, secure programming, risk assessment, and incident response.
- The program focuses on equipping students with hands-on skills in identifying vulnerabilities, securing systems and networks, and implementing effective defense strategies.
- The program emphasizes the development of analytical and problemsolving skills specific to the field of cyber security.
- The program emphasizes the importance of ethical and legal aspects of cyber security.

Career Avenues

A Bachelor of Science (Honors) program in Cyber Security opens up a wide range of career avenues in the rapidly growing field of cybersecurity. Some of the potential career paths and job opportunities include:

- System Security Specialist
- Information Technology Forensic Analyst
- Ethical Hacker
- Compliance officer
- Data Security Analyst
- Cryptanalyst
- Network Security Specialist
- Web Applicant

Prospective Companies

- Amazon
- Flipkart
- Wipro
- IBM
- Infosys
- Deloitte
- Walmart
- Genpact
- Accenture
- Microsoft

Duration

3 Years (Full-Time)

Eligibility Criteria

Candidates must have passed 10+2 examination or equivalent in any stream with mathematics as one subject and with minimum 50% aggregate marks.

Table of Contents

S.N.	CONTENT	Page No.
1.	University Vision & Mission	
2	School Vision & Mission	
2.	About School	
3	Program Objectives (PO)	
4	Program Educational Objectives (PEO)	
5	Program Specific Objectives (PSO)	
6	Program Highlights	
7	Scheme of Studies	
8	Categorization of Courses	
9	Course Template	
10	CO Mapping with Bloom's Taxonomy	
11	CO-PO/PSO Mapping	
	Mapping with components of Global/National/Regional/Local	
12	aspects, employability, skill development, SDG, NEP-20 etc	

Institution Vision & Mission

Vision

KR Mangalam University aspires to become an internationally recognized institution of higher learning through excellence in inter-disciplinary education, research and innovation, preparing socially responsible life-long learners contributing to nation building.

Mission

- Foster employability and entrepreneurship through futuristic curriculum and progressive pedagogy with cutting-edge technology.
- Instill notion of lifelong learning through stimulating research, Outcomesbased education and innovative thinking;
- Integrate global needs and expectations through collaborative programs with premier universities, research centers, industries and professional bodies;
- Enhance leadership qualities among the youth having understanding of ethical values and environmental realities;

School Vision & Mission

Vision

To create, disseminate, and apply knowledge in science and technology to meet the higher education needs of India and the global society, to serve as an institutional model of excellence in scientific and technical education characterized by integration of teaching, research and innovation.

Mission

- To create an environment where teaching and learning are prioritised, with all support activities being held accountable for their success.
- To strengthen the institution's position as the school of choice for students across the State & Nation.
- To promote creative, immersive, and lifelong learning skills while addressing societal concerns.
- To promote co- and extra-curricular activities for over-all personality development of the students.
- To promote and undertake all-inclusive research and development activities.
- To instil in learners an entrepreneurial mind set and principles.
- Enhance industrial, institutional, national, and international partnerships for symbiotic relationships.
- To help students acquire and develop knowledge, skills and leadership qualities of the 21st Century and beyond.

About School

The School of Engineering and Technology at K. R. Mangalam University started in 2013 to create a niche of imparting quality education, innovation, entrepreneurship, skill development and creativity. It has excellent infrastructure, state of the art Labs, and a team of qualified and research-oriented faculty members.

School of Engineering & Technology (SOET) brings together outstanding academicians, industry professionals, and experienced researchers to impart handson and multi-disciplinary learning experience. The curriculum of the programs caters to the ever-changing needs and demands of the industry. The school has state-of-the-art infrastructure and domain-specific labs.

The school is offering undergraduate programs (B.Tech, BCA, B.Sc), postgraduate programs (M.Tech, MCA) and Ph.D (all disciplines). We are offering B.Tech programs in recent areas of specializations like AI & ML, Data Science, Cyber Security, Automotive Designs & Electrical Vehicle, Sustainable Development & Smart Cities, Full stack development, UI/UX development etc.

Our curriculum being one of our highlights has been designed in line with the requirements of new National Education Policy 2020, Pedagogy of Employment, Sustainable Development Goals, IR 4.0 etc. The curriculum focuses on problem-solving, design, development, and application of various emerging technologies with focus on innovative teaching learning methodologies.

SOET aims at transforming the students into competitive engineers with adequate analytical skills, making them more acceptable to potential employers in the country. There is a great focus on experiential & project-based learning with Industry collaborations. Our B.Tech and BSc (h) programs are in collaborations with Industries like IBM, Siemens, Samatrix, Xebia, ImaginXP etc. Out student's get an opportunity to learn directly by professionals from industry.

Program Outcome (PO)

PO1. Computational Knowledge: Demonstrate understanding and apply foundational mathematical concepts, computing principles, and domain knowledge to conceptualize computing models that address defined problems.

PO2. Problem Analysis: Possess the ability to identify, critically analyze, and formulate complex computing problems, leveraging fundamental principles from computer science and relevant application domains.

PO3. Solution Design and Development: Transform intricate business scenarios and contemporary issues into problem statements, investigate and comprehend them, and propose comprehensive and integrated solutions using cutting-edge technologies.

PO4. Effective Tool Utilization: Select and proficiently employ contemporary computing tools, techniques, and skills necessary for developing innovative software solutions.

PO5. Professional Ethics: Apply and uphold professional ethics and cybersecurity regulations within a global economic environment, ensuring responsible and ethical computing practices.

PO6. Lifelong Learning: Recognize the necessity for continuous learning and cultivate the ability to actively engage in professional development as a computing professional.

PO7. Project Management: Possess the competence to understand and apply management and computing principles in order to successfully manage projects in multidisciplinary environments.

PO8. Proficient Communication: Demonstrate effective communication skills, both within the computing community and with society at large, by comprehending and producing clear and impactful documentation and presentations.

PO9. Individual and Teamwork: Exhibit the ability to effectively collaborate and contribute as a member or leader within diverse teams operating in multidisciplinary environments.

PO10. Innovation and Entrepreneurship: Identify opportunities, demonstrate an entrepreneurial mind set, and leverage innovative ideas to generate value and contribute to the betterment of individuals and society.

Program Educational Objectives (PEO)

PEO1 - Develop a deep understanding of the theoretical and practical aspects of Cyber Security through rigorous education and research.

PEO2 - Pursue a successful career in Cyber Security-related industries, government organizations, or academia.

PEO3 - Apply critical thinking, problem-solving skills, and emerging technologies to develop innovative Cyber Security solutions that address real-world challenges.

PEO4 - Demonstrate leadership, effective communication, ethical behavior, and social responsibility in the practice of Cyber Security with a commitment to lifelong learning and professional development.

Program Specific Outcomes (PSO)

PSO1 - Acquire comprehensive knowledge and skills in theoretical and practical aspects of Cyber Security.

PSO2 - Obtain employment in Cyber Security-related industries, government organizations, or academia.

PSO3 - Apply critical thinking, problem-solving skills, and emerging technologies to develop innovative Cyber Security solutions.

PSO4 - Demonstrate leadership, effective communication, ethical behaviour, and social responsibility in the practice of Cyber Security.

Programme Highlights

• The curriculum is specifically designed in consultation with industry insiders and experts of cyber security

• Realistic hands-on training for absolute excellence.

• Consistent mentoring by acclaimed academicians and top industry experts.

• Highly sophisticated laboratories equipped with cutting-edge tech apparatus.

• Ensuring absolute preparedness for successful career progression

Program Scheme

Semester I

SN	Category	COURSE CODE	Course Title	L	Т	Р	С
1	Major	ENBC101	<u>Fundamentals of Web</u> <u>Technologies</u>	4	-	-	4
2	Major	ENBC103	Matlab Programming	4	-	-	4
3	SEC	SEC050	Linux Environment Lab	-	-	2	2
4	Minor	ENSP107	Introduction to Computer Science and Programming in Python	4	0	-	4
5	Major	ENBC151	<u>Fundamentals of Web</u> <u>Technologies Lab</u>	-	-	2	1
6	Major	ENBC153	Matlab Programming Lab		-	2	1
7	Minor	ENSP155	Computer Science and Programming in Python lab	-	-	2	1
8	VAC		Environmental Studies & Disaster Management (Online Moodle)	2	-	-	2
9	Major	ENBC105	Fundamentals of Software Engineering	4	-	-	4
			TOTAL	18	0	8	23

Semester II

SN	Category	COURSE CODE	COURSE TITLE	L	Т	Р	С
1	Minor	ENSP114	Network Defence Essentials	4	-	-	4
2	Major	ENBC102	Introduction to Discrete Structures	3	1	-	4
3	Major	ENBC104	<u>Basics of Operating</u> <u>Systems</u>	3	1	-	4
4	Major	ENBC106	<u>Concepts of Object</u> <u>Oriented Programming</u> <u>Using C++</u>	3	1	-	4
6	Minor	ENSP166	<u>Network Defence Essentials</u> <u>Lab</u>	-	-	2	1
7	Major	ENBC152	Basics of Operating Systems Lab	-	-	2	1
8	Major	ENBC154	<u>Concepts of Object</u> <u>Oriented Programming</u> <u>Using C++ Lab</u>	-	-	2	1
9	VAC		Extension Activities(community engagement service)	3	-	-	2
			Open Elective-I	3	-	-	3
	TOTAL				3	6	24

Semester III

SN	Category	COURSE CODE	Course Title	L	т	Р	С
1	Major	ENBC201	Introduction to Data Structures	3	1	-	4
2	Minor	ENSP207	<u>Fundamentals of</u> <u>Cryptography</u>	4	-	-	4
3	Major	ENBC203	Basics of Probability & Statistics	4	-	-	4
4	Major	ENBC205	Introduction to Java Programming	3	1	-	4
5	AEC	AEC011	<u>Life Skills for</u> Professionals-I	3	-	-	3
6	Major	ENBC251	Introduction to Java Programming Lab	-	-	2	1
7	Major	ENBC253	Introduction to Data Structures Lab	-	-	2	1
8	Minor	ENSP259	<u>Fundamentals of</u> <u>Cryptography Lab</u>	-	-	2	1
9	VAC		VAC -3	-	-	-	2
10	Summer Internship	SIBC251	Summer Internship/Project-I	-	-	-	2
	TOTAL					6	26

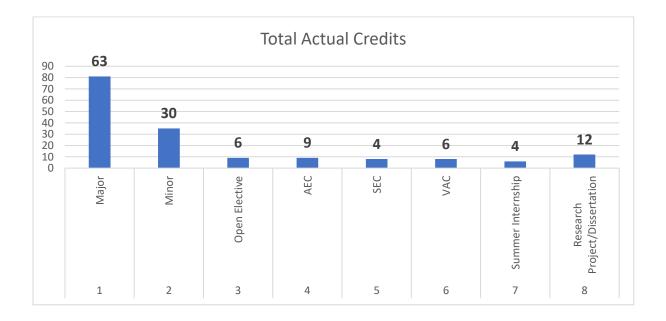
Semester IV

SN	Category	COURSE CODE	Course Title	L	Т	Р	С
1	Major	ENBC202	<u>Fundamentals of Algorithm</u> <u>Design & Analysis</u>	3	1	-	4
2	Major	ENBC204	Introduction to Database Management Systems	3	1	-	4
3	Major	ENBC206	<u>Introduction to Computer</u> <u>Networks</u>	3	1	-	4
4	Major	ENBC252	Introduction to Database Management Systems Lab	I	-	2	1
6	Major	ENBC254	<u>Fundamentals of Algorithm</u> <u>Design & Analysis Lab</u>	-	-	2	1
7	Major	ENBC256	Introduction to Computer Networks Lab	-	-	2	1
8	AEC	AEC012	Life Skills for Professionals- II	3	-	-	3
9	Proj	SIBC252	Minor Project	-	-	-	2
10	SEC	SEC036	Competitive Coding Lab	-	-	4	2
11	Open Elective		Open Elective-II	3	-	-	3
	TOTAL				3	10	25

Semester V

SN	Category	COURSE CODE	Course Title	L	Т	Р	С
1	Major	ENBC301	Computer Organization and Architecture	4	-	-	4
2	Minor	ENSP319	Essentials of Ethical Hacking	4	-	-	4
3	Minor		Department Elective -I	4	-	-	4
4	Minor		Department Elective -I Lab	-	-	2	1
5	Minor		Department Elective -II	4	-	-	4
6	Minor		Department Elective -II lab	-	-	2	1
7	Minor	ENSP367	Ethical Hacking Lab	-	-	2	1
10	Summer Internship	SIBC351	Summer Internship/Project				2
11	AEC	AEC013	Life Skills for Professionals- III	3	-	-	3
	TOTAL					6	24

	Department Elective-I (Cyber Security)									
1	Minor	ENSP401	Secure Coding and Vulnerabilities	4	0	0	4			
1	Minor	ENSP451	Secure Coding and Vulnerabilities lab	-	-	2	1			
2	Minor	ENSP403	Cyber Crime Investigation & Digital Forensics	4	0	0	4			
2	Minor	ENSP453	Cyber Crime Investigation & Digital Forensics lab	-	-	2	1			
3	Minor	ENSP405	AI in Cyber Security	4	0	0	4			
J	Minor	ENSP455	AI in Cyber Security Lab	-	-	2	1			
	Minor	ENSP407	Social Media Security	4	0	0	4			
4	Minor	ENSP457	Social Media Security Lab	-	-	2	1			
Dep	artm	ent Electiv	ve - II (Full Stack Deve	elo	pm	en	t)			
(i)	Minor	ENSP409	Mobile Application Development using IOS	4	-	-	4			
(i)	Minor	ENSP459	Mobile Application Development using IOS Lab	-	-	2	1			
(;;)	Minor	ENSP411	DevOps & Automation	4	-	-	4			
(ii)	Minor	ENSP461	DevOps & Automation Lab	-	-	2	1			
(iii)	Minor	ENSP413	.Net FRAMEWORK	4	-	-	4			
(iii)	Minor	ENSP463	.Net FRAMEWORK Lab	-	-	2	1			
(iv)	Minor	ENSP415	New Age Programming languages	4	0	0	4			
	Minor	ENSP465	New Age Programming languages Lab	0	0	2	1			


Semester VI

S.No	Category	Course Code	Course Title	L	Т	Ρ	С
1	Project		Major Project/Industrial Training/Startup	-	-	-	12
2			TOTAL	16	4	8	12
	TOTAL CREDITS						134

Total Credits: 134

Categorization of Courses

Semester I

FUNDAMENTALS OF WEB TECHNOLOGIES

Department:	Det	partment of Computer Science	e and En	gineering		
Course Name: Fundamentals of We	h	Course Code	L-T-P	Credits		
Technologies		ENBC101	4-0-0	4		
Type of Course:	Мај	or	I			
Pre-requisite(s), if a	ny:					
This course is an intr behind it. Students wil technologies and tools Cascading Style Sheet HTML, a collection of used together to creat to program client-side transform static Web pages.						
Unit Number	Inte	oduction				
A				hours: 8		
Content Summary: Request and Response Common terminology: maintenance, Web Ho working. HTML: Intro comments, Text form images and sound, li Developing Forms, Im- hyperlink, lists, tables	Con e, W IP A sting duct aduct attir sts: age s, in	cept of WWW, Internet and M /eb browser and Web servers, ddressing, URLs, Domain names g and Publishing Concepts, Sea ion to HTML, HTML Document ng, inserting special characters types of lists, tables, frames maps, formatting, and fonts, co nages, forms, XHTML, Meta tag	WWW, H Features Website arch Engi structure anchor and flo ommentin	TTP Protocol: of Web 2.0, creation and nes and their e tags, HTML tag, adding ating frames, g code, color,		
Content Summary: Request and Response Common terminology: maintenance, Web Ho working. HTML: Intro comments, Text form images and sound, li Developing Forms, Im-	Con e, W IP A sting duct attir ists: age s, in ,	cept of WWW, Internet and Meb browser and Web servers, addressing, URLs, Domain names g and Publishing Concepts, Sea ion to HTML, HTML Document ng, inserting special characters types of lists, tables, frames maps, formatting, and fonts, co nages, forms, XHTML, Meta tag	WWW, H Features Website arch Engi structure s, anchor and flo mmentin gs, Chara	TTP Protocol: of Web 2.0, e Creation and nes and their e tags, HTML r tag, adding ating frames, g code, color,		

Unit Number: 3	Web design Issue	No. of hours: 12					
including Browser, Bar Website, Page Layout publishing website, De site structure.	Concepts of effective web design, Web ndwidth and Cache, Display resolution and linking, User centric design, Siter signing effective navigation, Browser	, Look and Feel of the nap, Planning and					
Unit Number: 4	XML	No. of hours: 8					
XML: Introduction to XML Naming rules, bu XML, Components of X Introduction to Web Developing and deploy	Content Summary: XML: Introduction to XML-Mark up languages, Features of Mark-up languages, XML Naming rules, building block of XML, Document, Difference between HTML & XML, Components of XML, XML Parser, DTD's Using XML with HTML and CSS. Introduction to Web Services, UDDI, SOAP, WSDL, Web Service Architecture, Developing and deploying web services. AJAX –Introduction AJAX programming, mproving web page performance using AJAX.						
*Self-Learning Com	ponents:						
	eatlearning.com/web-developmen learn.com/certifications/web-dev						
2. HTML Black Book, S 3. Web Technology, Ra	Ittam K. Roy, Oxford University Press tephen Holzner, Wiley Dreamtech. ajkamal, Tata McGraw-Hill. : A Computer Science Perspective m, Deitel&Deitel Nieto	, Jeffrey C. Jackson,					

COs	Statements
CO1	Create a well-designed and well-formed, professional Web site utilizing the most current standards and practice
CO2	Demonstrate knowledge in web technologies including HTML, XHTML, CSS, image editing software, web authoring software, and client-side scripting.
СОЗ	Create client-side scripts to add interactivity to Web pages.
CO4	Select appropriate Web tools for a Web development project.
CO5	Identify Web authoring obstacles created by the availability of various web browsers and markup language versions.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
C01	C1		P1
CO2	C1		P2
CO3	C3		Р3
CO4	C4		-
CO5	C5		Р3

*Please Note: Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1	-	-	-	-	1	-	-	-	1
CO2	-	1	-	-	-	2		-	-	-
CO3	-	-	2	-	-	2	3	-	-	-
CO4	-	-	-	2	-	2	-	2	-	-
C05	-	-	-		3	2	-	-	1	-

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

1=weakly mapped

- 2= moderately mapped
- 3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	1		3	1
CO2	-	1	-	-
CO3	1	-	2	-
CO4	-	-	-	1
CO5	1	-	1	-

Relevance of the Syllabus to various indicators

Unit I	Introduction
Local	Addresses local understanding of the Internet and its
	impact on society
Regional	Addresses regional internet connectivity and network
	infrastructure requirements
National	Contributes to national digital literacy and internet
	connectivity strategies
Global	Aligns with global trends in internet technologies and network protocols
Employability	Develops skills in using internet-based services and understanding network protocols
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills in internet technologies and network protocols
Professional Ethics	-
Gender	
Human Values	_
Environment &	
Sustainability	-
Unit II	
Local	Addresses local understanding of the Internet and its
	impact on society
Regional	-
National	Contributes to national digital literacy and internet
	connectivity strategies
Global	Aligns with global trends in internet technologies and network protocols
Employability	Develops skills in using internet-based services and understanding network protocols
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills in internet technologies and network protocols
Professional Ethics	-
Gender	_
Human Values	
Environment &	
Sustainability	_
Unit III	
Local	Addresses local network security needs and practices
Regional	
National	Contributos to national notwork socurity strategies and
	Contributes to national network security strategies and protocols

Global	Aligns with global trends in network security techniques and protocols
Employability	Develops skills in network programming and network security techniques
Entrepreneurship	-
Skill Development	Develops knowledge and skills in client-server programming and network security
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit IV	
Local	Addresses local understanding and implementation of internet-based services
Regional	-
National	Contributes to national digital communication strategies and multimedia applications
Global	Aligns with global trends in internet telephony, multimedia applications, and SEO
Employability	Develops skills in internet telephony, multimedia applications, and SEO
Entrepreneurship	-
Skill Development	Develops knowledge and skills in internet telephony, multimedia applications, and SEO
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
SDG	SDG 4
NEP 2020	-
POE/4 th IR	Aligns with the concepts of internet telephony, multimedia applications, and SEO

FUNDAMENTALS OF WEB TECHNOLOGIE LAB

Department:	Department of Computer Science and Enginee			
Course Name: Fundamentals of Web	Course Code	L-T-P	Credits	
Technologies Lab	ENBC151	0-0-2	1	
	Major			
Type of Course:				
Pre-requisite(s), if a	ny:			

Defined Course Outcomes

COs	Course Outcomes (COs)
CO 1	Analyze a web page and identify its elements and attributes.
CO 2	Create web pages using XHTML and Cascading Style Sheets. \cdot
CO 3	Build dynamic web pages using JavaScript (Client side programming). \cdot
CO 4	Create XML documents and Schemas.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Write HTML/Java scripts to display your CV in Web Browser	C01
2	Creation and annotation of static web pages using any HTML editor.	C01
3	Write a program to use XML and JavaScript for creation of your homepage.	CO4
4	Write a program in XML for creation of DTD which specifies a particular set of rules.	CO4
5	Create a Style sheet in CSS/XSL and display the document in Web Browser	CO2
6	Create a Registration Form with Table	CO2
7	CSS : Inline Style , Internal Style ,and External Style Sheets	CO3

8	JavaScript & HTML: • Use user defined function to get array of values and sort them in ascending order • Demonstrate String and Math Object's predefined methods • Demonstrate Array Objects and Date Object's predefined methods • Exception Handling • Calendar Creation : Display all month • Event Handling • Validation of registration form • Open a Window from the current window • Change color of background at each click of button or refresh of a page • Display calendar for the month and year selected from combo box •OnMouseover event	
9	XML • Create any catalog • Display the catalog created using CSS or XS	CO4

PROGRAMMING IN MATLAB

Department: Department of Computer Science and Eng			Engineering
Course Name:	Course Code	L-T-P	Credits
Matlab Programming	ENBC103	4-0-0	4
Type of Course:	Major		
Pre-requisite(s), if any	:		

Brief Syllabus:

MATLAB is a powerful software tool used in engineering, mathematics, and science for numerical computations, data analysis, and simulation. It has a user-friendly interface, supports arrays, matrices, and complex numbers, and allows scripting for automation. MATLAB includes graphing capabilities, Simulink for system modeling, and extensive mathematical functions for integration, solving equations, and transforms. It is widely used by researchers, engineers, and scientists for a variety of applications.

UNIT WISE DETAILS

Unit	Titler	Introduction to MATLAB	No. of hours: 10
Number: 1	Title:		

Content Summary:

Brief Introduction, Installation of MATLAB, History, Use of MATLAB, Key features, MATLAB Window, Command Window, Workspace, Command history, Setting directory, Working with the MATLAB user interface, Basic commands, Assigning variables, Operations with variables, Data files and Data types: Character and string, Arrays and vectors, Column vectors, Row vectors, Arithmetic operations, Operators and special characters, Mathematical and logical operators, Solving arithmetic equations.

er: 2 Title: Operations& Plots No. of hours: 12

Content Summary:

Crating rows and columns Matrix, Matrix operations: Finding transpose, determinant and inverse, Solving matrix, Trigonometric functions, Complex numbers, fractions, Real numbers, Complex numbers, Working with script tools, Writing Script file, Executing script files, The MATLAB Editor, Saving m files

Plotting vector and matrix data, Plot labeling, curve labeling and editing, Basic Plotting Functions, Creating a Plot Plotting Multiple Data Sets in One Graph, Specifying Line Styles and Colors, Graphing Imaginary and Complex Data Figure, Windows Displaying, Multiple Plots in One Figure, Controlling the Axes, Creating Mesh and Surface About Mesh and Surface Visualizing Subplots.

Unit Number: 3	Title:	MATLAB Simulink	No. of hours: 10
-------------------	--------	-----------------	------------------

Content Summary:

Introduction of Simulink, Simulink Environment & Interface, Study of Library, Circuit Oriented Design, Equation Oriented Design, Model Subsystem Design, Connect Call back to subsystem, Application. Automating commands with scripts, writing programs with logic and flow control, Control statement, Programming Conditional Statement, Writing functions, Programming, Examples

Calculus: Numerical Integration, Linear Algebra, Roots of Polynomials, Algebraic equations, Differential Equations (1st& 2nd order), Transforms (Fourier, Laplace, etc), Ordinary Differential equations, Examples of few ODEs.

*Self-Learning Components:

1) Introduce the concept of Simulink and its interface. Explain the difference between

2) Describe the numerical integration method in MATLAB for solving calculus problems.

3)https://www.mygreatlearning.com/academy/learn-for free/courses/matlab

4) <u>https://www.simplilearn.com/free-matlab-online-course-skillup</u>

Reference Books:

- 1. Ian. J. Lyod , "Information technology law" , Information Technology Act 2000, its amendment and IT Rules, 2014.
- 2. Yee fen Lim , "Cyber space law commentaries and Materials", second edition, Galexia Consulting Pty Ltd, Australia.
- 3. William Stallings and LawrieBrown "Computer Security: Principles and Practice" (2020).

Define Course Outcomes (CO)

COs	Statements
C01	Understand the fundamental concepts and functionalities of MATLAB, including its history, installation process, and key features.
CO2	Analyze the different problems related to matrix manipulation, trigonometric functions, complex numbers, and fractions. Utilize script tools to write and execute script files.
CO3	Apply MATLAB Simulink to model and simulate systems.
CO4	Evaluate capabilities in MATLAB to solve mathematical problems related to calculus, linear algebra, polynomials, algebraic equations, differential equations, and transforms.

Cos Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
C01	C1	-	P1
CO2	C2	A3	-
CO3	C3	-	-
CO4	C4	-	P2
CO5	C5	A4	-

*Please Note: Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	-	-	2	3	-	3	3	-
CO2	2	3	-	-	3	3	-	2	1	-
CO3	1	3	-	-	2	2	-	2	2	-
CO4	2	1	3	3	1	2	2	1	3	2
CO5	2	2	-	-	3	3	-	3	2	2

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	1	-	-
CO2	3	2	-	2
CO3	2	-	3	-
CO4	-	2	3	2
CO5	-	1	-	3

Relevance of the Syllabus to various indicators

Unit I	Introduction to MATLAB
Local	Understanding MATLAB and its applications can be relevant at the local level for educational institutions, research organizations, and industries that use MATLAB for various data analysis and problem-solving tasks.
Regional	MATLAB can be used in regional projects related to engineering, science, finance, and other fields, contributing to regional development.
National	Its applications in engineering, healthcare, finance, and other sectors can have a significant impact on the nation's progress and development.
Global	Its relevance extends worldwide, and the skills gained can be beneficial for individuals seeking opportunities in international collaborations, research, or global corporations.
Employability	Proficiency in MATLAB can enhance an individual's employability across various industries and job roles.
Entrepreneurship	-
Skill Development	Learning MATLAB helps individuals develop skills in programming, data manipulation, mathematical analysis, and problem-solving, fostering overall skill development.

Professional	
Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit II	Operations
Local	Local researchers and students can utilize MATLAB's matrix capabilities for their projects and assignments.
Regional	-
National	-
Global	MATLAB is a globally used tool, and its matrix operations have a wide-reaching impact.
Employability	Proficiency in MATLAB's matrix operations is highly valued in various industries.
Entrepreneurship	-
Skill	Learning matrix operations in MATLAB helps individuals
Development	develop valuable skills in linear algebra, which are essential for data analysis, engineering, and scientific research.
Professional	
Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit III	MATLAB Simulink
Local	Local researchers and students can utilize Simulink for their projects related to control systems, signal processing, and circuit design.

Regional	-
National	-
Global	Proficiency in Simulink can be valuable for individuals seeking opportunities in international collaborations and research projects.
Employability	Proficiency in Simulink is highly valued in engineering and technical industries.
Entrepreneurship	-
Skill Development	Learning Simulink helps individuals develop skills in system- level modeling, simulation, and design, which are essential for engineering and research tasks.
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit IV	Symbolic Math in MATLAB
Local	Understanding numerical integration techniques and their applications in calculus is relevant at the local level for educational institutions, research centers, and industries that deal with data analysis, optimization, and simulations.
Regional	-
National	-
Global	Its relevance extends worldwide, and its applications impact global scientific advancements.
Employability	Proficiency in calculus, numerical integration, and differential equations is highly valued in technical industries such as engineering, data analysis, and scientific research.
Entrepreneurship	-

Skill Development	Learning calculus, numerical integration, and differential equations helps individuals develop strong analytical and problem-solving skills, which are essential for scientific research and engineering tasks.	
Professional		
Ethics	-	
Gender	-	
Human Values	-	
Environment &		
Sustainability	-	
SDG	SDG 4,9,16	
NEP 2020	Aligns with the objectives and principles of NEP 2020, such as: Holistic Development, Skill Development Digital Literacy	
POE/4 th IR	The principles of the Fourth Industrial Revolution, fostering holistic development, skill development, digital literacy, and addressing emerging challenges in the digital era.	

MATLAB PROGRAMMING LAB

Department:	Department of Computer Science and Engineering		
Course Name:	Course Code	L-T-P	Credits
Matlab Programming Lab	ENBC153	0-0-2	1
Type of Course:	Major		
Pre-requisite(s), if any:	y:		

Defined Course Outcomes

COs	
CO 1	Understand MATLAB Fundamentals (Knowledge) Students will be able to demonstrate a basic understanding of MATLAB syntax, variables, data types, and operators.
CO 2	Apply MATLAB Programming Techniques (Application) Students will be able to write MATLAB programs to solve various mathematical problems, implement algorithms, and manipulate arrays and matrices.
CO 3	Analyze and Evaluate MATLAB Code (Analysis) Students will be able to analyze existing MATLAB code, identify errors, and debug the programs to ensure correct functionality.
CO 4	Create Custom Functions and Plots (Synthesis) Students will be able to create their own user-defined functions in MATLAB, encapsulate code for reusability, and generate complex plots to visualize data
CO 5	Solve Engineering and Scientific Problems using MATLAB (Evaluation) Students will be able to apply MATLAB to solve real-world engineering and scientific problems, interpret the results, and evaluate the effectiveness of their solutions.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Program to find the sum of elements in an array.	C01
2	Program to calculate the factorial of a given number using a loop.	CO1, CO2
3	Program to check whether a given number is prime or not.	C01
4	Program to find the Fibonacci series up to a given number of terms.	CO1, CO2
5	Program to calculate the roots of a quadratic equation.	CO1, CO2, CO5
6	Program to implement bubble sort for sorting an array.	CO1, CO2
7	Program to calculate the mean, median and mode of a dataset.	CO1, CO2, CO3, CO4
8	Program to plot a sine wave and cosine wave on the same graph.	CO1, CO2, CO4
9	Program to implement matrix addition and subtraction. or solving a first-order ordinary differential equation	CO1, CO2
10	Program to find the determinant of a 3x3 matrix.	CO1, CO2
11	Program to calculate the area and perimeter of a circle given its radius.	CO1, CO2
12	Program to implement linear regression for a given dataset.	CO1, CO2, CO4
13	Program to convert a decimal number to binary.	CO1, CO2
14	Program to perform element-wise multiplication of two matrices.	CO1, CO2
15	Program to implement the Simpson's 1/3 rule for	CO1, CO2

	numerical integration.	
16	Program to generate a random password of a given length.	CO1, CO2
17	Program to implement the Gauss-Seidel method to solve a system of linear equations.	CO 5
18	Program to implement a simple calculator with basic arithmetic operations.	CO 4
19	Program to simulate a simple dice rolling game	CO 2
20	Mini Project: Develop a MATLAB program to perform basic image processing operations such as image enhancement, filtering, edge detection, and image segmentation. Apply these techniques to analyze and manipulate images.	CO2, CO3, CO5
21	Mini Project: Design a MATLAB program to process and analyze signals, such as audio signals or ECG signals. Implement filtering, noise reduction, Fourier analysis, and plotting of signal waveforms.	CO2, CO3,CO4, CO5
22	Mini Project: Implement various numerical methods in MATLAB, such as solving systems of linear equations, finding roots of nonlinear equations, numerical integration, and solving ordinary differential equations. Apply these methods to solve engineering and scientific problems.	CO2, CO3, CO5
23	Mini Project: Use MATLAB to analyze and visualize data from real-world datasets. Perform statistical analysis, data interpolation, curve fitting, and generate meaningful visualizations such as plots and graphs to present the results.	CO2, CO3,CO4, CO5
24	Mini Project: Build a MATLAB program to simulate control systems. Design and analyze feedback control systems, implement controllers, and simulate the system's response. Evaluate the stability and performance of the control system under various scenarios.	CO2, CO3, CO5

LINUX ENVIRONMENT LAB

Department:	Department of Computer Science and Engineering			
Course Name:	Course Code	L-T-P	Credits	
Linux Environment Lab	SEC050	0-0-2	2	
Type of Course:	SEC			
Pre-requisite(s), if any: Basic understanding of computer systems and familiarity with operating systems				

Defined Course Outcomes

COs	
CO 1	Apply Linux operating system concepts and commands.
CO 2	Utilize scripting and automation techniques in Linux.
CO 3	Manage system resources and security in Linux.
CO 4	Implement networking and server configurations in Linux.
CO 5	Explore emerging technologies and trends in Linux for data science.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped
		CO/COs
1	Installing Linux Operating System	CO 1
2	Exploring the System	CO 1
3	Working with Directories and Files	CO 1
4	File Manipulation and Redirection	CO 1
5	Searching for Files	CO 1
6	Understanding Display and Window Managers	CO 1

7	User and Group Management	CO 1, CO 3
8	Package Management and Software Building	CO 1, CO 3
9	Device Management and Mounting	CO 1
10	Introduction to Shell Scripting	CO 2
11	Shell Scripting: Control Structures	CO 2
12	Process Management and Automation	CO 2
13	File Permissions and Security	CO 3
14	Network Configuration and Troubleshooting	CO 4
15	Linux Servers and Web Hosting	CO 4
16	Network Security in Linux	CO 4
17	Introduction to Emerging Technologies in Linux	CO 5
18	Docker and Containerization	CO 5
19	Cloud Platforms and Deployment	CO 5
20	Linux for IoT and Embedded Systems	CO 5
21	Data Processing with Linux Tools	CO 5
22	Data Analysis with Linux Tools	CO 5
23	Machine Learning with Linux	CO 5
24	Big Data Analytics with Linux	CO 5
25	Visualization and Reporting	CO 5
·	1	

Detailed List of experiments

- 1. Installing Linux Operating System:
 - Session: Introduction to different Linux distributions and their installation methods.
 - Exercise: Install a Linux distribution of choice on a virtual machine or physical hardware.
 - Project: Set up a dual-boot system with Linux and another operating system.
- 2. Exploring the System:

- Session: Familiarize with basic system commands and file system navigation.
- Exercise: Use commands like **Is**, **cd**, **pwd**, and **man** to navigate and explore the file system.
- Project: Create a directory structure and organize files based on a specific criterion.
- 3. Working with Directories and Files:
 - Session: Learn directory and file manipulation commands.
 - Exercise: Create, rename, move, and delete directories and files using commands like **mkdir**, **mv**, and **rm**.
 - Project: Develop a script to automate a specific file management task.
- 4. File Manipulation and Redirection:
 - Session: Understand file manipulation and input/output redirection techniques.
 - Exercise: Use commands like **touch**, **cat**, and redirection operators (>, >>, <) to create, view, and manipulate file contents.
 - Project: Write a script to process a text file and extract specific information.
- 5. Searching for Files:
 - Session: Learn about file searching techniques using commands like **grep** and **find**.
 - Exercise: Search for specific patterns or files within directories using **grep** and **find** commands.
 - Project: Develop a script to search for files based on user-defined criteria.
- 6. Understanding Display and Window Managers:
 - Session: Introduce X Window System, display managers, and window managers.
 - Exercise: Configure and customize the window manager settings.
 - Project: Explore different window managers and compare their features and performance.
- 7. User and Group Management:

• Session: Understand user and group management commands and concepts.

- Exercise: Create, modify, and delete user accounts and groups using commands like **useradd**, **usermod**, and **groupadd**.
- Project: Implement a script to automate user and group management tasks.
- 8. Package Management and Software Building:
 - Session: Learn package management systems and software installation methods.
 - Exercise: Use package management commands like **apt** or **yum** to install, update, and remove software packages.
 - Project: Build a custom package from source code and install it on the system.
- 9. Device Management and Mounting:
 - Session: Understand device management, device files, and mounting concepts.
 - Exercise: Identify different types of devices and mount/unmount them using commands like **mount** and **umount**.
 - Project: Automate the mounting process for specific devices upon system startup.

10.Introduction to Shell Scripting:

- Session: Introduce shell scripting and basic scripting concepts.
- Exercise: Write simple shell scripts to perform tasks like printing system information or automating repetitive tasks.
- Project: Develop a script that performs system monitoring and sends alerts when specific conditions are met.

11.Shell Scripting: Control Structures:

- Session: Explore control structures in shell scripting (if-else, loops).
- Exercise: Write shell scripts with conditional statements and loops to solve specific problems.
- Project: Create a script that performs data backup and retention based on user-defined policies.

- 12. Process Management and Automation:
 - Session: Learn process management commands and techniques.
 - Exercise: Manage running processes, monitor resource usage, and control process execution using commands like **ps**, **top**, and **kill**.
 - Project: Develop a script that monitors and restarts a specific service if it becomes unresponsive.

13.File Permissions and Security:

- Session: Understand file permissions, ownership, and basic security measures.
- Exercise: Set and modify file permissions, change ownership, and manage access control.
- Project: Create a script that audits file permissions and reports any security vulnerabilities.

14.Network Configuration and Troubleshooting:

- Session: Configure network interfaces, troubleshoot network connectivity issues.
- Exercise: Configure network settings manually, diagnose and fix common network problems.
- Project: Implement a script that automates network configuration for different network scenarios.

15.Linux Servers and Web Hosting:

- Session: Introduce Linux server administration and web hosting concepts.
- Exercise: Install and configure server software like Apache or Nginx, host a basic website.
- Project: Deploy a web application on a Linux server and configure it for optimal performance.

16.Network Security in Linux:

- Session: Explore network security measures and techniques in Linux.
- Exercise: Implement firewall rules, set up secure remote access, and monitor network traffic.

• Project: Design and implement a secure network architecture for a given scenario.

17.Introduction to Emerging Technologies in Linux:

- Session: Discuss emerging technologies and trends in the Linux ecosystem.
- Exercise: Explore technologies like containers, cloud platforms, IoT, etc., and their integration with Linux.
- Project: Research and present a case study on the application of an emerging technology in a real-world data science project.
- 18.Docker and Containerization:
 - Session: Understand containerization concepts and Docker fundamentals.
 - Exercise: Build, run, and manage containers using Docker commands.
 - Project: Containerize a data science application or workflow using Docker.
- 19.Cloud Platforms and Deployment:
 - Session: Introduce cloud computing platforms and deployment strategies.
 - Exercise: Deploy applications on cloud platforms like AWS, Google Cloud, or Azure.
 - Project: Design and deploy a scalable and fault-tolerant data science solution on a cloud platform.

20.Linux for IoT and Embedded Systems:

- Session: Discuss the role of Linux in IoT and embedded systems.
- Exercise: Set up and configure a Raspberry Pi or similar device running a Linux distribution.
- Project: Develop a small-scale IoT project using Linux and connected devices.

21.Data Processing with Linux Tools:

• Session: Explore command-line tools for data processing and manipulation.

- Exercise: Use tools like **awk**, **sed**, and **grep** to extract, transform, and analyze data.
- Project: Develop a data processing pipeline using Linux tools for a specific data analysis task.
- 22.Data Analysis with Linux Tools:
 - Session: Introduce data analysis tools and frameworks available in the Linux environment.
 - Exercise: Utilize tools like R, Python, or SQL to perform data analysis tasks on Linux.
 - Project: Analyze a real-world dataset using Linux tools and generate insights or visualizations.
- 23.Machine Learning with Linux:
 - Session: Discuss the integration of Linux with machine learning frameworks and libraries.
 - Exercise: Install and configure machine learning tools like TensorFlow or scikit-learn on Linux.
 - Project: Develop a machine learning model using Linux-based tools for a given problem.

24.Big Data Analytics with Linux:

- Session: Explore big data analytics tools and technologies on Linux.
- Exercise: Set up and utilize tools like Hadoop or Apache Spark for big data processing and analysis.
- Project: Perform large-scale data analysis using Linux-based big data tools on a sample dataset.

25.Visualization and Reporting:

- Session: Introduce visualization tools and techniques for data representation.
- Exercise: Use tools like Matplotlib, Tableau, or R libraries to create visualizations on Linux.
- Project: Develop a dashboard or report presenting insights from a data analysis project using Linux-based visualization tools.

References:

1. "Linux Journey" (Website): A comprehensive online tutorial that covers various topics in Linux, from basic commands to advanced system administration. It provides interactive exercises and practical examples. Website: <u>linuxjourney.com</u>

2. "Linux Documentation Project" (Website): Offers a vast collection of documentation, guides, how-tos, and tutorials on Linux. It covers a wide range of topics and provides detailed explanations and examples. Website: <u>tldp.org</u>

3. "LinuxCommand.org" (Website): Provides a beginner-friendly guide to learning the command line in Linux. It covers basic to advanced command-line usage and offers practical examples and exercises. Website: <u>linuxcommand.org</u>

4. "The Linux Command Line" by William E. Shotts (Book): This book is a comprehensive guide to the Linux command line interface. It covers essential commands, file system navigation, text processing, shell scripting, and more. It includes practical examples and exercises to reinforce learning. [ISBN-13: 978-1593279523]

5. "Linux Bible" by Christopher Negus (Book): A comprehensive guide to Linux system administration and usage. It covers a wide range of topics, including installation, command-line usage, networking, security, and more. It provides step-by-step instructions and real-world examples. [ISBN-13: 978-1119578884]

6. "Linux Pocket Guide" by Daniel J. Barrett (Book): A concise reference guide to essential Linux commands and configurations. It provides quick explanations and examples of commonly used commands, file management, text processing, and system administration tasks. [ISBN-13: 978-1492082809]

7. "Linux Academy" (Online Learning Platform): Offers a wide range of Linux courses and hands-on labs for learners of all levels. It covers various topics, including Linux system administration, shell scripting, DevOps tools, and cloud platforms. Website: <u>linuxacademy.com</u>

8. "edX - Introduction to Linux" (Online Course): A free online course provided by The Linux Foundation, introducing Linux fundamentals, command-line usage, file management, and basic system administration. Website: <u>edx.org</u>

9. "Udemy - Linux Administration Bootcamp" (Online Course): A comprehensive course that covers Linux administration, including system configuration, networking, security, and shell scripting. It includes hands-on exercises and practical examples. Website: <u>udemy.com</u>

INTRODUCTION TO COMPUTER SCIENCE AND PROGRAMMING IN PYTHON

Department:		Department of Computer Science and Engineering		
Course Name: Introduction To Computer Science And Programming In Python		Course Code	L-T-P	Credits
		ENSP107	4-0-0	4
Type of Course:	Mir	nor		
Pre-requisite(s), if a	ny:	-		
Brief Syllabus:				

"Introduction to Computer Science and Programming in Python" is a foundational course designed to equip students with essential programming skills and concepts for data science. The course covers fundamental components of a computer system, algorithm development, and Python programming basics. Students will learn about control structures, string manipulation, and the concept of abstraction through functions. They will also explore data structures like lists and dictionaries, as well as object-oriented programming and handling exceptions. The syllabus also includes file handling, search, and sorting algorithms. Students will gain proficiency in Python programming, problem-solving, and data manipulation, enabling them to apply these skills in real-world data science scenarios.

UNIT WISE DETAILS

Unit Number:	Title: Introduction to Programming	No. of hours: 10
1	and Computation	No. of hours: 10

Content Summary:

Components of a computer system: disks, memory, processor, operating system, compilers, etc., Introduction to computation and its principles, Steps to solve logical and numerical problems: idea of algorithms, Algorithm representation: flowcharts, pseudo code, From algorithms to programs: source code, variables, syntax, and logical errors.

	Title: Python Basics and Control Structures	No. of hours: 12
Z	Structures	

Content Summary:

Introduction to Python programming language, Basic elements of Python, Branching programs: if statements, conditional execution, Iteration: loops while and for statements, String manipulation: operations, methods, formatting, Input and output handling, Introduction to functions and scoping.

Unit Number: 3 Title: D	Data Structures and Abstraction	No. of hours: 8
----------------------------	---------------------------------	-----------------

Content Summary:

Tuples and lists: operations, indexing, slicing, Aliasing, mutability, and cloning, Decomposition and abstraction principles, Functions and their role in abstraction, Recursion: concept and application, Dictionaries: key-value pairs, dictionary methods.

		Title: Program Development and Efficiency	No. of hours: 12
--	--	--	------------------

Content Summary:

Testing and debugging: strategies and techniques, Handling exceptions and assertions, Introduction to object-oriented programming, Python classes and inheritance, File handling: reading and writing files, Search algorithms: linear search, binary search, Sorting algorithms: selection sort, insertion sort, Hash tables and their applications.

Unit Number: Title: Program Efficiency and 5 Complexity Analysis No. of hours: 10

Content Summary:

Understanding program efficiency, Introduction to algorithm analysis, Time complexity and Big O notation, Space complexity, Optimization techniques and best practices.

*Self-Learning Components:

- Online Tutorials and Video Lectures:
- 1. Python for Everybody University of Michigan Link:
- https://www.py4e.com/

2. Programming with Python - Coursera (Offered by the University of Michigan) Link: <u>https://www.coursera.org/learn/python-</u>programming

3. Python Crash Course - YouTube Playlist by Corey Schafer Link: https://youtube.com/playlist?list=PL-

- <u>osiE80TeTskrapNbzXhwoFUiLCjGgY7</u>
- Interactive Coding Platforms:
- 1. Codecademy Python Course Link:

https://www.codecademy.com/learn/learn-python-3

2. DataCamp Python Courses Link:

https://www.datacamp.com/courses/intro-to-python-for-datascience

- Online Practice and Challenges:
- 1. HackerRank Python Domain Link:

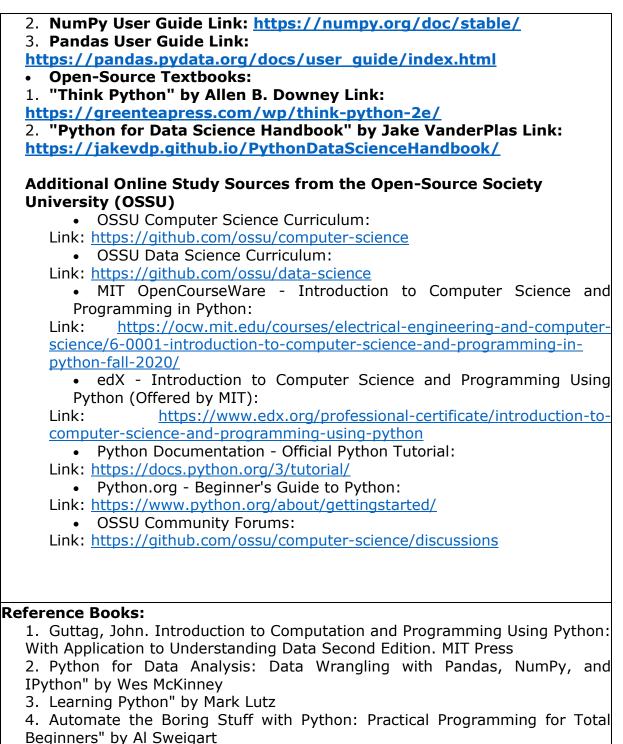
https://www.hackerrank.com/domains/python

2. LeetCode Python Problems Link:

https://leetcode.com/problemset/all/?topicSlugs=python

- Data Science Case Studies and Projects:
- 1. Kaggle Datasets and Kernels Link:

https://www.kaggle.com/datasets


2. Dataquest Data Science Projects Link:

https://www.dataquest.io/projects/

• Python Documentation and Libraries:

1. Python Official Documentation Link: <u>https://docs.python.org/3/</u>

Define Course Outcomes (CO)

COs	Statements
CO1	Comprehend the fundamental principles of computer programming and computation, including the components of a computer system and the idea of algorithms.
CO2	Demonstrate proficiency in Python programming language and apply it to develop programs using branching, iteration, and string manipulation techniques.
CO3	Utilize data structures such as lists, tuples, and dictionaries to organize and manipulate data efficiently in Python programs.
CO4	Implement object-oriented programming concepts, including classes, inheritance, and file handling, to build complex Python applications.
CO5	Analyze and evaluate the efficiency of algorithms and programs using time and space complexity analysis and apply optimization techniques for improved performance.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C1	-	-
C02	C2	-	-
CO3	C3	A4	Р3
CO4	C3	A4	P4
C05	C4, C5	A5	Р5

*Please Note:

Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	-	-	1	-	3	-	1	-	-
CO2	3	-	-	2	-	3	-	1	-	-
CO3	-	3	1	3	1	3	1	2	1	1
CO4	-	1	3	2	2	3	2	2	2	2
CO5	-	1	3	3	2	3	1	2	1	-

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

1=weakly mapped

2= moderately mapped

3=strongly mapped

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	1	3	-
CO2	3	1	2	-
CO3	2	2	3	1
CO4	3	3	2	2
CO5	2	2	2	2

CO-PSO Mapping

Relevance of the Syllabus to various indicators

Unit I	Introduction to Programming and Computation
Local	Relevant to local industries and businesses that rely on
	technology and data processing
Regional	Encourages local innovation and problem-solving through
	programming
National	Contributes to building a strong national workforce in the
	technology sector by imparting essential computer science
	knowledge
Global	Align with global relevance as computer programming and
	algorithms are essential components of the global tech
Energies ve bility v	industry
Employability	Improved employability prospects in local, regional, national, and even global tech companies.
Entrepreneurship	
· · ·	- Feauses on doveloping critical skills such as problem
Skill Development	Focuses on developing critical skills such as problem- solving, logical thinking, and algorithm design, which are
	essential for students' overall skill development.
Professional Ethics	
Gender	
Human Values	
Environment &	-
Sustainability	
Unit II	Python Basics and Control Structures
Local	Relevant to local industries and businesses that rely on
	technology and data processing
Regional	Encourages local innovation and problem-solving through programming
National	Contributes to building a strong national workforce in the
	technology sector by imparting essential computer science
	knowledge
Global	Align with global relevance as computer programming and
	algorithms are essential components of the global tech
	industry
Employability	Improved employability prospects in local, regional,
Entropropourchip	national, and even global tech companies.
Entrepreneurship	- Fearrage on developing withing altille such as weaklows
Skill Development	Focuses on developing critical skills such as problem-
	solving, logical thinking, and algorithm design, which are essential for students' overall skill development.
Professional Ethics	
Gender	
	-
Human Values	-
Environment &	
Sustainability Unit III	- Data Structures and Abstraction

Local	Knowledge of data structures and abstraction principles is valuable for local businesses handling large datasets.
Regional	It equips students with skills needed in regional data-driven industries such as finance, healthcare, and marketing.
National	The syllabus contributes to the development of a data- savvy workforce that can contribute to the national data ecosystem.
Global	Align globally as data-driven decision-making is essential in global industries and research.
Employability	Improved employability prospects in local, regional, national, and even global tech companies.
Entrepreneurship	-
Skill Development	Focuses on developing critical skills such as problem- solving, logical thinking, and algorithm design, which are essential for students' overall skill development.
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	_
Unit IV	Program Development and Efficiency
Local	Knowledge of Program Development and Efficiency is valuable for local businesses handling large datasets.
Regional	It equips students with skills needed in regional data-driven industries such as finance, healthcare, and marketing.
National	The syllabus contributes to the development of a data- savvy workforce that can contribute to the national data ecosystem.
Global	Align globally as data-driven decision-making is essential in global industries and research.
Employability	Improved employability prospects in local, regional, national, and even global tech companies.
Entrepreneurship	-
Skill Development	Focuses on developing critical skills such as problem- solving, logical thinking, and algorithm design, which are essential for students' overall skill development.
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit V	Program Efficiency and Complexity Analysis
Local	Understanding program efficiency is vital for local industries to optimize their computational resources for improved performance.

Regional	It equips students with skills needed to tackle regional data
	science challenges in various domains.
National	Aligns with national efforts to promote data-driven decision- making in various sectors for effective policymaking.
Global	The concepts covered in Unit V have global relevance as efficient programming practices are critical for global technology advancement.
Employability	
Entrepreneurship	
Skill Development	
Professional Ethics	
Gender	
Human Values	
Environment & Sustainability	
SDG	Aligns with the UN Sustainable Development Goal 4 (Quality Education) by imparting foundational computer science knowledge to students.
NEP 2020	The syllabus supports the National Education Policy 2020's emphasis on integrating technology and computational thinking in education.
POE/4 th IR	The syllabus prepares students for the Fourth Industrial Revolution by providing them with essential programming and computational skills.

INTRODUCTION TO COMPUTER SCIENCE AND PROGRAMMING IN PYTHON LAB

Department:	Department of Computer Science and Engineering		
Course Name: Introduction to	Course Code	L-T-P	Credits
Computer Science and Programming in	ENSP155	0-0-2	1
Type of Course:	Minor		
Python Lab Type of Course: Pre-requisite(s), if a	Minor ny: Python programming		

Defined Course Outcomes

COs	
CO 1	Apply fundamental programming concepts, including syntax, variables, control structures, functions, and data structures, to solve problems using the Python programming language.
CO 2	Utilize appropriate data structures such as lists, tuples, dictionaries, and understand their properties and operations. Implement basic algorithms like search and sort algorithms to solve problems efficiently.
CO 3	Design and implement object-oriented programs using classes, inheritance, and encapsulation concepts. Apply object-oriented principles to create reusable and modular code.
CO 4	Analyze the efficiency and complexity of algorithms and programs, including time complexity, space complexity, and other factors influencing performance. Make informed decisions to optimize code and improve overall efficiency.
CO 5	Analyze and visualize data using Python: Apply Python libraries and tools to analyze and visualize data, creating plots and charts for effective data presentation. Utilize Python's data manipulation capabilities to extract insights from datasets.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Introduction to Python: Setting up Python environment	CO1
2	Basic Python Syntax and Variables	CO1
3	Branching Programs: Implementing If Statements	CO1
4	Iteration: Loops and While Statements	CO1
5	String Manipulation: Working with Text	CO1
6	Input and Output: Reading and Writing Files	CO1
7	Functions: Implementing Reusable Code	CO1
8	Scoping and Abstraction: Understanding Function Scope	CO1, CO3
9	Tuples and Lists: Operations and Indexing	CO2
10	Aliasing and Mutability: Working with Data Structures	CO2
11	Recursion: Implementing Recursive Functions	CO1
12	Dictionaries: Working with Key-Value Pairs	CO2
13	Object-Oriented Programming: Creating Classes	CO3
14	Inheritance and Encapsulation: Extending Classes	CO3
15	Exception Handling: Dealing with Errors	CO3
16	File Handling: Reading and Writing Data from Files	CO1
17	Linear Search: Searching for an Element in a List	CO2
18	Binary Search: Implementing Binary Search Algorithm	CO2
19	Selection Sort: Sorting Elements in a List	CO2
20	Insertion Sort: Sorting a List in Ascending Order	CO2
21	Hash Tables: Storing and Retrieving Data	CO2
22	Program Efficiency: Analyzing Time Complexity	CO4
23	Debugging Techniques: Identifying and Fixing Errors	CO1, CO3
24	Data Visualization: Creating Plots and Charts	CO5
25	Project 1: Implementing a Simple Calculator	CO1, CO2
26	Project 2: Creating a To-Do List Application	CO1, CO2, CO3
27	Project 3: Building a Basic Contact Management System	CO1, CO2, CO3
28	Project 4: Analyzing and Visualizing Data using Python	CO4, CO5
29	Final Project: Integrating Concepts into a Comprehensive App	CO1, CO2, CO3, CO4, CO5

Detailed syllabus

1. **Experiment 1:** Introduction to Python: Setting up Python environment.

Session 1:

Topic: Introduction to Python programming language

- Overview of Python and its features
- Installation and setup of Python environment

Exercise: Write a Python program to display "Hello, World!" on the console. **Project:** Setting up a Python development environment: Install Python, set up an integrated development environment (IDE), and execute a sample program.

2. **Experiment 2**: Basic Python Syntax and Variables Session 1: Topic: Basic data types and variables in Python

- Integers, floats, strings, booleans, lists, dictionaries
- Variable declaration and assignment statements

Exercise: Write a Python program to swap the values of two variables.

Project: Create a simple calculator program: Design and implement a calculator program that performs basic arithmetic operations.

3. **Experiment 3**: Branching Programs: Implementing If Statements Session 1: Topic: Conditional statements and if statements

- Syntax and usage of if, elif, and else statements
- Comparison operators and logical operators

Exercise: Write a Python program to check if a given number is even or odd. Project: Implement a grading system: Write a program that takes input marks and assigns grades based on predefined criteria.

4. **Experiment 4**: Iteration: Loops and While Statements

Session 1: Topic: Loops and while statements

- Syntax and usage of while loops
- Controlling loop execution using break and continue statements

Exercise: Write a Python program to calculate the factorial of a given number using a while loop.

Project: Implement a number guessing game: Create a program where the user guesses a randomly generated number within a specified range.

5. **Experiment 5**: String Manipulation: Working with Text

Session 1: Topic: String manipulation in Python

- Basic string operations: concatenation, length, indexing, slicing
- String methods for formatting and manipulation

Exercise: Write a Python program to reverse a given string.

Project: Text analysis program: Develop a program that analyzes a text file, counting the occurrence of specific words and characters.

6. **Experiment 6**: Input and Output: Reading and Writing Files Session 1: Topic: File handling in Python

- Opening, reading, and writing to files
- Different file modes: read, write, append

Exercise: Write a Python program to read data from a text file and display it on the console.

Project: Create a basic address book application: Implement a program that allows users to add, view, and modify contact information stored in a text file.

7. **Experiment 7**: Functions: Implementing Reusable Code

Session 1: Topic: Functions in Python

• Defining and calling functions

• Function arguments and return values

Exercise: Write a Python function to calculate the factorial of a given number.

Project: Building a basic calculator application: Create a calculator program using functions to perform arithmetic operations.

8. **Experiment 8**: Scoping and Abstraction: Understanding Function Scope

Session 1: Topic: Scope of variables in Python

- Local and global variables
- Variable visibility and access

Exercise: Write a Python program to demonstrate variable scoping in nested functions.

Project: Implement a simple quiz game: Develop a program that presents a series of questions to the user and keeps track of their score.

9. Experiment 9: Tuples and Lists: Operations and Indexing

Session 1: Topic: Tuples and lists in Python

- Creating and manipulating tuples and lists
- Accessing elements using indexing and slicing

Exercise: Write a Python program to find the largest and smallest elements in a given list.

Project: Implement a grocery list application: Create a program that allows users to add, remove, and view items in a grocery list.

10. **Experiment 10**: Aliasing and Mutability: Working with Data Structures

Session 1: Topic: Aliasing and mutability in Python

- Understanding the concept of aliases and how they affect mutable objects
- Modifying mutable objects in-place

Exercise: Write a Python program to demonstrate the concept of aliasing and its impact on mutable objects.

Project: Building a simple inventory management system: Design and implement a program that tracks the quantity of items in stock and allows for adding and updating inventory.

11. **Experiment 11**: Recursion: Implementing Recursive Functions Session 1: Topic: Recursive functions in Python

- Understanding recursion and its base case
- Implementing recursive algorithms

Exercise: Write a recursive Python function to calculate the nth Fibonacci number. Project: Implementing a file system traversal: Create a program that recursively traverses a directory and lists all files and subdirectories.

12. **Experiment 12**: Dictionaries: Working with Key-Value Pairs

Session 1: Topic: Dictionaries in Python

- Creating and manipulating dictionaries
- Accessing and modifying values using keys

Exercise: Write a Python program to count the frequency of each character in a given string using a dictionary.

Project: Creating a simple dictionary application: Build a program that allows users to add, search, and delete word definitions stored in a dictionary.

13. **Experiment 13**: Object-Oriented Programming: Creating Classes

Session 1: Topic: Introduction to object-oriented programming (OOP)

- Understanding the basic principles of OOP
- Creating and using classes in Python

Exercise: Write a Python program to implement a class representing a circle and calculate its area and circumference.

Project: Developing a simple banking system: Design and implement a program that models a bank, with classes for customers, accounts, and transactions.

14. **Experiment 14**: Inheritance and Encapsulation: Extending Classes

Session 1: Topic: Inheritance and encapsulation in Python

- Creating subclasses and inheriting attributes and methods
- Understanding encapsulation and access modifiers

Exercise: Write a Python program to demonstrate inheritance by creating a hierarchy of classes representing different animals.

Project: Designing a simple game using inheritance: Develop a game where players control different characters with unique abilities inherited from a common superclass.

15. **Experiment 15**: Exception Handling: Dealing with Errors Session 1: Topic: Exception handling in Python

- Handling and raising exceptions
- Using try-except blocks for error handling

Exercise: Write a Python program to handle an exception when dividing a number by zero.

Project: Creating a basic error logging system: Implement a program that logs errors and exceptions encountered during its execution.

16. **Experiment 16**: File Handling: Reading and Writing Data from Files

Session 1: Topic: Advanced file handling in Python

• Reading and writing data to files using different formats (e.g., CSV, JSON)

• Error handling during file operations

Exercise: Write a Python program to read data from a CSV file, perform basic data manipulation, and display the results.

Project: Developing a simple data analysis tool: Create a program that reads data from multiple files, combines and analyzes the data, and generates reports.

17. **Experiment 17**: Linear Search: Searching for an Element in a List

Session 1: Topic: Linear search algorithm

- Implementing and understanding linear search
- Analyzing the time complexity of linear search

Exercise: Write a Python program to search for a specific element in a given list using linear search.

Project: Implementing a basic contact management system: Build a program that allows users to search for contacts stored in a list.

18. **Experiment 18**: Binary Search: Implementing Binary Search Algorithm

Session 1: Topic: Binary search algorithm

- Understanding the concept of binary search
- Implementing and analyzing the efficiency of binary search

Exercise: Write a Python program to search for a specific element in a sorted list using binary search.

Project: Creating a simple phone book application: Design a program that performs efficient search operations on a sorted list of contacts.

19. **Experiment 19**: Selection Sort: Sorting Elements in a List Session 1: Topic: Introduction to sorting algorithms

- Overview of sorting algorithms and their importance
- Introduction to selection sort algorithm and its principles
- Step-by-step execution of the selection sort algorithm

Exercise: Implement the selection sort algorithm in Python to sort a given list of elements.

Project: Sorting algorithm comparison: Compare the performance of the selection sort algorithm with other sorting algorithms (e.g., insertion sort, merge sort) by analyzing their time complexity and execution time.

20. **Experiment 20**: Insertion Sort: Sorting a List in Ascending Order

Session 1: Topic: Introduction to insertion sort algorithm

- Explanation of the insertion sort algorithm and its working principles
- Step-by-step execution of the insertion sort algorithm

Exercise: Implement the insertion sort algorithm in Python to sort a given list of elements.

Project: Sorting elements with different algorithms: Compare the efficiency and performance of the insertion sort algorithm with other sorting algorithms (e.g., selection sort, quicksort) by analyzing their time complexity and execution time on various datasets.

21. **Experiment 21**: Hash Tables: Implementing a Hash Table Session 1: Topic: Hash tables and hash functions

Understanding the concept of hash tables

• Implementing a basic hash table data structure

Exercise: Write a Python program to implement a hash table for storing and retrieving key-value pairs.

Project: Building a simple password manager: Design and implement a program that securely stores and retrieves user passwords using a hash table.

22. **Experiment 22**: Program Efficiency: Analyzing Time Complexity

Session 1: Topic: Analyzing time complexity of algorithms

- Introduction to time complexity analysis
- Big O notation and its significance

• Analyzing time complexity of basic algorithms (e.g., linear search, binary search)

Exercise: Write a Python program to analyze the time complexity of a given algorithm and plot its growth rate.

Project: Optimizing algorithm performance: Evaluate the time complexity of a specific algorithm, identify areas for improvement, and optimize the algorithm for better performance.

23. **Experiment 23**: Debugging Techniques: Identifying and Fixing Errors

Session 1: Topic: Introduction to debugging techniques

- Understanding common types of errors in programming
- Debugging strategies and tools
- Techniques for identifying and fixing errors

Exercise: Write a Python program with intentional errors and practice debugging it using various techniques.

Project: Debugging a complex program: Analyze and fix bugs in a larger Python program, utilizing different debugging techniques and tools.

24. **Experiment 24**: Data Visualization: Creating Plots and Charts Session 1: Topic: Data visualization with Python libraries

- Overview of data visualization concepts and techniques
- Creating basic plots and charts using Matplotlib and Seaborn libraries

Exercise: Write a Python program to create line plots and bar charts using Matplotlib and Seaborn libraries.

Project: Visualizing real-world data: Select a dataset of interest and create visually appealing and informative plots and charts using appropriate Python libraries.

25. **Experiment 25**: Project 1: Implementing a Simple Calculator Session 1: Topic: Design and implementation of a simple calculator

- Defining calculator operations and user interface
- Implementing basic arithmetic operations

Exercise: Design and implement a Python program that functions as a basic calculator, supporting operations such as addition, subtraction, multiplication, and division.

Project: Enhancing the calculator: Extend the functionality of the calculator program by adding additional operations, error handling, and user-friendly features.

26. **Experiment 26**: Project 2: Creating a To-Do List Application Session 1: Topic: Design and implementation of a to-do list application

• Defining requirements and user interface

• Implementing features such as task creation, deletion, and management

Exercise: Design and implement a Python program that functions as a basic to-do list application, allowing users to add, delete, and manage tasks.

Project: Advanced features for the to-do list application: Add additional functionality to the to-do list application, such as task prioritization, due dates, and notifications.

27. **Experiment 27**: Project 3: Building a Basic Contact Management System

Session 1: Topic: Design and implementation of a contact management system

• Defining contact attributes and functionalities

• Implementing features such as contact creation, search, and retrieval

Exercise: Design and implement a Python program that functions as a basic contact management system, allowing users to create, search, and manage contacts.

Project: Advanced features for the contact management system: Enhance the contact management system by adding features such as contact categorization, sorting, and exporting.

28. **Experiment 28**: Project 4: Analyzing and Visualizing Data using Python

Session 1: Topic: Data analysis and visualization project

- Selecting a dataset for analysis
- Performing data manipulation, analysis, and visualization using Python libraries

Exercise: Select a dataset of interest and perform basic data analysis and visualization using Python libraries such as Pandas and Matplotlib.

Project: Comprehensive data analysis and visualization: Conduct an in-depth analysis of a dataset, apply advanced data manipulation techniques, and create meaningful visualizations to present insights.

29. **Experiment 29**: Final Project: Integrating Concepts into a Comprehensive App

Session 1: Topic: Final project development

• Combining concepts and skills learned throughout the course

• Designing and implementing a comprehensive Python application

Exercise: Identify a problem or application domain and outline the requirements and functionality for a comprehensive Python application.

Project: Development of a comprehensive Python application: Design, implement, and test a Python application that addresses a specific problem or serves a particular purpose, incorporating various programming concepts and techniques.

References:

https://ocw.mit.edu/courses/6-0001-introduction-to-computer-scienceand-programming-in-python-fall-2016/video_galleries/lecture-videos/ https://onlinecourses.nptel.ac.in/noc21_cs45/preview https://www.udemy.com/course/learning-python-for-data-analysis-andvisualization/ https://www.mygreatlearning.com/academy/learn-for-free/courses/python-fordata-analysis https://www.coursera.org/learn/data-analysis-with-python

FUNDAMENTALS OF SOFTWARE

ENGINEERING

Department:	Department of Computer Science and Engin					
Course Name:	Course Code	L-T-P	Credits			
Fundamentals of	ENBC105	4-0-0	4			
Software						
Engineering						
Type of Course:	Major		1			
Pre-requisite(s), if any:						

Brief Syllabus:

Software engineering is the branch of computer science that creates practical, cost-effective solutions to computing and information processing problems, preferentially by applying scientific knowledge, developing software systems in the service of mankind. This course covers the fundamentals of software engineering, including understanding system requirements, finding appropriate engineering compromises, effective methods of design, coding, and testing, team software development, and the application of engineering tools. The course will combine a strong technical focus with a capstone project providing the opportunity to practice engineering knowledge, skills, and practices in a realistic development.

UNIT WISE DETAILS

Unit Number	: 1 Title):	Introduc	tion	1			No	. of hou	rs:	6	
Content Sum	mary:											
Introduction-	Notion	of	Software	as	а	Product	_	charac	teristics	of	а	good

Software Product. Engineering aspects of Software production – the necessity of automation. Job responsibilities of Programmers and Software Engineers as Software developers.

Unit Number: 2	Title:	Process Models and Program	No. of hours:	10
omt Number: 2		Design Techniques	NO. OF HOURS:	10

Content Summary:

Software Development Process Models – Code & Fix model, Waterfall model, Incremental model, Rapid Prototyping model, Spiral (Evolutionary) model. Good Program Design Techniques – Structured Programming, Coupling and Cohesion, Abstraction and Information Hiding. Software Modelling Tools –Data flow Diagrams and UML.

Unit Number: 3 Title	: Verification and Validation	No. of hours: 10
----------------------	-------------------------------	------------------

Content Summary:

Black-Box Testing and White-Box Testing, Static Analysis, Symbolic Execution, and Control Flow Graphs – Cyclomatic Complexity. Introduction to testing of Real-time Software Systems.

Unit Number: 4	Title:	Software Project	No. of hours: 14	
		Management	NO. 01 110015. 14	14

Content Summary:

Management Functions and Processes, Project Planning and Control, Organization and Intra-team Communication, Risk Management. Software Cost Estimation – underlying factors of critical concern. Metrics for estimating costs of software products – Function Points. Techniques for software cost estimation – Expert judgement, Delphi cost estimation, Work break-down structure and Process breakdown structure, COCOMO, and COCOMO-II.

Reference Books:

1. Carlo Ghezzi, Fundamentals of Software Engineering, 2nd Edition, PHI, 2002.

2. Ian Sommerville, Software Engineering, 9th Edition, Pearson, 2011.

 Berzins and Luqi, Software Engineering with Abstraction, 1st Edition, Addison-Wesley, 1991.

4. Martin L. Shooman, Software Engineering – Design, Reliability and Management, McGraw-Hill Education, 1984.

Define Course Outcomes (CO)

COs	Statements
CO1	Understand the characteristics of a good software product and its role as a software developer.
CO2	Analyze and apply different software development process models.
CO3	Utilize software modeling tools for effective software development.
CO4	Implement software testing techniques and quality assurance measures.
CO5	Develop project management and software cost estimation skills.

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels©	Affective levels(A)	Psychomotor levels(P)
	1. Knowledge		1. Imitation
	2. Understand	1. Receiving	2. Manipulation
	3. Apply	2. Responding	3. Precision
	4. Analyze	3. Valuing	4. Articulation
	5. Evaluate	4. Organizing	5. Improving
	6. Create	5. Characterizing	
	C2	A2	P1
CO1			
	C3	A3	P2
C02			
CO3	C3	A4	P3
CO4	C3	A4	P4
CO5	C6	A5	P4

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1	2	-	2	2	2		-	1	-
CO2	1	3	2	-	-	2	2	-	-	1
CO3	2	2	3	3	-	2	-	1	-	-
CO4	-	2	2	3	2	2	-	-	-	-
CO5	-	2	2	-	-	2	3	-	2	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

PO	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2
CO2	2	2	2	2
CO3	3	3	2	2
CO4	2	3	2	2
CO5	2	3	2	2

Relevance of the Syllabus to various indicators

Introduction
Can help students understand the local software industry
and its specific challenges.
Can provide insights into the regional software development
practices and challenges.
Address the broader context of software engineering within
a country, including its impact on the economy and society
Explore the global nature of software development and its
impact on various industries and sectors worldwide.
Provide students with a foundational understanding of
software engineering concepts and practices, which are
valuable skills in the job market.
Provide insights into the software industry, its challenges,
and potential opportunities for innovation and business
ventures.
Introduce fundamental concepts and techniques used in
software engineering.
Consideration of ethical issues in software development,
such as privacy, security, and responsible use of
technology.
-
Impact of software on individuals, societies, and ethical
considerations related to human well-being.
-
Process Models and Program Design Techniques
Help in assessing the complexity and quality of software
developed within the local context.
Provide insights into the software development practices
and trends within a specific region.
Contribute to evaluating software quality and productivity

	within a country's software industry.
Global	Provide standardized measures for assessing software
	complexity and quality, regardless of the geographical
	location.
Employability	Commonly used in software development organizations to
	measure productivity, quality, and project estimation.
Entrepreneurship	Evaluating the feasibility, cost estimation, and risks
	associated with software development projects.
Skill Development	By enhancing the ability to measure, analyze, and improve
	software quality and productivity.
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit III	Verification and Validation
Local	Provide practical knowledge and techniques for testing
	software developed within the local context.
Regional	Address common testing challenges and practices in
	software development within the region.
National	Provide essential knowledge and skills required for testing
	software developed within the country.
Global	Testing is an integral part of software development across
	different countries and industries worldwide.
Employability	As software testing skills are in high demand by employers
	seeking quality assurance in software development
	projects.
Entrepreneurship	Provide knowledge and techniques for ensuring the quality
	and reliability of software products developed by
	entrepreneurs.

	used in software testing.				
Professional Ethics	Addressing ethical considerations in software testing, such				
	as ensuring impartiality, confidentiality, and integrity in the				
	testing process.				
Gender	-				
Human Values	-				
Environment &					
Sustainability	-				
Unit IV	Software Project Management				
Local	Standardized techniques can be employed by local software				
	development teams.				
Regional	Provide a common language and methodology for software				
	development, facilitating collaboration and communication				
	among regional software development teams.				
National	Provide a standardized framework for software				
	development, promoting consistency and interoperability				
	among national software projects.				
Global	Widely adopted internationally, allowing for effective				
	communication and collaboration among software				
	development teams across different countries.				
Employability	Commonly used in industry, and proficiency in these				
	techniques is valued by employers.				
Entrepreneurship	Aiding entrepreneurs in planning, designing, and				
	communicating their software ideas.				
Skill Development	Enhancing students' proficiency in software modeling and				
	design.				
Professional Ethics	Address the importance of developing reliable software and				
	adhering to quality standards in the software engineering				
	profession.				
Gender	-				
Human Values	-				

Environment &	Development of reliable software that reduces wastage,
Sustainability	energy consumption, and potential negative environmental
	impacts.
SDG	SDG 4
NEP 2020	-
POE/4 th IR	Emphasizes the responsible and ethical development and
	deployment of the systems.

NETWORK DEFENSE ESSENTIAL

Department:	Dep	partment of Computer Sciend	ce and	Engineering
Course Name: Network Defense		Course Code	L-T-P	Credits
Essential		ENSP114	4-0-0	4
Type of Course:	Min	or		I
Pre-requisite(s), if ar	iy:			
security and network de of network defense pr networks from various s security such as ident Virtualization, Cloud con Security. Discusses n countermeasures. The	efens incip secu ifica mpu netw cou	als covers the fundamental se. This course provides a comp ples and essential skills requin rity threats. Overview of key co tion, authentication and auth- ting, wireless networks, mobile vork level attacks, passwor urse combines theoretical kn with practical skills in network	orehensi red to ompone orizatior & IOT rd crac owledge	ive understanding protect computer nts of information n Introduction to devices and Data cking and their e with hands-or
	Net	work Security Fundamentals	No.	of hours: 10
Content Summary: Introduction to inform availability), network de controls: frameworks, l	iatio efen aws	n security, CIA traid (Confic se challenges, Network security , acts, and security policies, P , and environmental control	lentiality y contro	ols, administrative
	Net	work and Web Application	No.	of hours: 10
Content Summary: Basics of ethical ha assessment tools and te Denial-of-Service (DoS hijacking, SYN flooding) SQL injection, cross-site	ackir echn) at) and e scr		and sca P attac ation vu	nning techniques ks (e.g., TCP/IF Inerabilities (e.g.
3 Title:	Wire	eless and Mobile Security	No.	of hours: 10
device security and atta	acks	and attacks (e.g., WEP/WPA, (e.g., app vulnerabilities, malv rmeasures, Social enginee	ware), P	

countermeasures, Fundamentals of incident response and handling, Penetration testing concepts and methodologies. Unit Number: Title: IoT, Virtualization and Cloud No. of hours: 10 **Computing Security** 4 **Content Summary:** Working of IoT devices, application areas, communication models, IoT security principles, IoT framework security considerations, IoT device management, IoT security threats and countermeasures, OT security threats and countermeasures, Cryptography and PKI, Virtualization concept, Security concerns in virtualization. *Self-Learning Components: Encryption algorithms Network Security protocols Wireshark: Network protocol analyzer for packet inspection and analysis • Nmap: Network mapping and port scanning tool Research and presentations on emerging network security concepts, such as Software-Defined Networking (SDN), Zero Trust Networking, and Threat Intelligence Network Defense essential certification by EC Council Reference Books& Links: https://www.eccouncil.org/academia/network-defense-essentials-nde/ • William Stallings, Lawrie Brown, Computer Security: Principles and Practice, 3rd edition,2014 Cryptography and Network security, Behrouz Α. Forouzan • DebdeepMukhopadhyay, Mcgraw Hill Education, 2 nd Edition, 2011 Machine Intelligence and Big Data Analytics for Cybersecurity Applications. Studies in Computational Intelligence, vol 919. Springer, Cham, 2021

 Cryptography and Network Security - Principles and Practice | Seventh Edition | By Pearson by Stallings William

Define Course Outcomes (CO)

COs	Statements
CO1	Understand the fundamental concepts of information security and its importance in network defense.
CO2	Gain knowledge of ethical hacking fundamentals and the role of penetration testing in identifying vulnerabilities.
CO3	Identify information security threats and vulnerabilities through effective vulnerability assessment techniques.
CO4	Implement appropriate countermeasures and defensive strategies to mitigate network-level, web application, wireless, mobile, IoT, OT, and cloud computing attacks.
CO5	Conduct basic penetration tests and Evaluate the security of network systems and applications.

COsMapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	P1
CO2	C2	A1	P1
CO3	C2	A2	P2
CO4	C3	A3	Р3
CO5	C5	A4	Ρ4

CO-PO Mapping

Cos	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	-	-	-	2	1	1	-	-
CO2	-	2	1	3	1	2	2	3	2	2
CO3	-	1	2	3	2	2	-	3	2	2
CO4	3	2	2	3	3	2	3	-	2	2
CO5	1	2	1	3	2	2	-	2	2	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

РО	PSO1	PSO2	PSO3	PSO4
CO1	3	2	-	-
CO2	2	3	-	-
CO3	2	1	2	1
CO4	1	2	3	1
CO5	2	3	2	2

Relevance of the Syllabus to various indicators

Unit I	Network Security Fundamentals
Local	Security policies, physical security, and workplace security contribute to local security requirements.
Regional	-
National	-
Global	Network security controls address global challenges in securing information and preventing cyber threats.
Employability	-
Entrepreneurship	-
Skill Development	Develops skills in implementing network security controls and understanding security policies.
Professional Ethics	Emphasizes the importance of confidentiality, integrity, and availability of information.
Gender	-
Human Values	Promotes values of integrity, privacy, and responsible use of technology
Environment & Sustainability	-
Unit II	Network and Web Application Security
Local	-
Regional	-
National	-
Global	Understanding ethical hacking, penetration testing, and countermeasures contribute to global cybersecurity efforts.
Employability	Knowledge of network and web application security enhances employability in cybersecurity roles.
Entrepreneurship	-
Skill Development	Develops skills in identifying vulnerabilities, conducting penetration testing, and implementing countermeasures.
Professional Ethics	Emphasizes ethical hacking and responsible disclosure of vulnerabilities.
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit III	Wireless and Mobile Security
Local	-
Regional	-
National	-
Global	Contributes to global efforts in securing communication technologies.

Employability	-
Entrepreneurship	-
Skill Development	Develops skills in securing wireless networks, mobile devices, and incident response.
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit IV	IoT, Virtualization and Cloud Computing Security
Local	-
Regional	-
National	-
Global	Enhancing IoT and cloud computing securitycontributes to globalcybersecurity strategies.
Employability	Knowledge of IoT, virtualization, and cloud computing security enhances employability in cybersecurity roles, particularly in IoT security.
Entrepreneurship	-
Skill Development	Develops skills in securing IoT devices, understanding virtualization security concerns, and addressing cloud computing security threats.
Professional Ethics	Emphasizes responsible use of IoT devices and adherence to cloud computing security best practices.
Gender	-
Human Values	-
Environment & Sustainability	-
SDG	4,9
NEP 2020	Provides knowledge and skills for information securitycontrol
POE/4 th IR	The course aligns with the need for network defense and cybersecurity in the context of the fourth industrial revolution, emphasizing the importance of securing networks and protecting against cyber threats.

NETWORK DEFENSE ESSENTIAL LAB

Department:	Department of Computer Science and Engineering					
Course Name: Network Defense		Course Code	L-T- P Credits			
Essential lab		ENSP166	0-0-2	1		
Type of Course:	Min	or	·			
Pre-requisite(s), if a	any:					

Defined Course Outcomes

COs	
CO 1	Understand the foundational concepts of network defense and information security.
CO 2	Apply ethical hacking and penetration testing techniques for vulnerability assessment.
CO 3	Analyze and evaluate security measures for wireless networks, mobile devices, and virtualization.
CO 4	Design andimplement security considerations and countermeasures for IoT and OT devices.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Analyze different network topologies and their implications for security.	CO1
2	Use packet sniffing tools to capture and analyze network traffic for security purposes.	CO4
3	Perform password cracking techniques to understand the importance of strong passwords and password security	CO2
4	Configure and test different types of firewalls to understand their functionalities and effectiveness in protecting a network	CO1
5	Implement an IDS and evaluate its effectiveness in detecting and preventing network intrusions.	CO2

6	Implement encryption and decryption techniques using various algorithms and analyze their effectiveness in ensuring data confidentiality.	CO3
7	Implement digital signature techniques to authenticate and verify the integrity of digital documents.	CO3
8	Configure and test secure email protocols (e.g., PGP and S/MIME) to ensure secure communication	CO1
9	Assess the security vulnerabilities of a web application and propose mitigation strategies.	CO2
10	Implement database security measures, such as access controls and encryption, to protect sensitive data.	CO1
11	Harden the security of an operating system by implementing security configurations and applying updates and patches.	CO2
12	Assess the security risks in wireless networks and implement security measures to protect against unauthorized access.	CO1
13	Analyze malware samples to understand their behavior and develop strategies for detection and removal.	CO2
14	Simulate and respond to a cybersecurity incident to understand the steps involved in incident response and mitigation	CO4
15	Conduct social engineering simulations to raise awareness about the risks associated with social engineering attacks.	CO3
16	Perform vulnerability scanning using automated tools to identify and remediate security vulnerabilities.	CO2
17	Set up a SIEM solution to collect and analyze security logs from various network devices	CO1
18	Conduct network forensic analysis to investigate and gather evidence of network security incidents.	CO4
19	Implement secure file transfer protocols (e.g., SFTP) to ensure secure data transmissio	CO3
20	Develop and deliver security awareness training materials to educate users about common security threats and best practices.	CO4
21	Implement security measures on mobile devices, such as device encryption and secure app development practices.	CO3
22	Monitor and analyze the tactics used by both red and blue teams to improve overall network defense.	CO4
23	Develop and implement secure coding practices for web applications, including input validation, output encoding, and secure session management.	CO4

Experiments Descriptions:-

1. **Session:**

- Introduction to Network Security Controls:
- Overview of network security controls and their importance.
- Discussion on different types of controls (firewalls, IDS, ACLs).
- Explanation of how to configure and test firewall rules.

2. Exercise:

- Firewall Configuration Exercise:
- Provide students with a network scenario and a set of security requirements.
- Instruct them to configure firewall rules to enforce the desired security policies.
- Test and evaluate the effectiveness of the firewall configuration through simulated attacks.

3. Session:

- Vulnerability Assessment and Penetration Testing:
 - Introduction to vulnerability assessment and penetration testing methodologies.
 - Explanation of scanning tools, techniques, and their role in identifying vulnerabilities.
 - Discussion on ethical considerations and legal implications.

4. Exercise:

- Vulnerability Scanning and Penetration Testing Exercise:
- Instruct students to conduct a vulnerability assessment on a provided network or application using scanning tools.
- Identify and document vulnerabilities found.
- Perform penetration testing to exploit identified vulnerabilities and gain unauthorized access.
- Prepare a report summarizing the findings, including recommended countermeasures.

5. Session:

- Wireless Network Security:
- Overview of wireless network security principles and common vulnerabilities.
- Discussion on encryption protocols (WPA2, WEP) and their weaknesses.
- Explanation of wireless network penetration testing techniques.

6. Exercise:

- Wireless Network Security Configuration Exercise:
- Guide students in setting up a wireless network with appropriate security measures.
- Instruct them to configure encryption protocols, SSID hiding, and access control.
- Conduct a wireless penetration test to identify potential vulnerabilities.

• Provide recommendations to enhance the security of the wireless network.

7. Session:

- Web Application Security:
- Introduction to common web application vulnerabilities (SQL injection, XSS) and their impact.
- Explanation of secure coding practices and input validation techniques.
- Overview of tools for web application vulnerability scanning.

8. Exercise:

- Web Application Vulnerability Assessment Exercise:
- Provide students with a vulnerable web application or simulated environment.
- Instruct them to perform a comprehensive assessment to identify web application vulnerabilities.
- Demonstrate various attack scenarios (e.g., SQL injection, XSS) and their potential consequences.
- Guide students in implementing security measures to mitigate the identified vulnerabilities.

9. Session:

- Incident Response and Handling:
- Overview of incident response procedures and best practices.
- Explanation of incident identification, containment, eradication, and recovery processes.
- Introduction to digital forensics and evidence collection.

10.**Exercise:**

- Incident Response Simulation Exercise:
- Simulate a security incident scenario (e.g., network breach, malware infection).

• Assign roles to students (incident response team, network administrators).

• Guide them through the incident response process, including identification, containment, and recovery.

• Provide hands-on experience in conducting forensics analysis and evidence gathering.

Project:

• Network Security Enhancement Project:

- Assign students a network infrastructure to secure and enhance.
- Instruct them to perform a comprehensive security assessment, including vulnerability scanning, penetration testing, and analysis of existing security controls.

• Based on the assessment, guide students in developing and implementing a security enhancement plan.

INTRODUCTION TO DISCRETE STRUCTURES

Department:	Department of Con Engineering	nputer Sci	ence and			
Course Name: Introduction to Discrete	Course Code	L-T-P	Credits			
Structures	ENBC102	3-1-0	4			
Type of Course: Major						
Pre-requisite(s), if any: Basi	ic of Mathematics					
Brief Syllabus: This course will discuss funda with emphasis on their applica Boolean circuits, sets, functions algorithms, analysis techniqu	ations to computer scier s, relations, deterministic	nce. Topics c algorithm	include logic and is and randomized			
relations, trees and graphs etc. UNIT WISE DETAILS						
linit Niimper' 1	Propositional Logics & Relations	Να	o. of hours: 12			
Content Summary: Mathematical Logic: Introduce Predicate Logic, Propositional Relation, Logical operations, O Logical Equivalence, The use Quantifiers, Nested Quantifier Operations, Representation ar Relations, Partially Ordering.	Equivalences, Sets, B Conditional Statements, e of Quantifiers, Norn rs, Rules of Inference.	inary Rela Tautologie nal Forms Sets an	ation, Equivalence es, Contradictions, , Predicates and 1 Relations : Set			
T Unit Number: 2	Title: Counting, Mathematical Induction Discrete Probability	n and No	o. of hours: 12			
Content Summary: Basics o	of Counting, Pigeonhole					
Combinations, Inclusion-Exclu Bayes' Theorem, Discrete Pro Counting Principles, Permutati Random Variables, Discrete Op Linear Programming, Intege (Definition, Properties, Subgro Integral Domains, Fields), Is combinatorics.	bability Theory, Discret ions and Combinations, ptimization - Optimizatio r Programming, Alget oups, Cyclic Groups), R	e Structur Probability on Problem oraic Stru lings (Defi	res in Computing, Theory, Discrete is and Algorithms, ctures - Groups nition, Properties,			
	itle: Group Theory & Discrete Probability	No	o. of hours: 8			

Content Summary: Groups, Subgroups, Semi Groups, Product and Quotients of Algebraic Structures, Isomorphism, Homomorphism, Automorphism, Rings, Integral Domains, Fields, Applications of Group Theory, Combinatorial optimization: basic concepts and algorithms, Sample spaces, events, and probability axioms, Conditional probability and Bayes' theorem.

Unit Number: 4	Title: Graph Theory	No. of hours: 8

Content Summary:Simple Graph, Multigraph, Weighted Graph, Paths and Circuits, Shortest Paths in Weighted Graphs, Eulerian Paths and Circuits, Hamiltonian Paths and Circuits, Planner graph, Graph Coloring, Bipartite Graphs, Trees and Rooted Trees, Prefix Codes, Tree Traversals, Spanning Trees and Cut-Sets, digraphs, Graph Coloring, Euler's formulae, Graph Theory, Networks and Flows.

*Self-Learning Components:

Topics (with book references):

1. Applications of Graph Coloring: Time table Scheduling ("Discrete Mathematics and Its Applications" by Kenneth H. Rosen: Chapter 10.3: Graph Coloring)

2. Network Analysis, Routing & Optimization, using graph theory.<u>(Introduction to</u> Graph Theory" by Richard J. Trudeau)

3. Combinatorial Optimization & Error Detection & correction using The Pigeonhole Principle ("Combinatorial Optimization: Algorithms and Complexity" by Christos H. Papadimitriou and Kenneth Steiglitz)

4. Scheduling and Task Prioritization, using Partial ordering. <u>("Introduction to</u> Scheduling" by Yves Robert and Frederic Vivien)

5. Rules based system and Algorithm design using conditional statements. (Chapter 10, 22, 23, of Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig).

Online Certification Courses for Discrete Mathematics (With Links):

1. Discrete Mathematics: <u>https://www.coursera.org/learn/discrete-</u> mathematics

2. Mathematics For Computer Science, <u>https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-fall-2010/</u>

3. Introduction to Discrete Mathematics for Computer Science Specialization, https://www.coursera.org/specializations/discrete-mathematics

4. Discrete Math Series : Propositional Logic masterclass https://www.udemy.com/course/discretemathematics/

5. Master Discrete Mathematics: Sets, Math Logic, and More: https://www.udemy.com/course/master-discrete-mathematics/

6. Master Math by Coding in Python: <u>https://www.udemy.com/course/math-with-python/</u>

7. Discrete Mathematics for Computer Science in C, Java, Python:

<u>https://www.udemy.com/course/discrete-mathematics-and-its-applications/</u> 8. Discrete Mathematics - Complete Course:

https://www.udemy.com/course/discrete-mathematics-complete-course/

9. Discrete Optimization: <u>https://www.coursera.org/learn/discrete-optimization</u>

10.Introduction to Discrete Mathematics for Computer Science Specialization:

https://www.coursera.org/specializations/discrete-mathematics

NPTEL Lecture Links for Discrete Mathematics (With Links):

1. Discrete Mathematics _ IIITB, IIIT Bangalore, Prof. Ashish Choudhury: <u>https://nptel.ac.in/courses/106108227</u>

2. Discrete Mathematics, IIT Ropar: <u>https://nptel.ac.in/courses/106106183</u>

Reference Books of Discrete Mathematics:

1. Elements of Discrete Mathematics, C. L Liu, McGraw-Hill Inc, 1985. Applied Combinatorics, Alan Tucker.

2. Concrete Mathematics, Ronald Graham, Donald Knuth, and Oren Patashnik, 2nd Edition - Pearson Education Publishers.

3. Combinatorics: Topics, Techniques, Algorithms by Peter J. Cameron, Cambridge University Press.

4. Topics in Algebra, I.N. Herstein, Wiley.

5. Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw – Hill

6. Satinder Bal Gupta: A Text Book of Discrete Mathematics and Structures, University Science Press, Delhi.

E-Books of Discrete Mathematics (with Links):

1. Discrete Mathematics: An open Introduction, by Oscar Levin, 3rd Edition: <u>https://discrete.openmathbooks.org/pdfs/dmoi-tablet.pdf</u>

2. Lecture Notes on Discrete Mathematics, IITK,

https://home.iitk.ac.in/~arlal/book/mth202.pdf

3. Mathematical Foundations And Aspects of Discrete Mathematics, Jean Gallier and Jocelyn Quaintance, <u>https://www.cis.upenn.edu/~jean/discmath-root-b.pdf</u>

 Discrete Mathematics for Computer Science, Gary Haggard, John Schlipf, Sue Whitesides, <u>https://www2.cs.uh.edu/~arjun/courses/ds/DiscMaths4CompSc.pdf</u>
 DISCRETE MATHEMATICS FOR COMPUTER SCIENCE, Herbert Edelsbrunner

and Brittany Fasy,

https://courses.cs.duke.edu/spring09/cps102/Lectures/Book.pdf

6. Discrete Mathematics and its Applications, Rosen,

https://faculty.ksu.edu.sa/sites/default/files/rosen_discrete_mathematics_and_i ts_applications_7th_edition.pdf

Define Course Outcomes (CO)

COs	Statements
CO1	Understand foundational concepts: Gain a solid understanding of fundamental concepts in discrete mathematics, including logic, sets, relations, and functions
CO2	Express proficiency in logical reasoning and constructing mathematical proofs using various proof techniques such as direct proofs, proof by contradiction, and mathematical induction.
CO3	Determine methods to Explore various discrete structures, such as sets, sequences, functions, relations, and formal languages. Understand the properties and applications of these structures.
CO4	Identify and develop problem-solving skills by applying discrete mathematics concepts to solve mathematical problems and real-world scenarios. Enhance logical thinking and analytical reasoning abilities.
CO5	Articulate real-world applications of discrete mathematics in computer science, cryptography, network analysis, optimization problems, scheduling, and decision-making.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
C01	C2	A1	P1
C02	C3	A2	P2
CO3	C3	A5	Р5
CO4	C6	A5	Р5
CO5	C6	A5	P5

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	2	-	2	2	-	-	-	-
CO2	1	2	-	1	3	1	1	-	-	-
CO3	-	-	-	1	3	2	2	-	-	3
CO4	-	2	-	-	3	2	-	-	-	3
CO5	-	2	_	_	3	2	2	-	-	3

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1
CO2	2	3	2	1
CO3	2	3	2	1
CO4	2	3	2	1
CO5	2	3	2	1

Relevance of the Syllabus to various indicators

Unit I	Introduction
Local	-
Regional	-
National	-
Global	It lays a solid foundation for further studies in mathematics, computer science, and related fields while fostering critical thinking and analytical skills.
Employability	Equips with problem-solving techniques to analyse and process data, design algorithms, and make informed decisions.
Entrepreneurship	-
Skill Development	Discrete mathematics allows students to think abstractly, develop formal mathematical arguments, and engage in rigorous problem-solving.
Professional Ethics	-
Gender	-
Human Values	-

Environment &	
Sustainability	_
Unit II	Counting, Mathematical Induction and Discrete Probability
Local	-
Regional	_
National	_
Global	Probability, Bayes' theorem, and statistical analysis provide a
	framework for understanding and interpreting real-world
	phenomena that involve uncertainty and data.
Employability	It is beneficial in areas such as probability theory, statistics,
	optimization, cryptography, and network analysis
Entrepreneurship	skills obtained are valuable in various fields, including
	computer science, mathematics, law, and philosophy.
Skill Development	Enhances your ability to analyze problems logically, identify
	patterns, and draw logical conclusions. These skills are
	valuable in various fields, including computer science, mathematics, law, and philosophy.
Professional Ethics	
Gender	
Human Values	
Environment &	-
Sustainability	
Unit III	Group Theory
Local	-
Regional	
National	
Global	Group theory is widely used in physics, chemistry,
	crystallography, and other fields where symmetry is a
	fundamental concept.
Employability	
Linhoyaniity	This develops ability to think conceptually, make connections
	between different mathematical structures, and develop a
Entrepreneurship	between different mathematical structures, and develop a broader perspective on mathematics as a whole.
	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry
Entrepreneurship	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing
Entrepreneurship	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing the symmetries of objects, understanding transformational
Entrepreneurship Skill Development	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing
Entrepreneurship Skill Development Professional Ethics	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing the symmetries of objects, understanding transformational
Entrepreneurship Skill Development Professional Ethics Gender	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing the symmetries of objects, understanding transformational
Entrepreneurship Skill Development Professional Ethics Gender Human Values	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing the symmetries of objects, understanding transformational
Entrepreneurship Skill Development Professional Ethics Gender Human Values Environment &	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing the symmetries of objects, understanding transformational
Entrepreneurship Skill Development Professional Ethics Gender Human Values Environment & Sustainability	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing the symmetries of objects, understanding transformational properties, and solving problems related to symmetry. - -
Entrepreneurship Skill Development Professional Ethics Gender Human Values Environment &	between different mathematical structures, and develop a broader perspective on mathematics as a whole. - Group theory, in particular, is essential for studying symmetry and transformations. It provides a framework for analysing the symmetries of objects, understanding transformational

Regional	-
National	-
Global	By studying these topics, the students will gain the ability to model and analyse various real-world scenarios, including social networks, transportation networks, communication networks, and data dependencies.
Employability	Understanding concepts such as shortest paths, network connectivity, and digraphs allows students to design efficient and reliable routing algorithms, analyze network performance, and ensure optimal data
Entrepreneurship	-
Skill Development	Graph theory provides a powerful framework for representing and analyzing relationships between objects or entities.
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
SDG	SDG 9
NEP 2020	-
POE/4 th IR	Aligns with the concepts of Design, Efficiency ,Problem Solving

BASIC OF OPERATING SYSTEM

Department:		Department of Computer S	cience and	Engineering			
Course Name: of Operating	Basic	Course Code	L-T-P	Credits			
System		ENBC104	3-1-0	4			
Type of Course:	course: MAJOR						
Pre-requisite(s), if a	ny: Basics of programming					
software. The top process manager scheduling; dea management; vir page-replacemen	pics co ment (Idlock tual m It algo	plement operating systems a vered will be functions and str creation, synchronization, and prevention, avoidance, an nemory management (swappin rithms); control of disks and n implementation; and protect	ructure of op d communica d recovery; ig, paging, se other input	erating systems ation); processo main-memor egmentation and /output devices			
<u>UNIT WISE DET</u> Unit Number: 1	TAILS	Introduction to OS	No. of h	ours: 6			
Types of Operatin Types of Kernels	oncep ng Sys (Monc	t of Operating Systems, Gener stems, OS Services, System Ca lithic/Macro Kernel and Micro Processes and Threads	alls, Layered Kernel), Virtu	System, Kernel			
2 Content Summa							
Processes: Def Process State tra Thread: Definitic of multithreads. Process Scheo Scheduling, Non	inition nsitior on, Var Juling -preer	, Process Relationship, Diffens, Process Control Block (PCB) rious states, Benefits of thread Basic Concept, Type of nptive Scheduling), Scheduli d Time, Waiting Time, Respon), Context sv ls, Types of t of Schedulii ng criteria:	vitching. hreads, Concep ng (Preemptive			

		OF STREAMON SERCEASE				
Unit Number: 3	Title:	Memory M	lanagement		No. of hours:	12
Content Sumr Memory Mar Concepts, Logic Paging, Segme Page fault, Pag Working Set Mo	mary: nagem cal and entation ge repl	ent : Addr I Physical A n, Combine	ess Binding, ddresses, Con ed Systems, V	itiguous A Virtual M	Allocation, Frag emory, Demar	mentation, nd Paging,
Unit Number: 4	Title: Deadl		Synchronizat	ion &	No. of hours:	10
Process-Sync Critical Section Producer\ Cons Classical IPC P etc. Definition of Deadlock Prev detection and F	n, Raco sumer roblem Deadlo vention	e Conditior Problem, S s: Reader's ocks, Neces o, Deadloc	ns, Mutual Ex Semaphores, E & Writer Prob ssary and su	clusion, Event Cou plem, Din fficient c	Peterson's Sole unters, Messag ning Philosophe conditions for	ution, The le Passing, er Problem Deadlock,
 " Introdu 	on UNIX ystem refer ems: 1 eau <u>cs.wisc.</u> n refer ng syst uction t	K and WIND calls the followin Three Easy <u>edu/~remz</u> r the follow cem courses o Operating	ig book as well Pieces by Ren :i/OSTEP/	l: nzi H. Arj s per the cialization	oaci-Dusseau a e Open-Source	
2. Ta	lbersac Innenb illiam S	aum, "Oper Stallings, "O	ating Systems	", PHI, 4 th	n Concepts", Pe ⁹ Edition. nals and Desigr	

Principles", PHI
3. HallMadnick, J. Donovan, "Operating Systems", Tata McGraw Hill.
4. W. Tomasi, "Electronic Communication Systems" Pearson Education, 5th Edition

Define Course Outcomes (CO)

COs	Statements
CO1	Recall and comprehend the fundamental concepts of operating systems.
CO2	Analyze and evaluate the components and mechanisms related to processes and threads in operating systems.
CO3	Compare and contrast different process scheduling algorithms and their impact on system performance.
CO4	Apply memory management techniques and understand virtual memory concepts in operating systems.
CO5	Evaluate process synchronization mechanisms and understand the causes and prevention of deadlocks.

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	P1
CO2	C4	A2	Р3
CO3	C5	A3	Р3
CO4	C5	A3	P4
CO5	C5	A4	P4

*Please Note:

Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	-	1	1	1	-	1	1	1
CO2	-	3	2	2	-	2	-	-	2	-
CO3	1	3	2	2	-	2	2	-	-	-
CO4	3	2	2	3	-	2	-	1	-	-
CO5	2	3	2	2	2	2	-	-	2	-

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO, Mark 3
- If attainment of a CO is moderately mapped with a PO, Mark 2
- If attainment of a CO is weakly mapped with a PO, Mark 1

Justification for mapping must be relevant

1=weakly mapped

2= moderately mapped

3=strongly mapped

PSO	PSO1	PSO2	PSO3	PSO4
C01	3	2	2	2
CO2	2	1	2	2
CO3	2	1	1	1
CO4	1	1	1	1
CO5	2	2	2	2

CO-PSO Mapping

Relevance of the Syllabus to various indicators

Unit I	Introduction to OS
Local	Can help students to build a strong foundation in computer science.
Regional	
National	Widely used across industries and organizations
Global	Applicable in various global industries and organizations.
Employability	Covers essential concepts and skills related to operating systems.
Entrepreneurship	Understanding operating systems can be beneficial for entrepreneurs in the technology industry.
Skill Development	Students will develop skills in understanding operating system concepts, system calls, and kernel functionalities
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	_
Unit II	Processes and Threads
Local	Local industries and organizations that rely on computing systems will benefit from employees with knowledge of these concepts.
Regional	To meet the demand for skilled professionals in the region.
National	It provides fundamental knowledge about processes, threads, and process scheduling, which are essential for the functioning of computer systems in various national industries and organizations.
Global	Relevant globally as processes, threads, and process scheduling are fundamental concepts in operating systems used worldwide.
Employability	It covers essential concepts and skills related to processes, threads, and process scheduling in operating systems.
Entrepreneurship	-
Skill Development	Provides foundational knowledge and skills related to processes, threads, and process scheduling.
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	
Unit III	Memory Management
Local	Local educational institutions can benefit from teaching this

	course to provide students with a strong understanding of these fundamental concepts.
Regional	-
National	It is important for national educational institutions to offer this course to produce skilled graduates who can contribute to the national workforce.
Global	Fundamental concepts are applicable in various global industries and organizations.
Employability	Concepts are crucial for various roles in software development
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	_
Environment & Sustainability	_
Unit IV	Process-Synchronization & Deadlocks
Local	Can benefit from teaching this course to build a strong foundation in computer science.
Regional	To meet the demand for skilled professionals in the region.
National	Can contribute to the national workforce and address the challenges of concurrent programming.
Global	It can be applied globally in various industries and need professionals who understand these concepts.
Employability	Graduates with knowledge of these concepts are highly sought after by companies that develop concurrent software applications.
Entrepreneurship	Can be beneficial for entrepreneurs in the technology industry, especially those involved in developing software systems that require efficient concurrent processing.
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
SDG	SDG 4, 8, 9, 11
NEP 2020	OS supports collaborative learning environments, which are encouraged under NEP 2020 to promote interactive and engaging teaching practices.
POE/4 th IR	OS contributes to the development of smart systems, autonomous devices, and intelligent algorithms that are central to the 4IR and POE.

BASICS OF OPERATING SYSTEM LAB

Department:	Department of Computer Science and Engineering				
Course Name: Basic Of Operating	Course Code	L-T-P	Credits		
System Lab	ENBC152	0-0-2	1		
Type of Course:	MAJOR				
Pre-requisite(s), if a	iny:				

Defined Course Outcomes

COs	
CO 1	Recall the concepts and principles of CPU scheduling algorithms used in operating systems.
CO 2	Compare and contrast different CPU scheduling algorithms and their advantages and disadvantages.
со з	Implement CPU scheduling algorithms, such as Round Robin and Priority, using Python programming.
CO 4	Evaluate the performance of CPU scheduling algorithms by analyzing and interpreting the generated Gantt charts and calculating average waiting time and turnaround time.
CO 5	Design Python programs to simulate various file allocation strategies and memory management techniques, such as sequential, indexed, linked, and paging.

Proposed Lab Experiments

Ex No	Experiment Title	Mapped CO/COs
1	Write Python programs to simulate the following CPU Scheduling algorithm: First-Come, First-Served (FCFS)	C01
2	Write Python programs to simulate the following CPU Scheduling algorithm: Shortest Job First (SJF)	CO1
3	Write Python programs to simulate the following	C01

	CPU Scheduling algorithms: Round Robin	
4	Write Python programs to simulate the following CPU Scheduling algorithms: Priority	C01
5	Given the list of processes, their CPU burst times, and arrival times, write a Python program to display/print the Gantt chart for Priority and Round Robin scheduling algorithms. Compute and print the average waiting time and average turnaround time for each scheduling policy.	CO4
6	Write a Python program to simulate the following file allocation strategies like Sequential	CO5
7	Write a Python program to simulate the following file allocation strategies like Indexed	CO5
8	Write a Python program to simulate the following file allocation strategies like linked.	CO5
9	Write Python programs to simulate the following contiguous memory allocation techniques: a) Worst-fit b) Best-fit c) First-fit	CO5
10	Write Python programs using the I/O system calls of UNIX/Linux operating system (open, read, write, close, fcntl, seek, stat, opendir, readdir).	C01
11	Write a Python program to simulate the MVT (Multiple Variable Tasks) memory management technique.	CO5
12	Write a Python program to simulate the MFT (Multiple Fixed Tasks) memory management technique.	CO5
13	Write a Python program to simulate the Banker's Algorithm for Deadlock Avoidance and Prevention.	CO5
14	Write a Python program to implement the Producer- Consumer problem using semaphores using UNIX/Linux system calls.	CO3
15	Write Python programs to illustrate the following IPC (Inter-Process Communication) mechanisms: a) Pipes	CO3
16	Write Python programs to illustrate the following IPC (Inter-Process Communication) mechanisms: a) FIFOs (Named Pipes)	CO3
17	Program to implement process synchronization using semaphores in Python.	CO4
18	Program to implement a basic Fo5ile allocation strategy like sequential file allocation in Python.	CO5

10	Due que la demonstrate the use of signals in	CO1
19	Program to demonstrate the use of signals in Python for process management.	CO1
20	Program to create and manipulate threads in Python.	CO3
21	Program to implement memory management techniques (e.g., paging, segmentation) in Python.	CO5
22	Program to simulate file system operations (e.g., open, read, write, close) in Python.	C01
23	Program to implement process synchronization using mutex locks in Python.	CO4
24	Program to simulate the working of virtual memory in Python.	CO5
25	Program to simulate disk file management operations (e.g., allocation, deallocation) in Python.	CO5
26	Program to implement file locking mechanisms (e.g., advisory, mandatory) in Python.	CO5
27	Write a Python program to simulate the following file organization techniques Two level directories	CO5
28	Write Python programs to simulate the paging in memory management techniques	CO5
29	Write Python programs to simulate the segmentation in memory management techniques	CO5
30	Write a Python program to simulate the following file organization techniques Single level directory	CO5

CONCEPTS OF OBJECT ORIENTED PROGRAMMING USING C++

Department:	Department of Computer Science and Engineering					
Course Name: Concepts of Object	Course Code	L-T-P	Credits			
Oriented Programming Using C++	ENBC106	3-1-0	4			
Type of Course:	Major					
Pre-requisite(s), if any	: Basics of C programming					
and implement the var Exceptional handling usir	arse is to introduce object-oriented pro- tious features of OOP such as inhering programming language C++. After fy the basic difference between the pro- t oriented.	itance, polyn completing th	norphism, Iis course			
Unit Number: 1	roduction	No. of hour	s: 8			
Principals like Abstraction Binding, Message Passir Returning values from fu		olymorphism.	Dynamic			
Unit Number: 2	ASSES AND	No. of hour	s: 10			
Class and Global Class, S Object, Scope resolution destructors, instantiation Objects, Constant membe	ect & classes, attributes, methods, C++ tate identity and behavior of an object, I operator, Friend Functions, Inline funct of objects, Types of Constructors, Stat er functions and Objects, Memory manag	Local Object a tions, Constru tic Class Data,	nd Global ctors and Array of			
Unit Title: IN Number: 3	HERITANCE & POLYMORPHISM	No. of hour	s: 12			
Classes, Ambiguity resol Aggregation, compositior	eritance, access modes – public, private ution using scope resolution operator a vs classification hierarchies, Overriding asses, Nesting of Classes	and Virtual ba	ase class,			

Polymorphism, Type of Polymorphism – Compile time and runtime, Function Overloading, Operator Overloading (Unary and Binary) Polymorphism by parameter, Pointer to objects, this pointer, Virtual Functions, pure virtual functions.

Unit	Title:	STRINGS	AND	EXCEPTION	
Number: 4	HANDL	ING			

No. of hours: 10

Content Summary:

Manipulating strings, String Manipulation Functions, formatted and Unformatted Input output. Exception handling, rethrowing exception, Exception Handling Techniques

*Self-Learning Components:

Students should explore Platforms like LeetCode, HackerRank for C++.

Students can refer the following courses as per the Open Source University Curriculum

1. Introduction to C++" and "C++ Programming for C Programmers" offered by edX

"C++ Programming for Beginners," and "Learn Advanced C++ Programming." offered by Udemy

Reference Books:

1. E. Balagurusamy ,"Object Oriented Programming with C++", Mc Graw Hill,6th Edition,2013.

 Schildt Herbert, "C++: The Complete Reference", Wiley DreamTech, 2005.Parasons, "Object Oriented Programming with C++", BPB Publication, 1999.

3. Steven C. Lawlor, "The Art of Programming Computer Science with C++", Vikas Publication, 2002.

4. Yashwant Kanethkar, "Object Oriented Programming using C++", BPB, 2004

Define Course Outcomes (CO)

COs	Statements
CO1	Understandobject oriented programming concepts.
CO2	Applyingthe concepts of object-oriented paradigm (Classes, Objects, inheritance, polymorphism etc.) for designing solution of a given programming problem
CO3	Developingapplications that can manipulate data stored in files
CO4	Developing applications by considering all possible scenarios thereby employing appropriate exception handling.

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	Р1
C02	C3	A2	P2
CO3	C3	A5	Р5
CO4	C6	A5	Р5

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
C01	1	-	3	-	3	1	-	-	2	2
C02	1	-	3	-	3	1	-	-	2	2
CO3	1	-	3	2	3	1	2	-	2	3
CO4	1	-	3	2	3	1	2	-	2	3

1=weakly mapped 2= moderately mapped 3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1
CO2	2	3	2	1
CO3	2	3	2	1
CO4	2	3	2	1

Relevance of the Syllabus to various indicators

Unit I	Introduction
Local	-
Regional	-
National	-
Global	Aligns with global trends in programming languages
Employability	Proficiency in procedure-oriented and object-oriented approaches is highly valued by employers in the software development industry.
	Entrepreneurs in the software industry can benefit greatly from understanding procedure-oriented and object-oriented approaches
Skill	
	Develops skills in Visual Code using C++
Professional Ethics	
Gender	These concepts are equally applicable and accessible to
	individuals of all genders pursuing careers in software development.
Human Values	-
Environment & Sustainability	
Unit II	CLASSES AND OBJECTS
Local	Understanding abstract data types, object and classes, and other concepts covered in the course can be valuable at the local level for developing software solutions tailored to meet the specific needs of local communities or organizations.
Regional	The concepts covered, such as abstract data types and classes, can have regional relevance by enabling the development of software systems that address the requirements and preferences of a specific region or geographic area.
National	It contributes to the development of software infrastructure,

	applications, and systems that support national industries, governance, and public services.
Global	These concepts are widely used across countries and industries, facilitating collaboration and interoperability on a global scale.
Employability	These skills are highly sought after by employers, as they form the foundation for building robust and scalable software solutions.
Entrepreneurship	These concepts enable them to design innovative and scalable software products, laying the groundwork for successful ventures.
Skill Development	These skills include critical thinking, problem-solving, and designing modular and reusable software components.
Professional Ethics	promotes ethical practices by emphasizing proper design and encapsulation principles, which lead to well-structured and maintainable code.
Gender	Both men and women can equally benefit from and contribute to the field of software development, utilizing these concepts.
Human Values	promotes human values by fostering efficient and user-friendly software development practices, which can contribute to providing value to users and stakeholders.
Environment & Sustainability	promoting efficient and optimized software design, it indirectly contributes to reducing energy consumption and supporting environmental sustainability efforts.
Unit III	INHERITANCE & POLYMORPHISM
Local	Understanding abstract data types, object and classes, and other concepts covered in the course can be valuable at the local level for developing software solutions tailored to meet the specific needs of local communities or organizations.
Regional	The concepts covered, such as abstract data types and classes, can have regional relevance by enabling the development of software systems that address the requirements and preferences of a specific region or geographic area.
National	It contributes to the development of software infrastructure, applications, and systems that support national industries, governance, and public services.
Global	These concepts are widely used across countries and industries, facilitating collaboration and interoperability on a global scale.
Employability	These skills are highly sought after by employers, as they form the foundation for building robust and scalable software solutions.
Entrepreneurship	
Skill Development	These skills include critical thinking, problem-solving, and designing modular and reusable software components.
Professional	promotes ethical practices by emphasizing proper design and

	maintainable code.
Gender	Both men and women can equally benefit from and contribute to
	the field of software development, utilizing these concepts.
Human Values	promotes human values by fostering efficient and user-friendly
	software development practices, which can contribute to providing
	value to users and stakeholders.
Environment &	promoting efficient and optimized software design, it indirectly
Sustainability	contributes to reducing energy consumption and supporting
	environmental sustainability efforts.
Unit IV	STRINGS, FILES AND EXCEPTION
	HANDLING
Local	
Regional	
National	
Global	
Employability	These skills are highly sought after by employers, as they form
	the foundation for building robust and scalable software
	solutions.
Entrepreneurshi	p
Skill	These skills include critical thinking, problem-solving, and
Development	designing modular and reusable software components.
Professional	promotes ethical practices by emphasizing proper design and
Ethics	encapsulation principles, which lead to well-structured and
	maintainable code.
Gender	Both men and women can equally benefit from and contribute to
	the field of software development, utilizing these concepts.
Human Values	promotes human values by fostering efficient and user-friendly
	software development practices, which can contribute to providing
	value to users and stakeholders.
Environment &	Promoting efficient and optimized software design, it indirectly contributes to reducing energy consumption and supporting
Sustainability	environmental sustainability efforts.
L	

CONCEPTS OF OBJECT ORIENTED PROGRAMMING USING C++ LAB

Department:	Department of Computer Science and Engineering			
Course Name: Concepts of	Course Code	L-T-P	Credits	
Object Oriented Programming Using C++ Lab	ENBC154	0 -0- 2	1	
Type of Course:	Major			
Pre-requisite(s), if any: Basics of C programming				

Defined Course Outcomes

COs	
CO 1	Demonstrate class object concepts by using C++.
CO 2	Develop programs using inheritance and polymorphism.
CO 3	Demonstrate the significance of constructors and destructor.
CO 4	Construct generic classes using template concepts.
CO5	Implement the concept of file handling.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Write a program for Functions with default arguments	CO1
2	Simple Classes for understanding objects, member functions and Constructors .Classes with primitive data members	CO1
3	Write a program for Classes with constant data members, Classes with static member functions	CO1
4	Write a program for Classes with pointers as data members – String Class	CO1
5	Write a program for Classes with arrays as data members	CO1
6	Implementation of Call by Value, Call by Address and Call by Reference	C01
7	Write a Program to illustrate New and Delete Keywords	CO1

	for dynamic memory allocation	
8	Write a Program Containing a Possible Exception. Use a Try Block to Throw it and a Catch Block to Handle it Properly.	C01
9	Project 1: interactive Basic Calculator: Create a calculator that accepts two numbers and an operator (+,-,/,*,&,<,>,// etc) using keyboard. Depending on operator, calculator must calculate the appropriate answer	CO2,CO3
10	Write a Program to Demonstrate the Catching of All Exceptions.	C01
11	Write a program fir passing object as argument to a function with help of a program to add marks of two students in two different subjects respectively. Marks of first student in "sub1" should be added with marks of second student in "sub1" and respectively for marks of "sub2" added for both students and then displayed.	CO2,CO3
12	Write a program to illustrate the concept of one class with two objects by taking student data.	CO3
13	Write a program to show the relationship of class and object to display roll no., grade and fee paid by student.	CO2,CO3
14	Write a program to define the member function outside and inside the class.	CO2,CO4
15	Write a program to read and display the information of N persons to illustrate the concept of array of objects.	CO2
16	Write a program to add two numbers to illustrate the use of friend function.	CO2
17	Write a program to assign and copy values to illustrate the concept of parametrized and copy constructor.	CO2,CO4
18	Write a program to show the order of constructor and destructor.	CO2
19	Write a program to add two numbers using binary operator overloading.	CO2,CO3
20	Write a program to illustrate the assignment operator overloading.	CO5
21	Sample Programs using inheritance in and accessing objects of different derived classes (a)Write a program to compute the marks explaining the concept of multiple inheritance.	CO3,CO4
22	Write a program to find the factorial of a number using inheritance	CO2,CO3
23	Sample Programs using polymorphism and virtual functions (using pointers) (a)Write a program to find the volume of cylinder and cuboid using function overloading. (b)Write a program to reverse a string using pointers.	CO5,CO4

24	Write a program to explain the relationship of inheritance and virtual function.	CO4,
25	Project2: Create Tic Tac Toe game using C++ concepts	CO4
26	Project 3: Quiz Game: Design a quiz game program where users can answer multiple-choice questions from various topics. The program should keep track of the score and provide feedback on the user's performance.	CO4,CO5

Semester III

INTRODUCTION TO DATA STRUCTURES

Department:	Dep	partment of Computer Science	e and E	ngineering
Course Name: Introduction to Data		Course Code	L-T-P	Credits
Structures		ENBC201	3-1-0	4
Type of Course:	Maj	or		
Pre-requisite(s), if a	ny:	Basics of Computer Programm	ning	
organization and the a In this course, we will science and learn to im of data structures, the solving approach. With in implementing them, developer. The course arrays, stack and queu	bilit exp pler eir o the stu wil es a	roblems requires the knowled y to make effective choices amo olore several fundamental data a ment them. The course aims to t design, implementation and eff knowledge of data structures an idents can become much more il start with the basic introduct as well as non-linear data struct proceeds with the programm	ong mu structur each the ective u nd pract effectiv tion of ures suc	ltiple solutions. es in computer e fundamentals use in problem cical experience e designer and linear such as ch as trees and
UNIT WISE DETAILS				
Unit Number: 1	Intr	oduction to Data Structure	No. o	f hours: 12
data types, Static an applications; Arrays: or Basic Analysis: Differ an algorithm, Asympto O notation: formal de Complexity classes, s exponential, Time and s	nd derce tic a efini such spac	tructures: Definition of data since the provident of a since the provident of arrays and the provident of a since the provident of the	amples in mem orst case complex big th near, o	and real life ory behaviours of ity bounds, Big eta notation ,

Content Summary:

Stacks: ADT Stack and its operation, Array based implementation of stacks, Examples: Infix, postfix, prefix representation, Conversions, Evaluation of postfix expression using stacks.

Queues: ADT Queue and its operation, Array based implementation of linear Queues, Circular Queues, Priority queues

Linked List: Definition, Components of linked list, Representation of linked list, Advantages and Disadvantages of linked list. Types of linked list: Singly linked list, Doubly linked list, Circular linked list and circular doubly linked list. Operations on singly linked list: creation, insertion, deletion, search and display (based on the different position as specified by the user).Linked representation of Stacks & Queues.

Unit Number: 3 Title:	Trees and Graphs	No. of hours: 12

Content Summary:

Trees: Basic Terminology, Binary Trees and their representation, expression evaluation, Complete Binary trees, traversing binary trees, Searching, Insertion and Deletion in binary search trees.

Graphs: Terminology and Representations, Directed Graphs, Sequential representation of graphs, Adjacency matrices, Transversal Connected Component and Spanning trees, algorithms and their analysis.

Unit Number: 4 Title: Sorting and Searching No. of hours: 8

Content Summary:

Sorting Algorithms: Introduction, insertion, selection, bubble, quick, merge, heap sort, algorithms and their analysis

Searching Algorithms: Straight Sequential Search, Binary Search (recursive & non-recursive Algorithm

*Self-Learning Components:

1. Students should explore Platforms like LeetCode, HackerRank for Data structure

Students can refer the following courses as per the Open Source University Curriculum

"Algorithms, Part I" by Robert Sedgewick and Kevin Wayne (available on Coursera)

"Algorithms, Part II" by Robert Sedgewick and Kevin Wayne (available on Coursera)

Reference Books:

1. E. Horowitz and S. Sahani, "Fundamentals of Data Structures", Galgotia Book source Pvt. Ltd.

2. Data Structures & Algorithms in Python by John Canning, Alan Broder, Robert Lafore Addison-Wesley Professional ISBN: 9780134855912.

3. "Introduction to Algorithms" by Thomas H. Cormen, Charles E.

Leiserson, Ronald L. Rivest, and Clifford Stein.

4. Problem Solving with Algorithms and Data Structures Using Python" by Brad Miller and David Ranum.

Define Course Outcomes (CO)

COs	Statements
CO1	Evaluate the efficiency of different data structures in terms of time and space complexity.
CO2	Implement a given Search problem (Linear Search and Binary Search).
CO3	Demonstrate an understanding of how data structures are implemented and their logical organization.
CO4	Design & implement the algorithm for Selection Sort, Bubble Sort, Insertion Sort, Quick Sort, Merge Sort, Heap sort. Compare their performance in term of Space and time complexity

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C1	A3	Р5
C02	C2	A3	P4
CO3	C3,C4	A4	Р3
CO4	C5	A2	P2

*Please Note:

Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	3	-	-	2	-	1	-	-
CO2	3	3	2	-	-	2	-	-	-	-
CO3	3	3	3	-	-	3	-	2	-	-
CO4	3	3	3	-	-	3	-	-	-	-

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

- 1=weakly mapped
- 2= moderately mapped
- 3=strongly mapped

CO-PSO Mapping (BSC)

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	-
CO2	3	3	3	-
CO3	3	-	2	-
CO4	3	-	3	-

Relevance of the Syllabus to various indicators

Unit I	Introduction to Data Structure
Local	-
Regional	_
National	It provides foundational knowledge in data structures and algorithm analysis, which are fundamental concepts in computer science and software engineering.
Global	The principles taught in this course are applicable worldwide and form the basis of software engineering practices globally.
Employability	Understanding these concepts is crucial for technical interviews and can enhance job prospects in various technology companies.
Entrepreneurship	It helps in developing efficient and scalable software solutions, which are essential for building successful tech startups or innovative ventures.
Skill Development	Develop skills that are fundamental to computer science and software development and can be applied in various programming languages and contexts.
Professional Ethics	Applying good coding practices and software engineering principles align with professional ethics in the field.
Gender	-
Human Values	It encourages students to approach problems analytically and develop efficient solutions that can positively impact human lives.
Environment & Sustainability	_
Unit II	Stacks, Queues and Linked List
Local	-
Regional	-
National	These data structures are used extensively in computer science and software engineering, and the skills learned in this course can be applicable to various industries and sectors across the country.
Global	The principles taught in this course are applicable worldwide and form the basis of software engineering practices globally.
Employability	Understanding these data structures and their operations is important for solving problems efficiently and implementing optimized algorithms, which are

	highly sought after skills in the job market.
Entrepreneurship	Knowledge of data structures like stacks, queues, and linked lists is valuable for entrepreneurship in the technology sector.
Skill Development	Understanding and applying concepts related to stacks, queues, and linked lists enhances programming skills and helps in developing efficient algorithms to solve real-world problems.
Professional	
Ethics	-
Gender	-
Human Values	Fostering critical thinking, problem-solving skills, and logical reasoning, which are important qualities in a technology-driven society which can improve productivity and streamline processes, thus positively impacting human lives.
Environment & Sustainability	_
Unit III	Trees and Graphs
Local	-
Regional	-
National	The skills learned in this course can be applicable to various industries and sectors across the country.
Global	The principles taught in this course are applicable worldwide and form the basis of software engineering practices globally.
Employability	Knowledge of data structures such as trees and graphs is highly relevant to employability in the field of software development and computer science.
Entrepreneurship	These data structures are commonly used in designing and developing software solutions, and understanding their implementation and applications can help entrepreneurs build innovative and scalable products.
Skill Development	Understanding and applying concepts related to trees and graphs enhances programming skills and helps in developing efficient algorithms to solve real-world problems.
Professional Ethics	Following best practices in data structure implementation and algorithm design promotes code readability, maintainability, and overall software quality.

Human Values	Understanding data structures like trees and graphs enables students to develop efficient algorithms that can improve productivity, streamline processes, and
	positively impact human lives.
Environment & Sustainability	_
Unit IV	Sorting and Searching
Local	-
Regional	-
National	It provides foundational knowledge in sorting and searching algorithms.
Global	Sorting and searching algorithms are fundamental building blocks in computer science and software development, used globally.
Employability	Understanding these algorithms and their efficiency helps in developing optimized software solutions, which are highly sought-after skills in the job market.
Entrepreneurship	These algorithms are used extensively in data processing, information retrieval, and optimization problems, which are essential in building innovative and scalable software products.
Skill Development	Understanding and applying sorting and searching algorithms enhance programming skills and helps in developing efficient algorithms to solve real-world problems.
Professional Ethics	Following best practices in algorithm design and implementation promotes code readability, maintainability, and overall software quality.
Gender	-
Human Values	Understanding sorting and searching algorithms enables students to develop efficient solutions that improve productivity, streamline processes, and positively impact human lives.
Environment & Sustainability	-
SDG	SDG 4
NEP 2020	-
POE/4 th IR	Aligns with the concepts of Design, Efficiency ,Problem Solving, Abstraction and System Analysis

INTRODUCTION TO DATA STRUCTURES LAB

Department:	Department of Computer Science and Engineering			
Course Name: Introduction to Data	Course Code	L-T- P	Credits	
Structures Lab	ENBC253	0-0-2	1	
Type of Course:	Major			
Pre-requisite(s), if any: Basics of Computer Programming				

Defined Course Outcomes

COs	
CO 1	Equip the students with knowledge of algorithms and analysis of space and time complexity of the algorithms
CO 2	Demonstrate the use of stack ,queues and linked list
CO 3	Equip the students with tree and graph data structures and their practical applications
CO 4	Implementing and analysing searching and sorting algorithms

Proposed Lab Experiments

Ex No	Experiment Title	Mapped CO/COs
1	Todesign, implement and analyze the complexity of Linear search algorithm	CO4
2	Todesign, implement and analyze the complexity of Binary search algorithm	CO4
3	Implement and compare the time complexity of bubble sort, insertion sort and selection sort. Calculate their running times for best, worst & best cases. Draw the three cases in a single graph to justify its observed time complexities.	
4	Implement and analyse the working of Recursive Algorithms	CO1
5	Implement Quick sort algorithm and calculate its running times for best, worst & best cases. Draw the three cases in a single graph to justify its observed time complexities.	

6	Implement the linear data structure : Stack by	CO2
	performing Push and Pop operation	
7	Implement Postfix and Prefix Expression using Stack	CO2
8	Implement reverse of a String using Stack	
9	Implement the linear data structure : Queue by	CO2
	performing Insertion and Deletion operation	
10	Implement Circular Queue by performing Insertion and Deletion operation	
11	Implement the dynamic data structure : single linked list	CO2
	also analyse their time complexities in three cases:	
	a. Inserting a new node at the beginning	
	b. Inserting a new node at the end	
10	c. Deleting a node from the beginning	602
12	Consider a linked list L reverse the linked list	CO2
13	Implement the dynamic data structure : doubly linked list	CO2
	also analyse their time complexities in three cases:	
	 a. Inserting a new node at the beginning b. Inserting a new node in the middle 	
	c. Deleting a node from the end	
14	Implement the dynamic data structure : circular linked	CO2
± 1	list also analyse their time complexities in three cases:	02
	a. Inserting a new node at the beginning	
	b. Inserting a new node in the middle	
	c. Deleting a node from the end	
15	Implement and analyse Stack implementation using	CO2
	Linked list	
16	Implement and analyse Queue implementation using	
4 7	Linked list	<u> </u>
17	Implement and analyse the tree traversal algorithms	CO3
	1. Inorder 2. Preorder	
	3. Post order	
18	Implement and analyse the following operations of Binary	CO3
	Search tree	
	a. Creating and inserting a new node	
	b. Searching a node	
	c. Deleting an existing node from BST	
19	Implement AVL tree with insertion, deletion and	CO3
	searching operation	
20	Implement the graph traversal techniques:	CO3
	Depth First search and Breadth First search algorithms	
21	To understand and implement the minimum spanning	CO3
22	tree in Graphs using Kruskal Algorithm	~~~
22	To understand and implement the minimum spanning	CO3
	tree in Graphs using Prims Algorithm	

23	Implement Merge sort algorithm and calculate its runningCO4 times for best, worst & best cases. Draw the three cases in a single graph to justify its observed time complexities.
24	Implement Heap sort algorithm and calculate its running CO4 times for best, worst & best cases. Draw the three cases in a single graph to justify its observed time complexities.
25	Implement a priority queue using a heap and calculate its CO4 running times for best, worst & best cases. Draw the three cases in a single graph to justify its observed time complexities.
	Mini Project 1: Create a student management system that stores and manages student records using various data structures. The system should allow users to perform operations such as adding new students, searching for students, deleting students, and displaying all student records.
	Mini Project 2: Implement a maze solver using data structures like stacks or queues. The program should take an input maze, find a path from the starting point to the goal, and output the solution. You can use depth-first search (DFS) or breadth-first search (BFS) algorithms to solve the maze.
	Mini Project 3: Implement a social network analysis tool using data structures like graphs. The tool should be able to read a network of users and their connections, and perform operations like finding the shortest path between two users, identifying influential users, or recommending friends.

FUNDAMENTALS OF CRYPTOGRAPHY

Department:	Department of Computer Science and Engineering			
Course Name:	Course Code	L-T-P	Credits	
Fundamentals of Cryptography	ENSP207	4-0-0	4	
Type of Course:	Minor			

Pre-requisite(s), if any:

Brief Syllabus:

Cryptography is an indispensable tool for protecting information in computer systems. In this course students will learn the inner workings of cryptographic systems and how to correctly use them in real-world applications. The course begins with a detailed discussion of how two parties who have a shared secret key can communicate securely when a powerful adversary eavesdrops and tampers with traffic. Students will examine many deployed protocols and analyze mistakes in existing systems. The second half of the course discusses public-key techniques that let two parties generate a shared secret key. Throughout the course participants will be exposed to many exciting open problems in the field and work on fun (optional) programming projects. In a second course (Crypto II) we will cover more advanced cryptographic tasks such as zero-knowledge, privacy mechanisms, and other forms of encryption.

UNIT WISE DETAILS

Unit Number: 1	Title: Introduction to Cryptography	No. of hours: 10
-------------------	-------------------------------------	------------------

Content Summary:

Computer Security Concepts – The OSI Security Architecture – Security Attacks – Security Services and Mechanisms – A Model for Network Security – Classical encryption techniques: Substitution techniques, Transposition techniques, Steganography – Foundations of modern cryptography: Perfect security – Information Theory – Product Cryptosystem – Cryptanalysis.

Unit	Title: Cryptographic Security, Pseudo						
Number: 2	Randomness Ciphers	and	Symmetric	Key	No. of hours:	10	

Content Summary:

Shannon's theory, Perfect secrecy, Entropy, Spurious keys and unicity distance; Bit generators, Security of pseudorandom bit generators. Substitutionpermutation networks, Data encryption standard (DES), Description and analysis of DES; Advanced encryption standard (AES), Description and analysis of AES; Stream ciphers, Tritium

Unit	Title: Basics of Number Theory and	No. of hours: 10
Number: 3	Public-Key Cryptography	

Content Summary:

Basics of number theory; Introduction to public-key cryptography, RSA cryptosystem, Implementing RSA; Primality testing, Legendre and Jacobi symbols, SolovayStrassen algorithm, MillerRabin algorithm; Square roots modulo n, Factoring algorithms, Pollard p 1 algorithm, Pollard rho algorithm, Dixon's random squares algorithm, Factoring algorithms in practice; Rabin cryptosystem and its security.

Unit Number: 4	Title: More on Public-Key Cryptography, Hash Functions and Signature Schemes	No. of hours: 10
-------------------	--	------------------

Content Summary:

Basics of finite fields; ElGamal cryptosystem, Algorithms for the discrete logarithm problem, Shanks' algorithm, Pollard rho discrete logarithm algorithm,

PohligHellmanalgorithm; Discrete logarithm algorithms in practice, Security of ElGamal systems, Bit security of discrete logarithms.

Hash functions and data integrity, SHA-3; RSA signature scheme, Security requirements for signature schemes, Signatures and Hash functions, ElGamal signature scheme, Security of ElGamal signature scheme, Certificates.

*Self-Learning Components:

https://seedsecuritylabs.org/Labs 16.04/Crypto/

https://cse29-iiith.vlabs.ac.in/List%20of%20experiments.html

https://cyberlab.pacific.edu/courses/comp178/resources

Reference Books:

1. Jeffrey Hoffstein, Jill Pipher& Joseph H. Silverman (2014). An Introduction to Mathematical Cryptography (2ndedition). Springer.

2. Neal Koblitz (1994). A Course in Number Theory and Cryptography (2nd edition). Springer- Verlag.

3. Christof Paar& Jan Pelzl (2014). Understanding Cryptography. Springer.

4. Simon Rubinstein-Salzedo (2018). Cryptography. Springer.

5. Douglas R. Stinson & Maura B. Paterson (2019). Cryptography Theory and Practice

Define Course Outcomes (CO)

COs	Statements
CO1	Understand network security services and mechanisms.
CO2	Understand and apply Symmetrical and Asymmetrical cryptography.
CO3	Analyze Data integrity, Authentication, Digital Signatures
CO4	Understand various network security applications, IPSec, Firewall, IDS, Web security, Email security, and malicious software etc.

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels© 1. 1Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	С3	A1	P1
C02	С3	A2	P2
CO3	С3	A3	Р3
CO4	C3	А3	Р3
CO5	C3	A3	Р3

*Please Note: Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1	2	1	2	-	2	2	1	1	2
CO2	2	-	2	-	2	2	1	1	-	2
CO3	2	2	-	2	-	3	2	-	2	-
CO4	2	3	2	-	-	3	2	1	2	3

Please Note:

- Refer to POs while mapping each CO.
- Mark "- "if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO, Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

1=weakly mapped

- 2= moderately mapped
- 3=strongly mapped

РО	PO1	PO2	PO3	PSO4
CO1	1	1	2	1
CO2	2	1	1	2
CO3	1	2	2	1
CO4	2	1	1	2

CO-PSO Mapping

Relevance of the Syllabus to various indicators

Unit I	Introduction to Cryptography
Local	
Regional	
National	
Global	The course in Cryptography is relevant at all levels as secure communication and data protection are essential for individuals, businesses, and governments worldwide.
Employability	Knowledge of Cryptography is highly valuable in the digital age, enhancing employability in various sectors like cyber security, IT, and data protection.
Entrepreneurship	
Skill Development	The course equips students with foundational knowledge in cryptography and prepares them to contribute to secure digital communication and data protection across various sectors and industries.
Professional Ethics	The course emphasizes ethical practices in handling sensitive information and respecting privacy rights.
Gender	
Human Values	
Environment & Sustainability	
Unit II	Cryptographic Security, Pseudo Randomness and Symmetric Key Ciphers
Local	
Regional	
National	

Global	As societies become more reliant on digital communication, understanding cryptography becomes essential for protecting sensitive information, ensuring cybersecurity, and fostering trust in online transactions and data exchange at global level.
Employability	By studying this course, students can enhance their employability in industries like IT, cyber security, and government agencies that require data protection and secure communication.
Entrepreneurship	
Skill Development	The course enhances equips students with in-demand skills in cyber security, data protection, and cryptography.
Professional Ethics	
Gender	
Human Values	
Environment & Sustainability	
Unit III	Basics of Number Theory and Public-Key Cryptography
Local	
Regional	
National	
Global	As the world becomes increasingly interconnected, the need for secure communication and data protection is paramount at global levels.
Employability	Knowledge of cryptography can open up opportunities for individuals to work in challenging and well-paying roles.

Entrepreneurship	The course enhances employability and entrepreneurship prospects as it provides learners with specialized skills in cryptography, a field that is in high demand in various sectors, including IT, cybersecurity, finance, and government agencies.
Skill Development	The course equips learners with essential knowledge and skills related to information security and encryption, which are crucial for protecting sensitive data and communication
Professional Ethics	The course addresses professional ethics by emphasizing the responsible use of cryptography to ensure data privacy and protect against cyber threats. It encourages the adoption of ethical practices in handling sensitive information.
Gender	
Human Values	
Environment & Sustainability	Cryptography can also contribute to environmental sustainability by securing online transactions, reducing paper-based processes, and promoting a digital economy.
Unit IV	More on Public-Key Cryptography, Hash Functions and Signature Schemes
Local	
Regional	
National	
Global	It addresses concerns related to data protection, privacy, and secure transactions, making it relevant at the global levels.
Employability	Students can pursue careers as security analysts, cryptographers, or cyber security specialists, contributing to the growth of the digital economy.

Entrepreneurship		
Skill	Understanding cryptographic principles and techniques	
Development	develops critical skills to address digital security challenges.	
Professional	Cryptography has ethical implications related to data	
Ethics	privacy, confidentiality, and responsible use of technology.	
Gender		
Human Values		
Environment &		
Sustainability		
SDG	4,9	
NEP 2020	It aligns with the NEP's focus on developing practical skills and preparing students for employability.	
POE/4 th IR	The course on Cryptography is highly relevant as it addresses the critical need for safeguarding data and maintaining privacy in a digitally connected world	

FUNDAMENTALS OF CRYPTOGRAPHY LAB

Department:	Department of Computer Science and Engineering			
Course Na	me:	Course Code	L-T-P	Credits
Fundamentals Cryptography Lab	of	ENSP259	4-0-0	4
Type of Course:	Minor			
Pre-requisite(s), if any:				

Defined Course Outcomes

Cos	
CO 1	Students will be able to implement various classical ciphers like Substitution Cipher, Baconian Cipher, Playfair Cipher, and Caesar Cipher.
CO 2	Students will learn to implement both symmetric and asymmetric cryptographic algorithms.
CO 3	Through practical exercises involving encryption and decryption of messages, files, and text between clients and servers, students will learn the application of cryptographic algorithms to ensure data confidentiality, integrity, and authentication.
CO 4	Students will work on a mini project involving Hill Cipher, wherein they will apply their knowledge of encryption and decryption to design a complete cryptographic solution.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Write a program to perform encryption and decryption using Substitution Cipher	CO1
2	Write a program to perform encryption and decryption using Baconian Cipher	CO1
3	Write a program to perform encryption and decryption using Vigenere Cipher	CO1
4	Write a program to perform encryption and decryption using Play Fair Cipher	CO1
5	Write a program to perform encryption and decryption using Transposition cipher	CO1
6	Write a program to perform encryption and decryption using hill cipher	CO2
7	Write a program to depict the implementation of Diffie- Hellman key exchange algorithm	CO2
8	Write a program to perform encryption and decryption using Rail Fence Cipher.	CO2
9	Write a program to perform message transfer between client and server	CO2
10	Write a program to perform message transfer between client and multiple servers	CO2
11	Write a program to perform encryption and decryption using RSA Cipher	CO3
12	WAP to implement Client Server to send and receive text file from client and server.	CO3
13	Write a program to perform encryption and decryption using CAESAR CIPHER	CO3

14	Program for the Implementation of One time Pad.	CO3
15	Write a program to perform encryption and decryption usingTransposition Cipher.	CO3
16	Write a program to perform encryption and decryption usingDouble Transposition Cipher.	CO4
17	Write a program to perform encryption and decryption usingStream Cipher RC4.	CO4
18	Write a program to perform encryption and decryption usingRSA Algorithm.	CO4
19	Write a program to perform encryption and decryption usingEl-Gamal Cryptographic Algorithm	CO4
20	Write a program to perform encryption and decryption usingHill Cipher. (Mini Project)	CO4

BASICS OF PROBABILITY & STATISTICS

Department:	Department of Computer Science and Engineering			
Course Name: Basics of Probability &	Course Code	L-T-P	Credits	
Statistics	ENBC203	4-0-0	4	
Type of Course:	Major			
Pre-requisite(s), if a	ny: Basics of Probability an	d Statistics		
The Probability and Statistics course is designed to provide students with a strong foundation in the principles and applications of probability and statistics in the context of data science. The course will cover various topics, including probability functions, random variables, discrete and continuous distributions, correlation and regression analysis, central limit theorem, and modeling uncertainty. Students will also explore real-world examples and utilize programming languages for statistical analysis and data visualization.				
UNIT WISE DETAILS				
Unit Number: 1	Basic Probability	No. of	hours: 8	
Content Summary: Definition of probability, conditional probability, independent events, Bayes' theorem, Bernoulli trials, Random variables, discrete random variable, probability mass function, continuous random variable, probability density function, cumulative distribution function, properties of cumulative distribution function, Two dimensional random variables and their distribution functions, Marginal probability function, Independent random variables.				
Unit Number: Title:	Probability Distributions	for	hours: 8	
2 Data So	cience			
Content Summary: Binomial distribution, Poisson distribution, Poisson approximation to the binomial distribution, Normal distribution and its properties, Exponential distribution, Gamma distribution, Evaluation of statistical parameters for these distributions.				
Unit Number:Title: 3 Science	Descriptive Statistics for	r Data No. of	hours: 8	

Content Summary:

Measures of central tendency: mean, median, mode, Measures of dispersion: variance, standard deviation, range, Skewness and kurtosis, Moments, Expectation, Linear correlation and correlation coefficient, Rank correlation coefficient.

Unit Number:	Title: Statistical Inference for Data	No. of hours: 8
4	Science	NO. OF HOURS: 0

Content Summary:

Hypothesis formation and testing, large sample tests for proportions, means, and standard deviations, Small sample tests: t-test, F-test, chi-square test, Test of significance for correlation coefficients, Goodness of fit tests, Independence of attributes tests.

Unit Number:	Title: Curve Fitting and Regression for	No of hourse 8
5	Data Science	

Content Summary:

Curve fitting using the method of least squares, Fitting straight lines, parabolas, and general curves, Correlation analysis: coefficient of correlation, rank correlation, Simple linear regression: regression coefficients, lines of regression, Multiple linear regression: coefficient of multiple correlation, multiple regression equations.

***Self-Learning Components:**

• **Probability Simulation**: Students can explore and practice probability concepts through simulations using tools like Python's NumPy library or R programming language.

https://pll.harvard.edu/course/data-science-probability

https://www.mygreatlearning.com/academy/learn-for-free/courses/probability-fordata-science

https://www.udemy.com/course/statistics-probability-for-data-science/

• **Data Analysis using R**: Students can learn and apply statistical techniques using R, an open-source statistical programming language, to analyze real-world datasets.

https://www.coursera.org/learn/data-analysis-r

https://www.udemy.com/course/data-analysis-with-r/

• **Hypothesis Testing with Excel**: Students can learn how to perform hypothesis testing using Excel's built-in statistical functions and conduct statistical analyses on data sets.

https://www.coursera.org/learn/hypothesis-testing-python-excel

• **Introduction to Data Visualization**: Students can explore data visualization techniques and tools such as Tableau or matplotlib to effectively present statistical findings and insights.

udemy.com/course/introduction-to-data-visualization/

• **Introduction to Machine Learning**: Students can gain an understanding of basic machine learning algorithms and their applications in data analysis and prediction, using tools like scikit-learn or TensorFlow.

https://www.coursera.org/learn/machine-learning-duke https://onlinecourses.nptel.ac.in/noc22_cs29/preview

Reference Books:

- 1. "Probability and Statistics for Data Science" by Reza Hassanzadeh
- 2. "Statistics for Data Science" by James D. Miller

3. "Statistics for Data Scientists: 50 Essential Concepts" by Peter Bruce and Andrew Bruce

- 4. "Statistical Methods for Data Science" by Wenqing Li and Yili Hong
- 5. "Introduction to Probability and Statistics for Data Science" by Samuel N. Cohen

Define Course Outcomes (CO)

COs	Statements	
CO1	Demonstrate understanding of various probability distributions and their applications in data science.	
CO2	Apply statistical techniques and probability distributions to analyze and interpret data in data science applications.	
CO3	Utilize statistical measures and methods to summarize and interpret data in data science projects.	
CO4	Evaluate statistical inference techniques and apply them to make data- driven decisions in data science projects.	
CO5	Develop statistical modeling and analysis techniques to solve data science problems.	

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
C01	-	_	-
C02	-	-	-
CO3	-	A4	-
CO4	C4	A4	P4
CO5	C5	A5	Р5

*Please Note: Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	1	-	-	-	2	-	-	-	-
CO2	3	2	1	3	-	2	-	-	-	-
CO3	2	1	3	2	2	2	-	-	2	1
CO4	2	2	3	2	-	2	-	-	-	-
CO5	2	-	3	3	1	2	-	-	2	2

CO-PO Mapping

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

1=weakly mapped

- 2= moderately mapped
- 3=strongly mapped

CO-PSO Mapping

PO	PSO1	PSO2	PSO3	PSO4
CO1	3	-	1	-
CO2	3	-	2	-
CO3	2	1	2	1
CO4	1	-	2	-
CO5	2	1	3	1

Relevance of the Syllabus to various indicators

Unit I	Basic Probability
Local	Addresses local understanding probability of events
Regional	
National	Contributes to national digital literacy (probability concepts are
	fundamental to understanding data and making informed
	decisions in the digital realm)
Global	Aligns with global trends in probability concepts apply universally
	in analyzing and predicting outcomes.
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit II	Probability Distributions for Data Science
Local	Addresses local understanding probability distributions can be
	applied to analyze and model various online phenomena.
Regional	-
National	Contributes to national digital literacy probability distributions that
	play a role in understanding and analyzing data in the digital
	landscape.
Global	Aligns with global trends probability distributions which are
	applicable in analyzing data worldwide.
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit III	Descriptive Statistics for Data Science
Local	-
Regional	-
National	Contributes to national network security strategies and protocols
	(understanding statistical measures helps in analyzing and
	evaluating network security).
Global	Aligns with global trends in network security techniques and
	protocols (statistical analysis is essential in assessing and
	improving network security worldwide).
Employability	-
Entrepreneurship	-

Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit IV	Statistical Inference for Data Science
Local	-
Regional	-
National	-
Global	Aligns with global trends in network security techniques and protocols as statistical analysis is essential in assessing and improving network security worldwide.
Employability	-
Entrepreneurship	-
Skill Development	
Professional Ethics	-
Gender	-
Human Values	
Environment &	
Sustainability	-
Unit V	Curve Fitting and Regression for Data Science
Local	Addresses local understanding and implementation of statistics which is applied in analyzing and optimizing internet-based services.
Regional	-
National	Contributes to national statistics aids in analyzing and enhancing digital communication.
Global	Aligns with global trends in applied statistics which is relevant in analyzing and improving global digital services).
Employability	Develops skills in knowledge of applied statistics supports data analysis and optimization in these areas.
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
SDG	SDG 4 (Quality Education)
NEP 2020	-
POE/4 th IR	Aligns with the concepts of internet telephony, multimedia applications, and SEO (the syllabus content covers relevant topics in these areas).

INTRODUCTION TO JAVA PROGRAMMING

Department:	Depa	rtment of Com	puter Scienc	e and Engineering
Course Name:	Course		L-T-P	Credits
Introduction to Java		Code		
Programming		ENBC205	3-1-0	4
Type of Course:	Major			
Pre-requisite(s), if	any:	C++ Programm	ing	
Frequency of offer	ing (c	heck one): Od	d semester	
9. Brief Syllabu	s:			
language java. The programming like structures, interfaces	e cou object, s, pack o that g apple	rse explores a , classes, data ages, applets, / they can develo ets etc.	all the basic a types, fea AWT, Swings.	d in this object-oriented concepts of core java tures, operators, control The students are expected pplications as well as web
Unit Number: Title 1 Java		troduction to	No. of hours	s: 12
Environmental setur Variable Types, Mod Strings and Arrays,	Featu b, Bas ifier T Meth	sic syntax, Ob ypes, Basic op ods, I/O. Intro	jects and cla erators, Loop oducing classe	is different from C++, asses, Basic Data Types, Control, Decision Making, es, objects and methods: objects, constructors.
Unit Number: Title 2 Stri		rays and	No. of hours	:: 8
super, Multilevel hi	erarch nce, C	y, abstract ar Verriding, Poly	id final class morphism, A	asses: Basics types, using es, Object class, Access bstraction, Encapsulation,
Unit Number: Title 3		ceptional &	No. of hours	s: 12

Content Summary:

Exception Hierarchy, Exception Methods, Catching Exceptions, Multiple catch Clauses, Uncaught Exceptions Java's Built-in Exception. Creating, Implementing and Extending thread, thread priorities, synchronization suspending, resuming and stopping Threads, Multi- threading.

Unit Number: 4 Title: Input/output Programming & File handling	No. of hours: 8
--	-----------------

Basics Streams, Byte and Character Stream, predefined streams, Reading and writing from console and files. Reading data from files using input streams, Writing data to files using output streams.

*Self-Learning Components:

Students should explore Platforms like LeetCode, HackerRank for JAVA and JAVA IDE like eclipse, Netbeans etc.

Students can refer the following courses as per the Open Source University Curriculum

1. "Java Programming Masterclass for Software Developers" on Udemy by Tim Buchalka

2. "Java Fundamentals: The Java Language" on Pluralsight by Jesse Liberty,

Reference Books:

- 1. Herbert Schildt, –Java The Complete Referencell, Oracle Press.
- 2. Cay S. Horstmann, —Core Java Volume I FundamentalsII, Pearson.

	Define Course Outcomes (CO)
COs	Statements
CO1	Recognize features of object-oriented design such as encapsulation, polymorphism inheritance and composition of systems based on object identity.
CO2	Articulate re-usable programming components using Abstract Class, Interfaces and other permitted ways in packages.
CO3	Apply access control mechanism to safeguard the data and functions that can be applied by the object.
CO4	Design GUI applications using pre-built frameworks available in Java.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	P1
C02	C3	A2	P2
CO3	C3	A5	Р5
CO4	C6	A5	Р5

CO-PO Mapping

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	2	-	2	1	2	-	-	-
CO2	1	2	-	-	3	2	1	-	-	-
CO3	-	-	-	-	3	1	2	1	-	3
CO4	-	-	-	-	3	2	2	-	-	3

1=weakly mapped 2= moderately mapped

3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	1
CO2	2	3	2	1
CO3	2	3	2	1
CO4	2	3	2	1

Relevance of the Syllabus to various indicators

Unit I	Introduction to Java
Local	-
Regional	-
National	-
Global	Java is widely used worldwide, and the skills gained from the course have global relevance in software development.
Employability	Understanding object-oriented programming and Java is valuable in the job market, as many industries and organizations rely on Java for software development.
Entrepreneurship	contribute to entrepreneurship by providing individuals with the skills and knowledge needed to develop software applications or start a technology-related business
Skill	contributes to skill development, particularly in programming,
Development	object-oriented design, and Java development
Professional	encourages ethical programming practices, such as writing
Ethics	clean code, following best practices, and respecting intellectual property rights
Gender	These concepts are equally applicable and accessible to individuals of all genders pursuing careers in software development.
Human Values	promotes human values such as teamwork, collaboration, and effective communication, which are essential in the software development industry.
Environment & Sustainability	promoting efficient programming practices and emphasizing code optimization
Unit II	Arrays and Strings
Local	-
Regional	-
National	It contributes to the development of software infrastructure, applications, and systems that support national industries, governance, and public services.
Global	Java is widely used worldwide, and the skills gained from the course have global relevance in software development.
Employability	Understanding object-oriented programming and Java is

Environment & Sustainability Unit IV	promoting efficient programming practices and emphasizing code optimization Input/output Programming & Event Handling
	promoting efficient programming practices and emphasizing
	development industry.
	effective communication, which are essential in the software
Human Values	promotes human values such as teamwork, collaboration, and
	development.
	individuals of all genders pursuing careers in software
Gender	These concepts are equally applicable and accessible to
	intellectual property rights
Ethics	clean code, following best practices, and respecting
Professional	encourages ethical programming practices, such as writing
Development	object-oriented design, and Java development
Skill	contributes to skill development, particularly in programming,
	applications or start a technology-related business
	the skills and knowledge needed to develop software
Entrepreneurship	contribute to entrepreneurship by providing individuals with
	organizations rely on Java for software development.
	valuable in the job market, as many industries and
Employability	Understanding object-oriented programming and Java is
	course have global relevance in software development.
Global	Java is widely used worldwide, and the skills gained from the
	governance, and public services.
	applications, and systems that support national industries,
National	It contributes to the development of software infrastructure,
Regional	
Local	
Unit III	Exceptional Handling & Multithreading
Sustainability	code optimization
Environment &	promoting efficient programming practices and emphasizing
	effective communication, which are essential in the software development industry.
Human Values	promotes human values such as teamwork, collaboration, and
	development.
	individuals of all genders pursuing careers in software
Gender	These concepts are equally applicable and accessible to
	intellectual property rights
Ethics	clean code, following best practices, and respecting
Professional	encourages ethical programming practices, such as writing
Development	object-oriented design, and Java development
Skill	contributes to skill development, particularly in programming,
	applications or start a technology-related business
	the skills and knowledge needed to develop software
Entrepreneurship	contribute to entrepreneurship by providing individuals with
1	valuable in the job market, as many industries and
	organizations rely on Java for software development.

Local	-
Regional	-
National	-
Global	Java is widely used worldwide, and the skills gained from the course have global relevance in software development.
Employability	Understanding object-oriented programming and Java is valuable in the job market, as many industries and organizations rely on Java for software development.
Entrepreneurship	contribute to entrepreneurship by providing individuals with the skills and knowledge needed to develop software applications or start a technology-related business
Skill	contributes to skill development, particularly in programming,
Development	object-oriented design, and Java development
Professional	encourages ethical programming practices, such as writing
Ethics	clean code, following best practices, and respecting intellectual property rights
Gender	These concepts are equally applicable and accessible to individuals of all genders pursuing careers in software development.
Human Values	promotes human values such as teamwork, collaboration, and effective communication, which are essential in the software development industry.
Environment &	promoting efficient programming practices and emphasizing
Sustainability	code optimization
SDG	SDG 4
NEP 2020	-
POE/4 th IR	Aligns with the concepts of Design, Efficiency ,Problem Solving, Abstraction and System Analysis

INTRODUCTION TO JAVA PROGRAMMING LAB

Department:	Depa	Department of Computer Science and Engineering			
Course Name: Introduction to		Course Code	L-T-P	Credits	
Programming La	ab	ENBC251	0-0-2	1	
Type of Course:	Major				
Pre-requisite(s) if an	$\mathbf{V} \subset \mathbf{+} \mathbf{+} Prodra$	ammina		

Defined Course Outcomes

COs		
CO 1	Apply the concepts learned of operators, if-else, loops and arrays to java based application development.	
CO 2	Demonstrate the use of various types of inheritances, polymorphisms, class objects, inheritances, packages and other concepts to basic and complex java programming problems.	
CO 3	Demonstrate graphical applications based on java applets, swings and event handling	
CO 4	Apply knowledge of event handling and AWT controls to create some new dynamic graphical applications.	

Proposed Lab Experiments

Ex No	Experiment Title	Mapped CO/COs
	 Sample Programs using Objects and classes, Variable Types, Modifier Types, operators, Loops Decision Making, Strings and Arrays, a. WAP to display "Hello, it's a first program in java". b. WAP to find sum of two integers taken as input from user at runtime. c. WAP to find sum of two float numbers taken as command line arguments d. WAP to find changed case of entered character. 	

	e. WAP to find maximum of 3 integer numbers taken as input from user at runtime.	
2	Sample Programs using Inheritance, Overriding, Polymorphism, Interfaces, Packages a. WAP in java to illustrate the concept of interfaces. b. Write a program in java to showcase uses of super keyword	C01
3	Sample Programs using exception handling and threads a. Write a program to demonstrate the use of nesting of try-catch block b. WAP in java to illustrate the concept of using multiple catch clauses to handle different types of exceptions. c. WAP in java to create a user defined Exception and throw it explicitly.	CO2
4	Sample Programs using event handling and AWT controls	CO1
5	Sample Programs using swings Write an applet which will display "HAPPY" and "DEEPAVALI" as: The word "HAPPY" will roll from top to bottom and "DEEPAVLI" from bottom to "top". Both will run at the same speed and stop simultaneously at the center of the applet.	CO3
6	WAP in java to create a frame with various AWT controls (like choice, list, TextField and Buttons) and handle the events thrown by them.	CO3
7	WAP in java to create a frame with AWT controls (like label, push buttons, Checkbox, Checkbox Group) and handle various events generated by them.	CO4
8	WAP to create a package as MyPack having a class with three methods: max, fact and show. Use it in other folder with setting classpath and without setting class path.	CO2
9	WAP to create a frame and illustrate the concept of using an adapter class in place of interfaces for handling various mouse events generated over frame window.	CO3
10	Write a program to display "hello" in different color where user clicks left mouse button and "world" where right mouse button is clicked. Use black background.	CO2
11	 a. Demonstrate thread using Thread class and Runnable interface b. Demonstrate various thread methods using a program 	CO3
12	Write a java program to create an abstract class named Shape that contains two integers and an empty method named printArea(). Provide three classes named Rectangle, Triangle and Circle such that each one of the classes extends the class Shape. Each one of the classes contain only the method printArea() that prints the area of the given shape.	CO4

13	a WAR to croate class with "name" as String and "asa"	CO3
15	 a. WAP to create class with "name" as String and "age" as integer data members. The class should have two methods to take input from user and display the data. b. WAP to find factorial of a number using class and object. 	03
14	Write a java program that implements a multi-thread application that has three threads. First thread generates random integer every 1 second and if the value is even, second thread computes the square of the number and prints. If the value is odd, the third thread will print the value of cube of the number.	CO4
15	Create an Frame with one single button with caption "Click". On clicking the button will open a new Frame with title "Factorial". The frame will have two three controls :TextField, Label and button. On clicking button calculate the factorial entered in TextField control.	CO4
16	Project 1: Simple Calculator: Build a basic calculator application that performs arithmetic operations like addition, subtraction, multiplication, and division. You can add a user interface using Java Swing or JavaFX for a more interactive experience.	CO4
17	Project 2: Tic-Tac-Toe Game: Implement the classic Tic- Tac-Toe game where two players take turns marking X or O on a 3x3 grid. Allow players to play against each other.	CO4
18	Project 3: Quiz Application: Design a quiz application that presents multiple-choice questions to users and keeps track of their scores. Include features like a timer, question randomization, and a scoring system.	CO4
19	Project 4: Hangman Game: Create a Hangman game where players guess letters to uncover a hidden word. Include features such as displaying the word's progress, tracking incorrect guesses, and providing hints.	CO4

CAREER DEVELOPMENT PROGRAM-I

Department:	Department of Computer Science and Engineering			
Course Name:	Course Code	L -T-P	Credits	
Career Development Program-I	AEC011	3-0-1	3	
Type of Course:	AEC		- ·	
Pre-requisite(s), if any:				
Frequency of offering (c	heck one): Odd /	Even		

Brief Syllabus:

The basics of Quantitative Aptitude are starting from Simplification questions then Number system, Percentage, and Average. If you are just starting learning Quantitative aptitude, you must start with simplification and the number system. The main quantitative Aptitude topics are Number System, Simplification, Percentage, simple interest and compound interest, Profit and loss, Ratio and Proportion, Time and Work, Time, Speed, and Distance, Average, Probability, Permutation, and Combination, Equations and Equalities. Data interpretation questions can be solved by using all quantitative aptitude topics concepts.

Life skills for professionals' course are designed for engineering learner to enhance and develop interpersonal skills that characterize a person's relationships with other professionals. This program will teach skills which will prepare them for a successful career in their industry. The main topics will include verbal communicational skills, non- verbal communication skills, Active listening skills, written communication skills and presentation skills.

Total lecture, Tutorial and Practical Hours for this course:

Practice

Lectures	Lectures: 30Doubt session:7PC Lab: 8						
11. Course Outcomes (COs)							
Usefulness of this course after its completion i.e. the learner should build self							
confidenc	confidence in their communication abilities the learner should exhibit improved						
communio	communication skills assesses in communication skills, logical reasoning,						
quantitati	quantitative skills along with job-specific domain skills.						
COs Learner will develop self confidence in their communication abilities				neir communication abilities and			
203	ena	bling them to	express themselves	as	sertively.		
CO 1	Lea	rner will deve	elop the ability for	adv	anced critical thinking and the		
	abil	ity to formula	te logical arguments	5.			
CO 2	The	learner to a	apply different valu	e s	ystems and moral dimensions		
002	whi	le taking decis	sions.				
CO 3	Арр	ly mathemati	cal techniques to qu	anti	itative theory.		
CO 4	Sof	skills include	attributes and pers	ona	lity traits that help learner to		
004	inte	ract with othe	ers and succeed.				
CO 5	Lea	rner will cultiv	ate self-confidence,	pro	blem solving and critical		
	thin	king abilities					
12. UNIT	. MI	SE DETAILS					
Unit		Title: Intro	luction to	No	of hours: 8		
Number	: 1	number sys	tem				
Content	Sum	mary:					
Number s	yste	m, Divisibility	, Unit digit, Last two	-dig	git, Remainder, Number of		
zero, Factor, LCM & HCF, Simplification.							
				of hourse 9			
Number: 2		Title: Ratio	& its application	NO.	. of hours: 8		
Content	Content Summary:						
Ratio, Mix	ture	, Average, Pa	rtnership.				
Unit Number: 3 Title: communication No. of hours: 7			. of hours: 7				

Content Summary:

Introduction to Communication, Types of communication, Verbal & Nonverbal Communication, Barriers to Communication, Body language, Listening Skills.

Unit	Title: Personality	No. of hours: 7					
Number: 4	development	NO. OF HOURS: 7					
Content Summary:							
Paragraph wri	ting, Professional Speaking (Elocu	itions, Debate, describing incidents					
and developin	g positive nonverbal communicati	on. Articulation and pronunciation.					
Communicatir	ng with confidence. Using appropr	iate tone pitch and volume.					
Contents bey	yond Syllabus:						
https://www.y	voutube.com/watch?v=0pNGYM01	tlw					
https://www.y	/outube.com/watch?v=0gUgm4zB	32F4					
Reference Bo	Reference Books:						
Qunatitative Aptitude by R.S Agarawal							
Quicker math	Quicker math by M.Tyra						
Communication skills by G.H. Hook							

Semester IV

FUNDAMENTALS OF ALGORITHM DESIGN & ANALYSIS

Department:	Department of Computer Science	e and En	gineering			
Course Name: Fundamentals of	Course Code	L-T-P	Credits			
Algorithm Design & Analysis	ENCS202	3-1-0	4			
Type of Course: Major						
Pre-requisite(s), if ar	iy: - Data Structure					
computer algorithms, a learn how to analyse th familiarity with major a methods for the design useful in practice. Differ and their relative merit important computation of dynamic programmin	In of algorithm course introduce states well as analysis of sophisticated be asymptotic performance of algorial gorithms and data structures. This in and analysis of efficient algorithm rent algorithms for a given computa is evaluated based on performance al problems will be discussed: sort ing and greedy algorithms, advance bath, spanning trees, tree travel nal geometry.	algorithms thms as w s course ir ns empha tional task measures ing, searce d data str	s. Students will vell as provides ntroduces basic sizing methods are presented to The following hing, elements ructures, graph			
	Introduction to Algorithms	No.	of hours: 10			
Content Summary: Characteristics of alg complexity bounds – measurements of Algo recursive algorithms th tree method and Master	orithm. Analysis of algorithm: best, average and worst-case rithm, Time and Time and space rough recurrence relations: Substit rs' theorem.	behaviour trade- of	, Performance fs, Analysis of			
Unit Number: Title: F 2 Strateg	undamental Algorithmic	No.	of hours: 10			
Content Summary: Brute -Force, Greedy, I methodologies for the Problem-Solving, Bin F application domains. He	Dynamic Programming, Branch-and design of algorithms; Illustrations Packing, Knap Sack. Heuristics – eaps and priority queues, Hash table araph and Tree Algorithms	of these characteri es and has	techniques for stics and their			

Content Summary:

Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path algorithms, Transitive closure, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm.Graph Colouring and matching algorithms.

Title: Tractable and Intractable Problems	No. of hours: 10

Content Summary:

Computability of Algorithms, Computability classes – P, NP, NP complete and NPhard. Cook's theorem, Standard NP-complete problems and Reduction techniques. String matching.

Self-Learning Components

Container loading problem, stable marriage problem, Coin Change problem

Reference Books

1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and Clifford Stein, MIT Press/McGraw-Hill.

2. Fundamentals of Algorithms – E. Horowitz et al.

Define Course Outcomes (CO)

COs	Statements
	Understand fundamental algorithmic concepts and how to analyze Complexities.
CO2	Analyzeand evaluate algorithm performance.
CO3	Apply algorithmic problem-solving strategies.
CO4	Develop algorithm implementation skills.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
C01	C2	A3	P2
C02	C4	A4	Р3
CO3	C3	A4	Ρ4
CO4	C4	A5	Ρ5

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	3	-	-	-	2	1	-	1	1
CO2	-	3		3	2	2	-	2	-	-
CO3	-	-	3	-	-	2	2	1	-	2
CO4	-	-	-	-	2	2	-	-	2	-

Please Note:

- Refer to POs while mapping each CO.
- Mark "-", not applicable
- If attainment of a CO is strongly mapped with a PO, Mark 3
- If attainment of a CO is moderately mapped with a PO, Mark 2
- If attainment of a CO is weakly mapped with a PO, Mark 1

Justification for mapping must be relevant

1=weakly mapped 2= moderately mapped 3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3
CO1	2	1	3
CO2	2	1	2
CO3	3	1	3
CO4	3	1	2

Relevance of the Syllabus to various indicators

Unit I	Introduction to algorithm
Local	-
Regional	-
National	-
Global	Addresses global understanding of the problems and how to find its solutions
Employability	After having knowledge about how to solve real world problems, new problems can be addressed to develop their algorithms.
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills to develop analytical skills
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit II	Fundamental Algorithmic Strategies
Local	-
Regional	
	-
National	- -
	- - Employability: Proficiency in algorithm design techniques enhances employability opportunities globally.
National	
National Global	enhances employability opportunities globally. Employability: Proficiency in algorithm design techniques
National Global Employability	enhances employability opportunities globally. Employability: Proficiency in algorithm design techniques
National Global Employability Entrepreneurship	enhances employability opportunities globally. Employability: Proficiency in algorithm design techniques enhances employability opportunities globally. - Develops basic knowledge and skills to develop analytical
National Global Employability Entrepreneurship Skill Development	enhances employability opportunities globally. Employability: Proficiency in algorithm design techniques enhances employability opportunities globally. - Develops basic knowledge and skills to develop analytical
National Global Employability Entrepreneurship Skill Development Professional Ethics	enhances employability opportunities globally. Employability: Proficiency in algorithm design techniques enhances employability opportunities globally. - Develops basic knowledge and skills to develop analytical

Sustainability	
Unit III	Graph and Tree Algorithms
Local	-
Regional	-
National	-
Global	Addresses global understanding of the problems and how to find its solutions
Employability	After having knowledge about how to solve real world problems, new problems can be addressed to develop their algorithms.
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills to develop analytical skills
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit IV	Tractable and Intractable Problems
Local	-
Regional	-
National	-
Global	Addresses global understanding of the problems and how to find its solutions
Employability	After having knowledge about how to solve real world problems, new problems can be addressed to develop their algorithms.
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills to develop analytical skills
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
SDG	SDG 4, 8, 9
NEP 2020	Integration of Critical Thinking, Computational Thinking and Skill Development

FUNDAMENTALS OF ALGORITHM DESIGN & ANALYSIS LAB

Department:	Department of Computer Science and Engineering			
Course Name: Fundamentals of Algorithm Design & Analysis Lab	Course Code	L-T-P	Credits	
	ENCS254	0-0-2	1	
Type of Course: Programme Core: Major		·		

Defined Course Outcomes

COs	
	Analyze the time and space complexities of algorithms and evaluate their performance
	Apply algorithmic problem-solving strategies to solve complex computational problems
	Design and develop innovative algorithms for solving complex computational problems.
	Generate algorithmic solutions that consider trade-offs between time complexity, space complexity, and problem constraints.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Sort a given set of elements using the Quicksort method and determine the time required to sort the elements. Repeat the experiment for different values of n, the number of elements in the list to be sorted and plot a graph of the time taken versus n. The elements can be read from a file or can be generated using the random number generator	CO1
2	Design an algorithm to find the maximum and minimum elements in an unsorted array.	CO1
3	Implement Largest Common Subsequence.	CO1
4	Find Minimum Cost Spanning Tree of a given undirected graph using Kruskal's algorithm.	C01

CO2 CO2
CO2
CO2
CO3
CO4
CO4
CO4
CO4
-

INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS

Department	:	Department of Computer Sci Engineering	ence ar	nd			
Course Nam	e:	Course Code	L-T-P	Credits			
Introduction to)	ENBC204	3-1-0	4			
Database Mana	agement						
Systems							
Type of Cou	rse:	Major					
Pre-requisit	e(s), if	any:					
Brief Syllabus	s:						
This course i	ntroduce	s the basic concept of databas	se, Data	base modelling			
languages, E-F	R modelli	ng and Transaction Processing.					
UNIT WISE	DETAIL	S					
Unit Number: 1	Title:	Introduction to database No. of hours: 10					
Content Sum	mary:		1				
Overview of	DBMS,	DBMS system vs file system, I	Data ind	ependence and			
abstraction lev	vel, Arch	itecture of DBMS, Schemas, Insta	inces and	d various DBMS			
models.							
Unit Number: 2	Title: Relational Query Languages No. of hours: 10						
Content Summ	ary:						
Data Modellin	g: Data	modeling using Entity relation	iship Mo	del: ER Model			
Concepts, notation of ER diagram, mapping constraints, Keys, concept of super							
key, candidate	key, pri	mary key, generalization and speci	alization				
Relational Modelling: Concepts, constraints, Language, Relational Database							

Design by ER and EER mapping, Relational Algebra, Relational Calculus, relational Algebra and its fundamental operations

Unit	Title: Database design and	No. of hours: 10
Number: 3	Transaction Processing	

Content Summary:

Database design: Functional Dependencies, lossless decomposition and Normalization (1NF, 2NF, 3NF, BCNF, 4NF)

Transaction management: transaction concept, ACID properties, state of transaction, serializability, checkpoints and deadlock handling.

Unit	Titles Judge desting to COL	No. of hourses 10
Number: 4	Title: Introduction to SQL	No. of hours: 10

Content Summary:

Introduction to SQL: characteristics and advantages of SQL, SQL data types, SQL commands and operators, Tables, views and indexes, Queries and sub-queries, aggregate function, insert, alter and update operations

*Self-Learning Components:

PostgreSQL

MongoDB

Note: Students will give presentations and submit projects based on self-learning components for evaluation.

Reference Books:

1."Database System Concepts", 6th Edition by Abraham Silberschatz, Henry F. Korth, S. Sudarshan, McGraw-Hill.

2. "Principles of Database and Knowledge – Base Systems", Vol 1 by J.D. Ullman, Computer Science Press.

Define Course Outcomes (CO)

COs	Statements			
CO1	Analyze the key components and concepts of DBMS, including data ndependence, architecture, schemas and various DBMS models.			
CO2	Apply data modeling techniques using ER model and understanding the concepts of keys			
CO3	Evaluate the principles and techniques of relational modeling and the fundamental operations of relational algebra.			
CO4	Design and implement effective database designs by analyzing functional dependencies and normalization.			
CO5	Explain transaction processing, concurrency control and database recovery protocols in databases.			

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels (C)	Affective levels(A)	Psychomotor levels(P)
	1. Knowledge		1. Imitation
	2. Understand	1. Receiving	2. Manipulation
	3. Apply	2. Responding	3. Precision
	4. Analyze	3. Valuing	4. Articulation
	5. Evaluate	4. Organizing	5. Improving
	6. Create	5. Characterizing	
	C4	A4	P4
CO1			
	C3	A2	P2
C02			
CO3	C5	A3	P3
CO4	C6	A4	P5
C05	C2	A3	P4

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	2	-	3	2	1	2	-	1
CO2	2	-	2	2	2	1	1	-	2	-
CO3	-	2	-	2	2	1	1	2	-	-
CO4	-	2	3	-	2	1	1	-	2	1
CO5	2	2	2	2	3	1	1	2	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

СО	PSO1	PSO2	PSO3	PSO4
CO1	3	2	2	2
CO2	2	2	2	2
CO3	3	2	2	2
CO4	2	2	2	3
CO5	2	2	2	3

Relevance of the Syllabus to various indicators

Introduction to Database
The syllabus on DBMS is relevant locally as it provides
foundational knowledge and skills in managing databases,
which are essential for businesses, organizations, and
institutions at the local level.
The syllabus is also relevant regionally as the principles and
concepts of DBMS are applicable and implemented in various
industries and sectors within the region, contributing to the
efficient management and utilization of data.
The syllabus holds national relevance as DBMS is a
fundamental aspect of information management and
technology infrastructure across the country. It helps in
maintaining data integrity, supporting decision-making
processes, and ensuring efficient data storage and retrieval.
In today's interconnected world, the knowledge and skills
related to DBMS have global significance. The concepts and
principles covered in the syllabus align with international
standards and practices in managing databases, making it
relevant in a global context.
The syllabus on DBMS enhances employability as it equips
students with the necessary knowledge and skills sought after
by employers. Proficiency in DBMS is in demand across various
industries, including IT, finance, healthcare, e-commerce, and
more.
Understanding DBMS is valuable for aspiring entrepreneurs. It
enables them to design and implement effective database
systems for their ventures, ensuring efficient data
management and supporting business operations.
The syllabus contributes to skill development by providing
theoretical knowledge and practical skills in DBMS. Students
develop skills in data modeling, database design, SQL

	programming, and transaction management, which are transferable to various domains.
Professional Ethics	The syllabus indirectly addresses professional ethics by emphasizing data integrity, security, and privacy aspects of DBMS. Students learn about ethical considerations in handling sensitive data and ensuring responsible use of database systems.
Gender	
Human Values	The syllabus indirectly promotes human values by fostering responsible and ethical use of data. It encourages students to consider the impact of their actions on individuals, society, and the broader human community.
Environment &	
Sustainability	-
Unit II	Data Modelling and Languages
Local	The syllabus on Data Modeling and Relational Modeling is
	relevant locally as it provides foundational knowledge and
	skills in database design and management, which are essential
	for businesses, organizations, and institutions at the local level
Regional	The syllabus is also relevant regionally as database design and management principles are applicable and implemented in various industries and sectors within the region, contributing to efficient data organization and retrieval.
National	The syllabus holds national relevance as database design and management are fundamental aspects of information management and technology infrastructure across the country. It supports data integrity, effective decision-making, and efficient data storage and retrieval at a national level.
Global	In today's interconnected world, the knowledge and skills related to data modeling and relational modeling have global

	significance. The concepts and techniques covered in the
	syllabus align with international standards and practices in
	database design and management, making it relevant in a
	global context.
Employability	The syllabus on Data Modeling and Relational Modeling
	enhances employability as it equips students with the
	necessary knowledge and skills sought after by employers.
	Proficiency in data modeling, ER diagrams, relational algebra,
	and database design is in high demand across various
	industries globally.
Entrepreneurship	Understanding data modeling and relational modeling is
	valuable for aspiring entrepreneurs. It enables them to design
	and implement effective database systems for their ventures,
	ensuring efficient data management and supporting business
	operations.
Skill Development	The syllabus contributes to skill development by providing
	theoretical knowledge and practical skills in data modeling, ER
	diagrams, relational algebra, and database design. Students
	develop skills in conceptualizing data structures, mapping
	relationships, and performing database operations, which are
	transferable and valuable in various domains.
Professional Ethics	The syllabus indirectly addresses professional ethics by
	emphasizing data integrity, privacy, and responsible data
	management practices. Students learn about ethical
	considerations in designing databases and handling sensitive
	information.
Gender	
Human Values	The syllabus indirectly promotes human values by fostering
	responsible data management practices. It encourages
	students to consider the impact of their data modeling
	decisions on individuals, society, and ethical considerations.

Environment &	
Sustainability	
Unit III	Database design and Transaction Processing
Local	The syllabus on Database Design and Transaction Management
	is relevant locally as it provides foundational knowledge and
	skills in designing efficient and reliable databases, which are
	essential for businesses, organizations, and institutions at the
	local level.
Regional	The syllabus is also relevant regionally as database design and
	transaction management principles are applicable and
	implemented in various industries and sectors within the
	region, contributing to effective data management and
	transaction processing.
National	The syllabus holds national relevance as efficient database
	design and transaction management are crucial for information
	management and technology infrastructure across the
	country. It supports data integrity, data consistency, and
	reliable transaction processing at a national level.
Global	In today's interconnected world, the knowledge and skills
	related to database design and transaction management have
	global significance. The concepts and techniques covered in
	the syllabus align with international standards and practices,
	making it relevant in a global context.
Employability	The syllabus on Database Design and Transaction Management
	enhances employability as it equips students with the
	necessary knowledge and skills sought after by employers.
	Proficiency in functional dependencies, normalization, ACID
	properties, and transaction management is in high demand
	across various industries globally.
Entrepreneurship	Understanding database design and transaction management
	is valuable for aspiring entrepreneurs. It enables them to

	design and implement efficient and scalable database systems
	for their ventures, ensuring reliable data management and
	transaction processing.
Skill Development	The syllabus contributes to skill development by providing
	theoretical knowledge and practical skills in database design,
	functional dependencies, normalization, and transaction
	management. Students develop skills in identifying functional
	dependencies, normalizing databases, and ensuring data
	consistency and reliability through transaction management.
Professional Ethics	The syllabus indirectly addresses professional ethics by
	emphasizing data integrity, data consistency, and responsible
	data management practices. Students learn about the
	importance of maintaining the ACID properties in transactions
	and handling potential issues such as deadlocks.
Gender	
Human Values	The syllabus indirectly promotes human values by fostering
	responsible data management practices. It encourages
	students to consider the impact of their database design
	decisions on individuals, society, and ethical considerations
	related to data privacy and security.
Environment	
&Sustainability	
Unit IV	Introduction to SQL
Local	The syllabus on Introduction to SQL is relevant locally as it
	equips individuals with the necessary skills to interact with and
	manipulate local databases. SQL is widely used in various local
	industries and organizations for data management and
	analysis purposes.
Regional	The syllabus holds regional relevance as SQL is a widely
	adopted standard for database management across different
	regions. The ability to work with SQL databases is valuable in

	regional industries and sectors that rely on efficient data
	storage and retrieval.
National	SQL is extensively used in national databases and information
	systems, making the syllabus highly relevant at a national
	level. The knowledge and skills gained from the syllabus
	enable individuals to work with national-scale databases and
	contribute to data-driven decision-making processes.
Global	SQL is a globally recognized and standardized language for
	database management. The syllabus aligns with international
	SQL standards and practices, enabling individuals to work with
	databases on a global scale and collaborate across borders.
Employability	Proficiency in SQL is highly sought after by employers
	worldwide. The syllabus enhances employability by providing
	individuals with the necessary skills to work with databases,
	execute SQL commands, perform data analysis, and contribute
	to effective data management
Entrepreneurship	Knowledge of SQL is valuable for entrepreneurs as it allows
	them to design and manage their own databases, extract
	meaningful insights from data, and make informed business
	decisions. The syllabus fosters entrepreneurial skills by
	enabling individuals to leverage SQL for their ventures.
Skill Development	The syllabus contributes to skill development by covering
	various aspects of SQL, including data types, commands,
	operators, table management, queries, and data manipulation
	operations. Individuals develop practical skills in working with
	databases and retrieving and manipulating data using SQL.
Professional Ethics	The syllabus indirectly addresses professional ethics by
	emphasizing responsible data management practices. Students
	learn to handle data securely, respect privacy regulations, and
	adhere to ethical considerations when accessing and modifying
	databases.
	ualavases.

Gender		
Human Values	The syllabus indirectly promotes human values by emphasizing responsible data management practices, privacy protection, and ethical considerations. Students learn to handle data with integrity, respect individual privacy rights, and consider the societal impact of data-driven decision-making.	
Environment &		
Sustainability		
SDG	SDG4, SDG8, SDG9	
NEP 2020	Competency-based approach to education: The syllabus topics provide a foundation of knowledge and skills necessary for understanding and working with relational databases. By covering concepts such as data abstraction, data independence, entity-relationship modeling, and database security, the syllabus supports the development of competencies related to database management and data governance.	
POE/4 th IR	The syllabus provides students with the foundational knowledge and skills necessary to navigate the data-driven landscape of the 4IR and apply entrepreneurial principles when managing and utilizing databases for business purposes.	

INTRODUCTION TO DATABASE MANAGEMENT SYSTEMS LAB

Department:	Department of Computer Science and Engineering		
Course Name:	Course Code	L-T-P	Credits
Introduction to	ENBC252	0-0-2	1
Database Management			
Systems Lab			
Type of Course:	Major	1	1

Defined Course Outcomes

COs	
CO 1	Define and apply mapping constraints to transform an ER model into a relational schema
CO 2	Demonstrate an understanding of keys (super key, candidate key, primary key) and their roles in database design
CO 3	Perform data manipulation operations such as insertion, deletion, and updating using SQL commands
CO 4	Create and manage database objects like tables, views, and indexes using SQL statements

Ex.	No	Experiment Title	Mapped
			CO/COs
1		Consider following databases and draw ER diagram and convert	CO1, CO2
		entities and relationships to relation table for a given scenario:	
		COLLEGE DATABASE: STUDENT (USN, SName, Address, Phone,	
		Gender) SEMSEC (SSID, Sem, Sec) CLASS (USN, SSID)	
		SUBJECT (Subcode, Title, Sem, Credits) IAMARKS (USN,	
		Subcode, SSID, Test1, Test2, Test3, FinalIA)	
2		Consider following databases and draw ER diagram and convert	CO1, CO2
		entities and relationships to relation table for a given scenario:	
		COMPANY DATABASE: EMPLOYEE (SSN, Name, Address, Sex,	
		Salary, SuperSSN, DNo)	
		MgrStartDate)	
		PLocation, DNo) WORKS_ON (SSN, PNo, Hours)	
3		Consider the below Database:	CO3, CO4
		Movies (title, director, making_year, rating), actors (actor,	
		acting_year), acts(actor, title), directors (director,	
		director_year)	
		Write relation algebra queries for given relations:	
		1. Find movies made after 1997	
		2. Find movies made by Hanson after 1997	
		3. Find all movies and their ratings	
		4. Find all actors and directors	
		5. Find Coen's movies with McDormand	
4		Database Schema for a customer-sale scenario	CO3, CO4
		Customer(Cust id : integer, cust_name: string)	
		Item(item_id: integer, item_name: string, price: integer)	
		Sale(<u>bill no: integer</u> , bill_data: date, cust_id:	
		<pre>integer, item_id: integer, qty_sold: integer)</pre>	
		For the above schema, perform the following—	

	i.Create the tables with the appropriate integrity constraints.
	ii.Insert around 10 records in each of the tables.
	iii.List all the bills for the current date with the customer names
	and item numbers.
	iv.List the total Bill details with the quantity sold, price of the
	item and the final amount.
	v.List the details of the customer who have bought a product
	which has a price>200.
	vi.Give a count of how many products have been bought by each customer
	vii.Give a list of products bought by a customer having cust_id as 5.
	viii.List the item details which are sold as of today.
	ix.Create a view which lists out the bill_no, bill_date, cust_id,
	item_id, price, qty_sold, amount.
	x.Create a view which lists the daily sales date wise for the last
	one week
5	Database Schema for a Student Library scenario CO3, CO4
	Student(<u>Stud_no:integer,</u> Stud_name: string)
	Membership(<u>Mem_no: integer</u> ,Stud_no: integer)
	Book(book no: integer , book_name:string, author: string)
	Iss_rec <u>(iss_no:integer</u> , iss_date: date, Mem_no: integer ,
	book_no: integer)
	For the above schema, perform the following—
	i.Create the tables with the appropriate integrity
	constraints
	ii.Insert around 10 records in each of the tables
	iii.List all the student names with their membership
	numbers
	iv.List all the issues for the current date with student and
	Book names

v.List the	details of students who borrowed book whose	
author is (CJDATE	
vi.Give a co	unt of how many books have been bought by	
each stude	ent	
vii.Give a list	of books taken by student with stud_no as 5	
viii.List the bo	ook details which are issued as of today	
ix.Create a	view which lists out the iss_no, iss _date,	
stud_nam	e, book name	
x.Create a v	iew which lists the daily issues-date wise for the	
last one w	eek	
6 Database Sche	ma for a Employee-pay scenario	CO3, CO4
employee(emp	<pre>id : integer, emp_name: string)</pre>	
department(dep	t_id: integer, dept_name:string)	
paydetails(emp_	_id : integer, dept_id: integer, basic: integer,	
deductions: integ	ger, additions: integer, DOJ: date)	
payroll (emp_id	: integer , pay_date: date)	
For the above sc	hema, perform the following—	
i.Create t	he tables with the appropriate integrity	
constraint	S	
ii.Insert aro	und 10 records in each of the tables	
iii.List the e	mployee details department wise	
iv.List all th	e employee names who joined after particular	
date		
v.List the	details of employees whose basic salary is	
between 1	0,000 and 20,000	
vi.Give a cou	unt of how many employees are working in each	
departmer	nt	
vii.Give a	names of the employees whose	
netsalary>	>10,000	
viii.List the d	etails for an employee_id=5	
ix.Create a v	view which lists out the emp_name, department,	

	basic, deductions, netsalary
	x.Create a view which lists the emp_name and his
	netsalary
7	Database Schema for a Video Library scenarioCO3, CO4
	Customer(cust_no: integer,cust_name: string)
	Membership(Mem_no: integer , cust_no: integer)
	Cassette(cass_no:integer , cass_name:string, Language:
	String)
	Iss_rec (iss_no: integer , iss_date: date, mem_no: integer ,
	cass_no: integer)
	For the above schema, perform the following—
	i.Create the tables with the appropriate integrity constraints
	ii.Insert around 10 records in each of the tables
	iii.List all the customer names with their membership numbers
	iv.List all the issues for the current date with the customer
	names and cassette names
	v.List the details of the customer who has borrowed the
	cassette whose title is " The Legend"
	vi.Give a count of how many cassettes have been borrowed by
	each customer
	vii.Give a list of book which has been taken by the student with
	mem_no as 5
	viii.List the cassettes issues for today
	ix.Create a view which lists outs the iss_no, iss_date,
	cust_name, cass_name
	x.Create a view which lists issues-date wise for the last one
	week
8	Database Schema for a student-Lab scenarioCO3, CO4
	Student(stud_no: integer , stud_name: string, class: string)
	Class(class: string,descrip: string)
	Lab(mach_no: integer , Lab_no: integer, description: String)

Allotmer	t(Stud_no:	Integer,	mach_no:	integer,	dayof	
week: s	tring)					
For the a	For the above schema, perform the following—					
i.Creat	te the tables v	with the ap	propriate integ	rity consti	raints	
ii.Inser	t around 10 r	ecords in e	ach of the tab	les		
iii.List a	all the machi	ne allotmer	its with the s	udent nar	nes, lab	
and r	machine num	pers.				
iv.List t	he total num	per of lab al	lotments day	wise		
v.Give	a count of h	ow many m	nachines have	been allo	cated to	
the `(CSIT' class					
vi.Give	a machine a	llotment de	etails of the s	tud_no 5	with his	
perso	onal and class	details				
vii.Coun	t for how i	many mac	hines have t	een alloc	ated in	
Lab_	no 1 for the	day of the	week as "Mon	day″		
viii.How	many studer	nts class w	ise have alloo	ated mac	hines in	
the la	abs					
ix.Creat	te a view w	hich lists	out the stud	l_no, stuc	l_name,	
mach	n_no, lab_no,	dayofweek				
x.Creat	te a view wh	ich lists th	e machine all	otment de	tails for	
"Thu	rsday".					
Conside	er the follow	ing table:				CO3, CO
		Table:	CLASS			
Id	N	ame				
1	Br	avo				
2	AI	ex				
4	Cł	neng				
Give the	output of the	following S	SQL script:			
>	INSERT INTO	class VALU	IES (5,'Rahul')	;		
>	> COMMIT;					
>	UPDATE class	SET name	= `Abhijeet' V	VHERE id=	`5′;	
>	SAVEPOINT A	λ;				

	> INSERT INTO class	s VALUES (6,	`Chris');	
	> SAVEPOINT B;			
	> INSERT INTO class	s VALUES (7,	'Bravo');	
	> SAVEPOINT C			
	> SELECT * FROM c	lass;		
	> ROLLBACK TO B;			
	> SELECT * FROM c	lass;		
	> ROLLBACK TO A;			
Cons	sider the following t	wo tables: S	SHOP and	CO3
ACCI	ESSORIES			CO4
	Table:	SHOP		
ID	ShopName	Ar	ea	
S01	ABC Computronics	CP		
S02	All Infotech Media	GK	II	
S03	Tech Shoppe	CP		
S04	Geek Tenco Soft	N 1		
304	Geek Tenco Soit	Ne	hru Place	
S04	Hitech Tech Store		hru Place hru Place	
	Hitech Tech Store	Ne		
S05	Hitech Tech Store	IES	hru Place	
S05	Hitech Tech Store Table: ACCESSORI Name	IES Price	hru Place	
S05 No A01	Hitech Tech Store Table: ACCESSORI Name Motherboard	ES Price 12000	hru Place Id S01	
S05 No A01 A02	Hitech Tech Store Table: ACCESSORI Name Motherboard Hard Disk	ES Price 12000	hru Place Id S01 S01	
S05 No A01 A02 A03	Hitech Tech Store Table: ACCESSORI Motherboard Hard Disk Keyboard	ES Price 12000 5000	hru Place Id S01 S01 S02	
S05 No A01 A02 A03 A04	Hitech Tech Store Table: ACCESSORI Motherboard Hard Disk Keyboard Mouse	ES Price 12000 5000 500 300	hru Place Id S01 S01 S02 S01	
S05 No A01 A02 A03 A04 A05	Hitech Tech Store Table: ACCESSORI Motherboard Hard Disk Keyboard Mouse Motherboard	ES Price 12000 5000 500 300 13000	hru Place Id S01 S01 S02 S01 S02 S02	
No A01 A02 A03 A04 A05 A06	Hitech Tech Store Table: ACCESSORI Motherboard Hard Disk Keyboard Mouse Motherboard Keyboard Keyboard	Price 12000 5000 500 13000 400	hru Place Id S01 S01 S02 S01 S02 S01 S02 S03	
No A01 A02 A03 A04 A05 A06 A07	Hitech Tech Store Table: ACCESSORI Motherboard Hard Disk Keyboard Mouse Motherboard Keyboard Keyboard LCD	Price 12000 5000 500 13000 400 60000	hru Place Id S01 S01 S02 S01 S02 S01 S02 S03 S03 S04	
No A01 A02 A03 A04 A05 A06 A07 T08	Hitech Tech Store Table: ACCESSORI Motherboard Hard Disk Keyboard Mouse Motherboard Keyboard LCD LCD	Price 12000 5000 500 13000 400 5500	hru Place Id S01 S01 S02 S01 S02 S03 S03 S04 S05	
No A01 A02 A03 A04 A05 A06 A07	Hitech Tech Store Table: ACCESSORI Motherboard Hard Disk Keyboard Mouse Motherboard Keyboard Keyboard LCD	Price 12000 5000 500 13000 400 60000	hru Place Id S01 S01 S02 S01 S02 S01 S02 S03 S03 S04	

	<u> </u>						
	ii.To display the Name and Price of all the Accessories in						
	ascending order of their price.						
	iii.To display ID and ShopName of all shops located in Nehru						
	Place.						
	iv.To display minimum and maximum price of all accessories.						
	v.To display Name, Price of all accessories and their respective						
			ey are available				
11	In contin	uation with	experiment n	o. 10, fi	nd the outpu	it of	CO3,
	the follow	wing SQL qu	eries based or	ו above	mentioned		CO4
	tables:						
	i.SELEC	T DISCTINCT	NAME FROM AC	CESSOR	IES WHERE		
	PRICE	>= 5000;					
	ii.SELEC	T AREA, COUN	NT(*) FROM SH	OP GROL	JP BY AREA;		
	iii.SELEC	T COUNT(DIS	TINCT AREA) FI	ROM SHO	OP;		
	iv.SELEC	T NAME, PRIC	E*0.05 DISCOU	JNT FRO	M ACCESSOR	IES	
	WHER	E ID IN (`S02',	, `S03′);				
12	Consider	the followin	g two tables:	PRODU	CT and CLIE	NT.	CO3,
			Table: Proc	luct			CO4
	P_ID	ProdName	Manufacture	er Price	ExpiryDate		
	TP01	Talcom	LAK	40	2011-06-26		
		Powder					
	FW05	Face Wash	ABC	45	2010-12-01		
	BS01	Bath Soap	ABC	55	2010-09-10		
	SH06	Shampoo	XYZ	120	2012-04-09		
	FW12 Face Wash XYZ 95 2010-08-15						
	FW12	Face Wash	XYZ	95	2010-08-13		
	FW12 Note:	Face Wash	XYZ	95	2010-08-13		
			XYZ	95	2010-08-13		
		P_ID is the		95	2010-08-13		
	Note: •	P_ID is the	e primary key.	95 ity	P_ID		
	Note: • Table: Cl	P_ID is the	e primary key. Iame C				
	Note: • Table: Cl	P_ID is the ient ID ClientN	e primary key. Iame C ic Shop D	ity	P_ID		

	12	Live Life	Delhi	SH06				
	15	Pretty One	Delhi	FW05				
	16	Dreams	Bengaluru	TP01				
	14	Expressions	Delhi	NULL				
	Note:							
	•	C_ID is the primary	y key.					
	•	P_ID is the foreign	key referencing P	_ID of Client				
	Table.							
	based c	i.To display the ClientName and City of all Mumbai and Delhi based clients in Client table.						
	10%.	e the price of all the p		I TADIE Dy				
	iii.To displ	ay the ProdName, Ma	nufacturer, Expiry	/Date of all t	he			
	product	products that expired on or before '2010-12-31'.						
	iv.To displ	ay C_ID, ClientName,	City of all the clie	ents includin	g			
	the one	the ones that have not purchased a product and their						
	correspo	onding ProdName solo	d.					
	v.Display	the distinct Manufact	urer from Product	table.				
	vi.Display `M'	the ClientName, C_IE) who belong to a	city starts w	/ith			
13	Consider	the following schei	ma for a Libra	ary Databa	se: CO3, CO4			
	BOOK(Bool	<_id, Title,	Publisher_Name,	Pub_Ye	ar)			
	BOOK_AUT	HORS(Book_id, Aut	hor_Name) PUE	BLISHER(Nar	ne,			
	Address, F	Address, Phone) BOOK_COPIES(Book_id, Programme_id, No-						
	of_Copies)	of_Copies) BOOK_LENDING(Book_id, Programme_id, Card_No,						
	Date_Out,	Date_Out, Due_Date) LIBRARY_PROGRAMME(Programme_id,						
	Programme_Name, Address)							
	Write SQL queries to							
	1. Retrieve	details of all books i	n the library – id	, title, name	e of			
	publisher, a	authors, number of co	pies in each Prog	ramme, etc.				

	1. List the titles of all movies directed by 'Hitchcock'.
	Write SQL queries to
	Rev_Stars)
	Dir_id) MOVIE_CAST(Act_id, Mov_id, Role) RATING(Mov_id,
	Dir_Phone) MOVIES(Mov_id, Mov_Title, Mov_Year, Mov_Lang,
	Act_Name, Act_Gender) DIRECTOR(Dir_id, Dir_Name,
15	Consider the schema for Movie Database: ACTOR(Act_id, CO3, CO4
	with id 1000. All his orders must also be deleted.
	5. Demonstrate the DELETE operation by removing salesman
	with the highest order of a day.
	4. Create a view that finds the salesman who has the customer
	have customers in their cities (Use UNION operation.)
	3. List all the salesman and indicate those who have and do not
	than one customer.
	2. Find the name and numbers of all salesman who had more
	average.
	1. Count the customers with grades above Bangalore's
	Customer_id, Salesman_id) Write SQL queries to
	Salesman_id) ORDERS(Ord_No, Purchase_Amt, Ord_Date,
	CUSTOMER(Customer_id, Cust_Name, City, Grade,
	SALESMAN(Salesman_id, Name, City, Commission)
14	Consider the following schema for Order Database: CO3, CO4
1.4	currently available in the Library
	5. Create a view of all books and its number of copies that are
	Demonstrate its working with a simple query.
	4. Partition the BOOK table based on year of publication.
	tables to reflect this data manipulation operation.
	3. Delete a book in BOOK table. Update the contents of other
	than 3 books, but from Jan 2017 to Jun 2017.
	2. Get the particulars of borrowers who have borrowed more

	-				
	2. Find the movie names where one or more actors acted in two				
	or more movies.				
	3. List all actors who acted in a movie before 2000 and in a				
	movie after 2015 (use JOIN operation).				
	4. Find the title of movies and number of stars for each movie				
	that has at least one rating and find the highest number of stars				
	that movie received. Sort the result by movie title.				
	5. Update rating of all movies directed by `Steven Spielberg' to				
	5.				
16	Consider the schema for College Database: STUDENT(USN, CO3, CO4				
	SName, Address, Phone, Gender) SEMSEC(SSID, Sem, Sec)				
	CLASS(USN, SSID) COURSE(Subcode, Title, Sem, Credits)				
	IAMARKS(USN, Subcode, SSID, Test1, Test2, Test3, FinalIA)				
	Write SQL queries to				
	1. List all the student details studying in fourth semester 'C'				
	section.				
	2. Compute the total number of male and female students in				
	each semester and in each section.				
	3. Create a view of Test1 marks of student USN `1BI15CS101' in				
	all Courses.				
	4. Calculate the FinalIA (average of best two test marks) and				
	update the corresponding table for all students.				
	5. Categorize students based on the following criterion: If				
	FinalIA = 17 to 20 then CAT = 'Outstanding' If FinalIA = 12 to				
	16 then CAT = `Average' If FinalIA< 12 then CAT = `Weak' Give				
	these details only for 8th semester A, B, and C section				
	students.				
17	Consider the schema for Company Database: EMPLOYEE(SSN, CO3, CO4				
	Name, Address, Sex, Salary, SuperSSN, DNo)				
	DEPARTMENT(DNo, DName, MgrSSN, MgrStartDate)				
	DLOCATION(DNo,DLoc) PROJECT(PNo, PName, PLocation, DNo)				
I					

WORKS_ON(SSN, PNo, Hours)	
Write SQL queries to	
1. Make a list of all project numbers for projects that involve an	
employee whose last name is `Scott', either as a worker or as a	
manager of the department that controls the project.	
2. Show the resulting salaries if every employee working on the	
IoT' project is given a 10 percent raise.	
3. Find the sum of the salaries of all employees of the 'Accounts'	
department, as well as the maximum salary, the minimum	
salary, and the average salary in this department.	
4. Retrieve the name of each employee who works on all the	
projects controlled by department number 5 (use NOT EXISTS	
operator).	
5. For each department that has more than five employees,	
retrieve the department number and the number of its	
employees who are making more than Rs. 6,00,000.	

INTRODUCTION TO COMPUTER NETWORKS

Department:	Department of Computer Science and Engineering

Course Name:	Course Code	L-T-P	Credits
Introduction to	ENBC206	3-1-0	4
Computer			
Networks			
Type of Course:	Major		
Pre-requisite(s), if a	any:		
Brief Syllabus:			
This course provides	a comprehensive study of comp	uter net	works, covering
fundamental concept	s, protocols, and technologies. I	t empha	sizes hands-on
learning and explores	open-source tools commonly used	l in the fi	eld of computer
networking. Through	practical assignments and project	ts, stude	ents will gain a
solid understanding	of network design, impleme	ntation,	security, and
management.			
UNIT WISE DETAILS	5		
Unit Title:	Evolution of Computer	Na	of houses of
Number: 1	Networking	NO.	of hours: 6
Content Summary:			
Data communication (Components: Representation of da	ta and it	s flow Networks
, Various Connectio	on Topology, Protocols and S	tandards	, OSI model,
Transmission Media, L	AN: Wired LAN, Wireless LANs, Co	nnecting	LAN and Virtual
LAN, Techniques for	Bandwidth utilization: Multiplexin	g - Frec	juency division,
Time division and Way	ve division, Concepts on spread spe	ectrum.	
Unit Title:	Data Link Layer Design Issues	No	of hours: 12
Number: 2	Data Link Layer Design Issues	NO.	of fidures. 12
Content Summary:		1	
Data Link Layer and	Medium Access Sub Layer: En	or Deteo	ction and Error
Correction - Fundame	ntals, Block coding, Hamming Dist	ance, CR	C; Flow Control
and Error control prot	ocols - Stop and Wait, Go back –	N ARQ, S	Selective Repeat
ARQ, Sliding Window,	Piggybacking, Random Access, M	ultiple ac	cess protocols -
Pure ALOHA, Slotted A	ALOHA, CSMA/CD,CDMA/CA.		

Unit	Title:	Introduction to Network Layer	No. of hours: 12	
Number: 3		and Transport Services	NO. OF HOURS: 12	
Content Summary:				

Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP, BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols. Transport Layer: Process to Process Communication, User Datagram Protocol (UDP), Transmission Control Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques: Leaky Bucket and Token Bucket algorithm.

Unit	Title: Principles of Network	No. of hours: 12
Number: 4	Applications	

Content Summary:

Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol (FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.

*Self-Learning Components:

Cisco Networking Academy: network fundamentals, routing and switching, and network security. They provide free learning materials and hands-on practice: https://www.netacad.com/

Open-Source Networking Tools and Technologies

- Open-source network monitoring tools (e.g., Nagios, Zabbix)
- Open-source network management tools (e.g., OpenNMS)
- Open-source network security tools (e.g., Snort, Suricata)

Text Book:

1. Computer Networks (Fifth Edition) – Andrew S. Tanenbaum (Prentice Hall of India)

2. Data communication and Networking(Fourth Edition)- Behrouz A

Forouzan(Tata Mcgraw Hill)

Reference Books:

3. Computer Networking A Top-Down Approach(Fifth Edition)-James F.

Kurose-Keith W. Ross (Pearson)

- 4. Computer Networks Protocols, Standards and Interfaces (Second Edition)
- UylessBlack(Prentice Hall of India Pvt. Ltd.)

Define Course Outcomes (CO)

COs	Statements
CO1	Understand the fundamental concepts and principles of computer networks.
CO2	Demonstrate knowledge of network hardware and software components.
CO3	Develop skills in network administration and management.
CO4	Choose appropriate protocol for desired communication service.

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels©	Affective levels(A)	Psychomotor levels(P)
	1. Knowledge		1. Imitation
	2. Understand	1. Receiving	2. Manipulation
	3. Apply	2. Responding	3. Precision
	4. Analyze	3. Valuing	4. Articulation
	5. Evaluate	4. Organizing	5. Improving
	6. Create	5. Characterizing	
	C1		
CO1			

	C2		P2
C02			
CO3	C3	A2	
CO4	C6		Р3
CO5			

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	-	1	3	1	-	1	2	-
CO2	1	2	2	-	2	1	-	2	1	1
CO3	-	-	1	3	-	1	1	-	2	-
CO4	1	1	1	3	3	1	2	-	1	1
CO5	2	2	1	-	2	1	1	2	-	-

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	1	1	1	-
CO2	2	2	1	2
CO3	1	-	2	1
CO4	2	1	-	1
CO5	-	-	1	1

Relevance of the Syllabus to various indicators

Unit I	Evolution of Computer Networking
Local	Computer networking enables local communication and
	connectivity within communities, businesses, and
	educational institutions. It facilitates information sharing,
	collaboration, and resource sharing at the local level.
Regional	Networking infrastructure connects regions and nations,
	promoting economic growth, social development, and
	knowledge sharing. It enables efficient communication, e-
	commerce, and government services across regions and
	countries.
National	-
Global	The global network infrastructure, such as the internet,
	connects people worldwide. It fosters global
	communication, cultural exchange, international trade, and
	enables the global dissemination of knowledge and
	information.
Employability	Computer networking skills are in high demand across
	industries. Proficiency in networking technologies and
	protocols enhances employability prospects in fields such as
	network administration, cybersecurity, cloud computing,
	and telecommunications.
Entrepreneurship	Networking knowledge is crucial for entrepreneurs to
	establish and manage their businesses effectively. It
	enables the creation of scalable, secure, and interconnected
	systems that support business operations, communication,
	and data exchange.
Skill Development	Computer networking cultivates essential technical skills,
	such as network design, configuration, troubleshooting, and
	optimization. It also fosters critical thinking, problem-
	solving, and analytical skills required to address complex

	network challenges.
Professional Ethics	Computer networking professionals must adhere to ethical
	standards and guidelines. They need to respect user
	privacy, ensure data security, and practice responsible use
	of network resources. Professional ethics in networking
	include principles like confidentiality, integrity,
	accountability, and respect for intellectual property rights.
Gender	Promoting gender diversity and inclusivity in computer
	networking is crucial. Encouraging women's participation in
	networking fields helps bridge the gender gap and fosters
	diverse perspectives and innovative solutions.
Human Values	Computer networking should prioritize human values, such
	as accessibility, equity, and social responsibility. Access to
	network resources and services should be inclusive,
	regardless of geographical location or socioeconomic
	background. Networking technologies should be leveraged
	to bridge digital divides and empower underserved
	communities.
Environment &	Networking can contribute to environmental sustainability
Sustainability	by enabling remote work, reducing the need for
	commuting, and minimizing carbon emissions. It also
	facilitates energy-efficient network infrastructure design
	and management, leading to reduced power consumption
	and environmental impact.
Unit II	Data Link Layer Design Issues
Local	Data Link Layer design issues are relevant at the local level
	as they affect the efficiency and reliability of local area
	networks (LANs). Local network connectivity is vital for
	businesses, educational institutions, and communities to
	facilitate communication and data exchange.
Regional	Efficient Data Link Layer design ensures seamless

	connectivity within regions and nations, enabling smooth
	data transmission across a wide range of industries and
	sectors.
National	-
Global	In the global context, the design of the Data Link Layer
	plays a crucial role in ensuring interoperability and
	standardization across networks worldwide. Global
	communication and data exchange rely on well-designed
	protocols and technologies at this layer.
Employability	Proficiency in Data Link Layer design is valuable for
	networking professionals seeking employment in roles such
	as network engineers, system administrators, and network
	architects. Employers look for individuals with a strong
	understanding of data link protocols and the ability to
	design reliable and efficient data link connections.
Entrepreneurship	Data Link Layer design knowledge is also essential for
	entrepreneurs who need to establish and manage their
	network infrastructure effectively. It enables the creation of
	secure and efficient data links to support business
	operations and communication.
Skill Development	Understanding Data Link Layer design issues contributes to
	the development of technical skills in network engineering
	and administration. It involves knowledge of protocols,
	error detection and correction techniques, flow control, and
	media access control.
Professional Ethics	Data Link Layer design should adhere to professional ethics,
	including principles of integrity, privacy, and security.
	Designers must ensure the confidentiality and integrity of
	transmitted data, implement appropriate access control
	mechanisms, and protect against unauthorized access or
	data breaches.

Gender	Promoting gender diversity and inclusivity in Data Link
	Layer design is important to ensure a diverse range of
	perspectives and innovative solutions. Efforts should be
	made to encourage and support the participation of
	underrepresented groups in networking fields.
Human Values	Data Link Layer design should consider human values such
	as accessibility, reliability, and user-friendliness. Networks
	should be designed to provide reliable and efficient data
	transmission, ensuring that users have access to network
	resources without discrimination or unnecessary barriers.
Environment &	Sustainable Data Link Layer design involves optimizing
Sustainability	network performance and reducing power consumption.
	Energy-efficient network technologies, such as link
	aggregation and power-saving modes, can contribute to
	environmental sustainability by minimizing energy
	consumption and reducing carbon emissions.
Unit III	Introduction to Network Layer and Transport
	Services
Local	Local: The Network Layer and Transport Services enable
	local connectivity and communication within communities,
	organizations, and institutions. They facilitate local data
Regional	organizations, and institutions. They facilitate local data
Regional	organizations, and institutions. They facilitate local data transmission and routing within a network.
Regional	organizations, and institutions. They facilitate local data transmission and routing within a network. Regional and National: These networking components play
Regional	organizations, and institutions. They facilitate local data transmission and routing within a network. Regional and National: These networking components play a vital role in regional and national connectivity, enabling
Regional National	organizations, and institutions. They facilitate local data transmission and routing within a network. Regional and National: These networking components play a vital role in regional and national connectivity, enabling data transmission across networks and facilitating
	organizations, and institutions. They facilitate local data transmission and routing within a network. Regional and National: These networking components play a vital role in regional and national connectivity, enabling data transmission across networks and facilitating
National	organizations, and institutions. They facilitate local data transmission and routing within a network. Regional and National: These networking components play a vital role in regional and national connectivity, enabling data transmission across networks and facilitating communication between different regions and countries.
National	organizations, and institutions. They facilitate local data transmission and routing within a network. Regional and National: These networking components play a vital role in regional and national connectivity, enabling data transmission across networks and facilitating communication between different regions and countries.

Employability	Proficiency in the Network Layer and Transport Services is
	highly relevant for networking professionals seeking
	employment. It enhances employability in roles such as
	network engineers, network administrators, and system
	architects. Employers value individuals with expertise in
	network design, routing, and transport protocol selection.
Entrepreneurship	Understanding the Network Layer and Transport Services is
	crucial for entrepreneurs who need to design and manage
	their network infrastructure effectively. It allows for
	scalable and efficient data transmission, supporting
	business operations and facilitating communication.
Skill Development	Skill development in these areas also enhances critical
	thinking, problem-solving, and troubleshooting skills, as
	network professionals need to analyze and resolve issues
	related to routing, congestion control, and reliability.
Professional Ethics	Ethical considerations are important when working with the
	Network Layer and Transport Services. Networking
	professionals must ensure the confidentiality, integrity, and
	availability of data during transmission. They must also
	respect user privacy and adhere to ethical standards in
	handling network traffic and data.
Gender	Encouraging gender diversity and inclusivity in the Network
	Layer and Transport Services is crucial to foster diverse
	perspectives and innovative solutions. Efforts should be
	made to promote the participation and representation of
	underrepresented groups in networking fields.
Human Values	The Network Layer and Transport Services should prioritize
	human values such as accessibility, reliability, and user-
	friendliness. Networks should be designed to provide
	reliable and efficient data transmission, ensuring equitable
	access and usability for all users.

Environment &	Sustainable network design involves optimizing the Network
Sustainability	Layer and Transport Services to minimize resource
	consumption and reduce environmental impact. This
	includes implementing efficient routing algorithms,
	congestion control mechanisms, and energy-saving
	techniques to reduce power consumption and promote
	environmental sustainability.
Unit IV	Principles of Network Applications
Local	Principles of computer network applications enable local
	communication and connectivity within communities,
	organizations, and institutions. Local network applications
	facilitate information sharing, collaboration, and resource
	utilization at the local level.
Regional	These principles play a crucial role in regional and national
	connectivity, allowing for efficient communication and data
	exchange across networks within a region or country.
National	-
Global	The principles of computer network applications are
	essential for global connectivity, enabling the exchange of
	data and information across the internet on a global scale.
Employability	Proficiency in the principles of computer network
	applications enhances employability in various roles such as
	application developers, network engineers, and system
	administrators. Employers seek individuals with a strong
	understanding of network protocols, application design, and
	development.
Entrepreneurship	Understanding these principles is crucial for entrepreneurs
	who need to develop and manage networked applications
	effectively. It enables the creation of innovative and
	scalable applications to support business operations and
	provide value to users.

Skill Development	The principles of computer network applications contribute
	to the development of technical skills in application
	development, network programming, and protocol
	implementation. It involves knowledge of network
	protocols, application layer protocols (e.g., HTTP, FTP), and
	client-server communication.
Professional Ethics	Ethical considerations are important when working with
	computer network applications. Professionals should
	prioritize user privacy, data security, and responsible use of
	network resources. Adhering to ethical guidelines ensures
	the confidentiality, integrity, and availability of data during
	application communication.
Gender	Promoting gender diversity and inclusivity in computer
	network applications is important to ensure diverse
	perspectives and inclusive designs. Efforts should be made
	to encourage and support the participation of
	underrepresented groups in application development and
	networking fields
Human Values	Principles of computer network applications should prioritize
	human values such as accessibility, usability, and user-
	friendliness. Applications should be designed to provide
	seamless and intuitive user experiences, ensuring equitable
	access and usability for all users.
Environment &	Sustainable application design involves optimizing network
Sustainability	communication to minimize resource consumption and
	reduce environmental impact. This includes implementing
	efficient data transfer mechanisms, minimizing unnecessary
	data transmission, and promoting energy-efficient
	application architectures.
SDG	SDG 4
NEP 2020	

POE/4th IR

INTRODUCTION TO COMPUTER NETWORKS LAB

Department:	Department of Computer Science and Engineering		
Course Name:	Course Code	L-T-P	Credits
Introduction to Computer Networks	ENBC256	0-0-2	1

Lab			
Type of Course:	Major		
Pre-requisite(s), if any:			

Defined Course Outcomes

COs		
CO 1	To gain hands-on experience working with network hardware, software, and tools.	
CO 2	Network Configuration and Troubleshooting.	
CO 3	Network Design and Implementation.	
CO 4	To measure and evaluate network performance using tools and techniques.	

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped
		CO/COs
1	Create a simple network with multiple PCs, switches, and routers.	C01
2	Assign IP addresses to devices and configure basic connectivity.	CO2

3	Test connectivity between PCs using ping and trace routes.	CO3	
4	Configure VLANs on switches and assign ports to specific	CO4	
	VLANs.		
5	Enable inter-VLAN routing using a router or Layer 3 switch.		
6	Test connectivity between PCs in different VLANs.	CO3	
7	Set up a network with multiple routers.	CO3,CO4	
8	Configure static routes on routers to enable communication	CO4	
	between networks.		
9	Verify routing tables and test connectivity between networks.	CO3	
10	Set up a network with a private IP address space.	CO3	
11	Configure NAT on a router to enable translation between	CO3,CO4	
	private and public IP addresses.		
12	Test connectivity between devices on the private network and	CO4	
	the Internet.		
13	Create a wireless network using access points and wireless	CO2	
	clients.		
14	Simulate network issues such as connectivity problems, routing	CO1	
	errors, or misconfigurations.		
15	Design and implement a network traffic monitoring.	CO2	
16	Setting up small computer networks and Hands on networking	CO3	
	commands: Set up a small wired and wireless network of 2 to 4		
	computers using Hub/Switch/Access point.		
17	Write a program for error detection and correction for 7/8 bits	CO2	
	ASCII codes using Hamming Codes.		
18	Write a program for error detection and correction for 7/8 bits	CO3	
	ASCII codes using CRC.		
19	Write a program to simulate Go back N and Selective Repeat	CO2	
	Modes of Sliding Window Protocol in peer to peer mode.		
	Further extend it to real implementation of Flow Control over		
	TCP protocol.		
20	Design and deploy TCP based Multithreaded HTTP client server	CO2,CO3	

	for accessing student activity data in the institute.	
21	Design and deploy TCP based Multithreaded FTP client server to share institute level notices.	CO4
22	Design and deploy TCP based Multithreaded Chat client server for your class.	CO4
23	Design and deploy UDP based Multithreaded Chat client server for your class.	CO3
24	Examining real-world network deployments.	CO3
25	Case studies of network failures and their resolutions.	CO2

CAREER DEVELOPMENT PROGRAM-II

Department:	Department of Computer Science and Engineering		Engineering
Course Name:	Course Code	L-T-P	Credits
Career Development Program-II	AEC012	3-0-0	3

Type of Course:	Ability Enhancement course
Pre-requisite(s),	f any:
Frequency of offe	ring (check one): Odd / Even
Brief Syllabus:	
The basics of Qua	ntitative Aptitude are starting from Simplification questions
then Number syste	m, Percentage, and Average. If you are just starting learning
Quantitative aptito	ude, you must start with simplification and the number
system. The ma	in quantitative Aptitude topics are Number System
Simplification, Per	centage, simple interest and compound interest, Profit and

then Number system, Percentage, and Average. If you are just starting learning Quantitative aptitude, you must start with simplification and the number system. The main quantitative Aptitude topics are Number System, Simplification, Percentage, simple interest and compound interest, Profit and loss, Ratio and Proportion, Time and Work, Time, Speed, and Distance, Average, Probability, Permutation, and Combination, Equations and Equalities. Data interpretation questions can be solved by using all quantitative aptitude. Throughout the syllabus there will be opportunities for practical application interactive exercises and assessments to reinforce the concepts taught. The learners may be required to give presentation, engage in role plays, participate in group discussions, and complete written assessments to demonstrate their communication and skill development.

Unit Number: 1	Title: Percentage and its application	No. of hours: 8		
Content Summary	Content Summary:			
Percentage, Profit and loss, Simple interest, Compound interest				
	Title: Ratio & its application,			
Unit Number: 2	Speed and number of	No. of hours: 8		
	arrangements			

Content Summary:

Time & Work, Time & Distance, Train, Boat & Stream, Permutation & combination, Probability

Unit Number: 3	Title: log, BODMAS and	No. of hours: 8
	mensuration	

Inequalities, Log, progression, Mensuration

Unit Number: 4	Title: Personality development	No. of hours: 6
----------------	--------------------------------	-----------------

Content Summary:

Presentation Skills, Telephone etiquettes, LinkedIn Profile and professional

networking, Video resumes & Mock interview sessions.

Contents beyond Syllabus:

https://www.youtube.com/watch?v=0pNGYM0ltlw

https://www.youtube.com/watch?v=0gUgm4zB2F4

Reference Books:

Quantitative Aptitude by R.S Agarawal

Quicker math by M.Tyra

Business English, Pearson, 2008

Communication skills by G.H. Hook

Course Outcomes (COs)

COs	Learner will develop self confidence in their communication abilities and enabling them to express themselves assertively
CO 1	To develop the ability for advanced critical thinking and the ability to formulate logical arguments.
CO 2	To develop different value systems and moral dimensions taking decisions.
CO 3	Apply mathematical techniques to quantitative theory.
CO 4	To develop in them vital communication skills which should be integral to personal, social and professional interactions

CO 5	The learner will apply their business etiquette and communication in
05	their core field.
COs	Learner will develop self confidence in their communication abilities
COS	and enabling them to express themselves assertively

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2		P1
C02	C3		Р2
CO3	C3		Р3
CO4	C1		-
CO5	C1		P1

MINOR PROJECT-I

Department:	nt: Department of Computer Science and Engineering		
Course Name: Minor	Course Code	L-T-P	Credits
Project-I	SIBC252		2
Type of Course:	Project		
Pre-requisite(s), if any: NA			

 Students expected to develop a basic project that demonstrates the application of learnings from studied subjects.

- Students are required to submit a hard copy of project file as per the template (Provided at the <u>end of Handbook</u>). File needs to be submitted in spiral bind.
- Project will be evaluated on the scale of 100 with following evaluation criteria.
 - Project idea & features (10)
 - Literature review (10)
 - Tools & Techniques employed (10)
 - Methodology (10)
 - Presentation of Results and its usefulness (20)
 - Implementation and its understandability (10)
 - Meetings & comments by guide (20)
 - \circ Research paper (10)

File format for Minor project

1.	Abstract	Page No.
2.	Introduction (description of broad topic)	
3.	Motivation	
4.	Literature Review	
5.	Gap Analysis	
6.	Problem Statement	
7.	Objectives	
8.	Tools/platform used	
9.	Methodology	
10.	Experimental Setup	
11.	Evaluation Metrics	
12.	Results And Discussion	
13.	Conclusion & Future Work	
14.	References	

15.	Annexure I: Responsibility Chart	
16.	Annexure II: Screenshots of all the MS-Team Meetings with links (online)/ handwritten comments(offline) from guide	
17.	Annexure III Complete implementation code	
18.	Annexure IV Research Paper (Published/Submitted)	

COMPETITIVE PROGRAMMING LAB

Department:	Department of	Computer Scien	ce and E	ngineering
Course Name: Competitive Program	ming Lab	Course Code	L-T-P	Credits
		SEC036	0-0-4	2
Type of Course:	Skill Enhanceme	ent Course (SEC)		
Pre-requisite(s), if a	ny: None			
Brief Syllabus: Introduction to Compe Space Complexity A Structures, Coding Para for Competitive Codir Components	nalysis, Probler adigms, Online Ju	n Solving Techr Idges and Contest	niques, Platforms	Advanced Data , Tips and Tricks

Table of Contents

S.N	Experiment Index	COs
1	 Introduction to Competitive Coding Overview of competitive coding and its importance in the field of computer science. Understanding the significance of problem-solving skills and algorithmic thinking in competitive coding. 	CO1
2	 Data Structures and Algorithms Review of fundamental data structures: arrays, linked lists, stacks, queues, trees, graphs, and hash tables. Study of essential algorithms: searching, sorting, recursion, dynamic programming, greedy algorithms, and graph algorithms. 	CO1
3	solutions.	CO2
4	 Problem Solving Techniques Introduction to problem-solving techniques like brute force, divide and conquer, backtracking, and more. Practice in applying different techniques to solve a variety of programming problems. 	CO3
5	 Advanced Data Structures Study of advanced data structures: heaps, priority queues, segment trees, trie, and advanced graph structures. Understanding the use of these data structures in solving complex programming problems. 	CO4
6	 Coding Paradigms Introduction to different coding paradigms: procedural programming, object-oriented programming, and functional programming. Understanding the benefits and drawbacks of each paradigm in competitive coding. 	CO5
	Online Judges and Contest Platforms Familiarization with popular online judge platforms like 	

7	 Codeforces, Topcoder, and LeetCode. Practice solving problems from online contests and participating in coding competitions. 	CO5
	List of suggested links to coding platforms Codeforces: https://codeforces.com/ Topcoder: https://www.topcoder.com/ AtCoder: https://atcoder.jp/ LeetCode: https://leetcode.com/ HackerRank: https://www.hackerrank.com/ CodeChef: https://www.hackerearth.com/ HackerEarth: https://www.hackerearth.com/ Project Euler: https://projecteuler.net/ UVa Online Judge: https://onlinejudge.org/ SPOJ (Sphere Online Judge): https://www.spoj.com/ Google Code Jam: https://codingcompetitions.withgoogle.com/codejam Kick Start by Google: https://codingcompetitions.withgoogle.com/kickstart ACM ICPC Live Archive: https://icpcarchive.ecs.baylor.edu/ A2 Online Judge: https://a2oj.com/ CodeSignal: https://codesignal.com/	
8	 Tips and Tricks for Competitive Coding Learning effective coding techniques, shortcut methods, and best practices for competitive coding. Developing strategies to optimize code, manage time, and improve problem-solving speed. 	CO5
9	 Mock Contests and Practice Sessions Conducting mock contests and practice sessions to simulate real coding competitions. Solving a wide range of problems to enhance coding skills and adaptability to different problem types. 	CO5
	Self-Learning Component:	CO5
10	List of Suggested Competitive programming Courses:	
	 Competitive Programmer's Core Skills" by Coursera: This course covers fundamental algorithms and data structures used in competitive programming. Link: https://www.coursera.org/learn/competitive-programming-core-skills "Algorithms and Data Structures" by MIT OpenCourseWare: This course teaches essential algorithms and data structures for competitive programming. Link: 	

https://egu/mit.edu/egu/reas/electrical_engineering_and_egumutar
https://ocw.mit.edu/courses/electrical-engineering-and-computer-
science/6-006-introduction-to-algorithms-fall-2011/
 "Data Structures and Algorithms" by GeeksforGeeks: This
course covers various data structures and algorithms commonly
used in competitive programming. Link:
https://practice.geeksforgeeks.org/courses/dsa-self-paced
 "Introduction to Competitive Programming" by NPTEL: This
course introduces the basics of competitive programming and
covers algorithms and problem-solving techniques. Link:
https://onlinecourses.nptel.ac.in/noc21_cs07/
 "Competitive Programming" by HackerRank: This course
provides in-depth coverage of algorithms and data structures with
hands-on coding exercises. Link:
https://www.hackerrank.com/domains/tutorials/10-days-of-
statistics
 "Advanced Data Structures and Algorithms" by Udemy: This
course dives deeper into advanced data structures and algorithms
for competitive programming. Link:
https://www.udemy.com/course/advanced-data-structures-and-
 algorithms-in-java/ "Mastering Data Structures and Algorithms using C and C++" by
Udemy: This course covers data structures and algorithms with a
focus on problem-solving for coding interviews and competitive
programming. Link:
https://www.udemy.com/course/datastructurescncpp/
 "Competitive Programming" by Coding Ninjas: This course
provides comprehensive training in competitive programming,
covering algorithms, data structures, and problem-solving
techniques. Link: <u>https://www.codingninjas.com/courses/online-</u>
<u>competitive-programming-course</u>
 "Algorithmic Toolbox" by Coursera: This course from the
University of California San Diego covers algorithmic techniques
and data structures for competitive programming. Link:
https://www.coursera.org/learn/algorithmic-toolbox
 "Competitive Programming - From Beginner to Expert" by
Udemy: This course offers a complete guide to competitive
programming, starting from the basics and progressing to
advanced topics. Link:
https://www.udemy.com/course/competitive-programming-from-
beginner-to-expert/
 Competitive Programming Essentials, Master Algorithms 2022
(Udemy)
https://www.udemy.com/course/competitive-programming-
algorithms-coding-minutes/
 The Bible of Competitive Programming & Coding Interviews
*All students must complete one online course from the suggested

programs	

List of popular Competitive Programming Competitions:

1. ACM International Collegiate Programming Contest (ICPC): This is one of the most prestigious programming competitions for college students. Teams compete in solving a set of challenging algorithmic problems within a time limit. Website

2. Google Code Jam: Organized by Google, this annual coding competition challenges participants to solve algorithmic problems. It consists of multiple online rounds leading to a final onsite competition. <u>Website</u>

3. Facebook Hacker Cup: This annual coding competition by Facebook features multiple online rounds and an onsite final round. Participants solve algorithmic problems for a chance to win prizes. <u>Website</u>

4. Topcoder Open: Topcoder hosts this annual programming competition featuring algorithmic and design challenges. Participants compete for cash prizes and a chance to be recognized by industry experts. <u>Website</u>

5. International Olympiad in Informatics (IOI): IOI is an annual international programming competition for high school students. Participants solve algorithmic problems in a contest format. <u>Website</u>

6. AtCoder Grand Contest: AtCoder hosts this regular contest series featuring algorithmic programming challenges. Participants can compete individually or as a team. <u>Website</u>

7. Codeforces: Codeforces is a popular competitive programming platform that hosts regular contests. Participants compete in solving algorithmic problems and earn ratings based on their performance. <u>Website</u>

8. LeetCode Weekly Contests: LeetCode organizes weekly contests where participants can solve algorithmic problems and compete for rankings. <u>Website</u>

9. HackerRank Contests: HackerRank hosts various contests and challenges covering a wide range of programming topics. Participants can compete individually or as part of a team. <u>Website</u>

10.Kaggle Competitions: Kaggle is a platform for data science competitions, where participants solve real-world problems using machine learning and data analysis techniques. <u>Website</u>

*All students must participate in some competitions

Suggested Books

1. "Competitive Programming 3" by Steven Halim and Felix Halim: This book is a comprehensive guide to competitive programming, covering algorithms, data structures, problem-solving techniques, and contest strategies. It includes numerous examples, explanations, and practice problems. <u>Book Link</u>

2. "Algorithms" by Robert Sedgewick and Kevin Wayne: This book provides a thorough introduction to algorithms, including sorting, searching, graph

algorithms, and dynamic programming. It includes detailed explanations, visualizations, and implementation examples. <u>Book Link</u>

3. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein: Known as "CLRS," this book is a classic reference for algorithms. It covers a wide range of algorithms, data structures, and algorithm design techniques. <u>Book Link</u>

4. "Programming Challenges" by Steven S. Skiena and Miguel A. Revilla: This book presents a collection of programming problems from various competitions and online judges. It provides problem-solving techniques, algorithmic approaches, and example solutions. <u>Book Link</u>

5. "The Art of Computer Programming" by Donald E. Knuth: This multi-volume series is considered a classic in computer science. It covers various algorithms, data structures, and mathematical techniques in great detail. <u>Book Link</u>

6. "Cracking the Coding Interview" by Gayle Laakmann McDowell: Although not specifically focused on competitive programming, this book is a popular resource for coding interview preparation. It covers essential data structures, algorithms, and problem-solving techniques. <u>Book Link</u>

7. "Programming Pearls" by Jon Bentley: This book presents a collection of programming challenges and discusses techniques for solving them efficiently. It emphasizes problem-solving skills and algorithmic thinking. <u>Book Link</u>

Web References

- <u>https://www.geeksforgeeks.org/competitive-programming-a-complete-guide/</u>
- <u>https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-</u> <u>like-amazon-microsoft-adobe/</u>
- https://www.udemy.com/course/competitive-programming
- https://github.com/smv1999/CompetitiveProgrammingQuestionBank

<u>https://github.com/parikshit223933/Coding-Ninjas-Competitive-</u>
 <u>Programming</u>

- https://www.hackerearth.com/getstarted-competitive-programming/
- https://www.csestack.org/competitive-coding-questions/

Course Outcomes

C01	Proficiency in Algorithms and Data Structures: Demonstrate proficiency in implementing and analyzing various algorithms and data structures commonly used in competitive programming.
CO2	Efficient Problem Solving: Develop the ability to analyze problem statements, design efficient algorithms, and write optimized code to solve competitive programming problems within time and memory constraints.
CO3	Algorithmic Thinking: Cultivate algorithmic thinking and problem-solving skills by identifying patterns, applying appropriate algorithms, and selecting optimal data structures for a given problem.

- CO4 Code Optimization and Complexity Analysis: Apply strategies to optimize code and improve time and space complexity of solutions, considering factors such as algorithm selection, data structure usage, and efficient coding techniques.
- CO5 Competitive Programming Skills: Gain familiarity with different online competitive programming platforms, participate in coding competitions, and develop strong problem-solving and critical thinking skills in a competitive programming environment.

List of Suggested Experiments in Lab Sessions

Questions on Arrays

1. Maximum Subarray Sum: Given an array of integers, find the contiguous subarray with the largest sum.

2. Two Sum: Given an array of integers and a target value, find two numbers in the array that add up to the target.

3. Rotate Array: Rotate an array of n elements to the right by k steps.

4. Merge Intervals: Given a collection of intervals, merge overlapping intervals.

5. Majority Element: Find the majority element in an array. The majority element appears more than n/2 times, where n is the size of the array.

6. Trapping Rain Water: Given an array representing the heights of bars, calculate the amount of water that can be trapped between the bars.

7. Next Permutation: Implement the next permutation algorithm to find the lexicographically next greater permutation of an array of integers.

8. Subarray with Given Sum: Given an unsorted array of non-negative integers and a target sum, find a subarray that adds up to the target sum.

9. Product of Array Except Self: Given an array of n integers, return an array output such that each element at index i of the output array is the product of all the elements in the original array except the one at i.

10.Minimum Size Subarray Sum: Given an array of positive integers and a target sum, find the minimum length of a contiguous subarray whose sum is greater than or equal to the target sum.

Questions on Recursion

1. Factorial: Write a recursive function to calculate the factorial of a given number.

2. Fibonacci Series: Write a recursive function to generate the nth term of the Fibonacci series.

3. Power of a Number: Write a recursive function to calculate the power of a given number.

4. Sum of Digits: Write a recursive function to find the sum of digits of a given number.

5. Palindrome Check: Write a recursive function to check whether a given string is a palindrome or not.

6. Tower of Hanoi: Solve the Tower of Hanoi problem using recursion.

7. Binary Search: Implement a recursive binary search algorithm to find an element in a sorted array.

8. Permutations: Write a recursive function to generate all permutations of a given string.

9. Subset Sum: Given an array of integers and a target sum, write a recursive function to check if there exists a subset that sums up to the target.

10.Combination Sum: Given an array of integers and a target sum, write a recursive function to find all possible combinations that sum up to the target.

Questions on Stacks & Queues:

1. Balanced Parentheses: Given a string of parentheses, write a function to determine if the parentheses are balanced using a stack.

2. Reverse a String: Write a function to reverse a string using a stack.

3. Evaluate Postfix Expression: Given a postfix expression, write a function to evaluate it using a stack.

4. Next Greater Element: Given an array, find the next greater element for each element in the array using a stack.

5. Largest Rectangle in Histogram: Given a histogram represented by an array of bar heights, find the largest rectangle that can be formed in the histogram using a stack.

6. Implement Stack using Queues: Implement a stack data structure using queues.

7. Implement Queue using Stacks: Implement a queue data structure using stacks.

8. Sliding Window Maximum: Given an array and an integer k, find the maximum element in each sliding window of size k using a queue.

9. Print Binary Tree in Level Order: Given a binary tree, print its elements in level order using a queue.

10.Implement Recent Counter: Design a data structure that counts the number of recent requests within a certain time range using a queue.

Questions on Linked Lists

1. Reverse a Linked List: Write a function to reverse a singly linked list.

2. Detect Cycle in a Linked List: Write a function to detect if a linked list contains a cycle.

3. Find the Middle of a Linked List: Write a function to find the middle node of a linked list.

4. Merge Two Sorted Lists: Given two sorted linked lists, write a function to merge them into a single sorted linked list.

5. Remove Nth Node from End of List: Given a linked list, remove the nth node from the end of the list and return its head.

6. Intersection of Two Linked Lists: Given two linked lists, write a function to find the intersection point if it exists.

7. Palindrome Linked List: Given a singly linked list, determine if it is a palindrome.

8. Remove Duplicates from Sorted List: Given a sorted linked list, remove duplicates from it.

9. Add Two Numbers as Linked Lists: Given two linked lists representing two numbers, write a function to add them and return the resulting linked list.

10.Flatten a Multilevel Linked List: Given a linked list with a special structure, flatten it into a single-level linked list.

Questions on Trees

1. Binary Tree Traversals: Implement different tree traversal algorithms such as in-order, pre-order, and post-order traversal.

2. Maximum Depth of Binary Tree: Find the maximum depth or height of a binary tree.

3. Validate Binary Search Tree: Given a binary tree, check if it is a valid binary search tree.

4. Lowest Common Ancestor of Two Nodes: Find the lowest common ancestor of two nodes in a binary tree.

5. Diameter of Binary Tree: Find the diameter of a binary tree, which is the longest path between any two nodes.

6. Binary Tree Level Order Traversal: Traverse a binary tree in level order and return the nodes in each level.

7. Symmetric Tree: Check if a binary tree is symmetric, meaning it is a mirror image of itself.

8. Serialize and Deserialize Binary Tree: Design algorithms to serialize and deserialize a binary tree.

9. Count Complete Tree Nodes: Count the number of nodes in a complete binary tree.

10.Construct Binary Tree from Preorder and Inorder Traversal: Given the preorder and inorder traversal of a binary tree, construct the tree.

Questions on Graphs

- Shortest path: Find the shortest path between two vertices in a graph. This can be solved using Dijkstra's algorithm or Bellman-Ford's algorithm.
- Maximum flow: Find the maximum flow from one vertex to another in a graph. This can be solved using the Ford-Fulkerson algorithm or the Dinic algorithm.
- Minimum spanning tree: Find the minimum spanning tree of a graph. This can be solved using Prim's algorithm or Kruskal's algorithm.
- Topological sorting: Find a topological ordering of a graph. This can be solved using Kahn's algorithm.
- Strongly connected components: Find the strongly connected components of a graph. This can be solved using Tarjan's algorithm.
- Bipartite matching: Find a maximum bipartite matching in a graph. This can be solved using the Hungarian algorithm.

• Traveling salesman problem: Find the shortest tour that visits all the vertices in a graph. This is an NP-hard problem, but there are approximation algorithms that can be used to find a good solution.

Time & Space Complexity

1. Time Complexity Analysis: Analyze the time complexity of a given algorithm or piece of code.

2. Space Complexity Analysis: Analyze the space complexity of a given algorithm or piece of code.

3. Big O Notation: Given a function or algorithm, determine its big O notation in terms of time or space complexity.

4. Best/Worst/Average Case Complexity: Analyze the best, worst, and average case time or space complexity of an algorithm.

5. Sorting Algorithms: Implement and analyze the time complexity of various sorting algorithms such as Bubble Sort, Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

6. Searching Algorithms: Implement and analyze the time complexity of various searching algorithms such as Linear Search, Binary Search, and Hashing.

7. Dynamic Programming: Solve dynamic programming problems and analyze their time and space complexity.

8. Recursion vs. Iteration: Compare and analyze the time and space complexity of recursive and iterative solutions for a given problem.

9. Complexity Trade-offs: Analyze and compare the time and space complexity trade-offs of different algorithms for the same problem.

10.Space-Optimized Data Structures: Implement and analyze space-optimized data structures such as Bit Arrays, Bloom Filters, or Space-Efficient Hash Tables.

Questions on Divide & Conquer Strategy

1. Binary Search: Implement a recursive binary search algorithm to find an element in a sorted array.

2. Merge Sort: Implement the Merge Sort algorithm to sort an array of integers.

3. Quick Sort: Implement the Quick Sort algorithm to sort an array of integers.

4. Count Inversions: Given an array of integers, find the number of inversions present using the Divide and Conquer approach.

5. Closest Pair of Points: Given a set of points in a 2D plane, find the pair of points with the smallest distance between them using the Divide and Conquer technique.

6. Maximum Subarray Sum: Given an array of integers, find the maximum sum of a subarray using the Divide and Conquer approach.

7. Matrix Multiplication: Implement a Divide and Conquer algorithm to multiply two matrices efficiently.

8. Finding Majority Element: Given an array of integers, find the majority element (appearing more than n/2 times) using the Divide and Conquer technique.

9. Finding Kth Smallest Element: Given an array of integers, find the kth smallest element using the Divide and Conquer approach.

10.Closest Pair Sum: Given two sorted arrays and a target value, find the pair of elements (one from each array) with the closest sum to the target using the Divide and Conquer technique.

Questions on Dynamic Programming

1. Fibonacci Series: Implement the Fibonacci series using dynamic programming to efficiently calculate the nth term.

2. Longest Common Subsequence: Given two strings, find the length of the longest common subsequence using dynamic programming.

3. Knapsack Problem: Given a set of items with weights and values, determine the maximum value that can be obtained by selecting a subset of items within a weight limit using dynamic programming.

4. Coin Change Problem: Given a set of coin denominations and a target value, find the minimum number of coins needed to make the target value using dynamic programming.

5. Rod Cutting Problem: Given a rod of a certain length and a price list for different rod lengths, find the maximum value that can be obtained by cutting and selling the rod using dynamic programming.

6. Edit Distance: Given two strings, find the minimum number of operations (insertion, deletion, and substitution) required to convert one string into another using dynamic programming.

7. Maximum Subarray Sum: Given an array of integers, find the maximum sum of a subarray using dynamic programming.

8. Longest Increasing Subsequence: Given an array of integers, find the length of the longest increasing subsequence using dynamic programming.

9. Matrix Chain Multiplication: Given a sequence of matrices, find the minimum number of scalar multiplications needed to multiply them using dynamic programming.

10.Subset Sum Problem: Given a set of integers and a target sum, determine if there exists a subset that sums up to the target using dynamic programming.

Questions on Greedy Programming

1. Fractional Knapsack Problem: Given a set of items with weights and values, determine the maximum value that can be obtained by selecting fractions of items within a weight limit using a greedy algorithm.

2. Activity Selection Problem: Given a set of activities with start and finish times, select the maximum number of activities that can be performed without overlapping using a greedy algorithm.

3. Minimum Spanning Tree: Given a weighted graph, find the minimum spanning tree using Kruskal's or Prim's algorithm, which are both based on greedy approaches.

4. Huffman Coding: Given a set of characters and their frequencies, construct a binary code that minimizes the total encoded length using a greedy algorithm.

5. Coin Change Problem: Given a set of coin denominations and a target value, find the minimum number of coins needed to make the target value using a greedy algorithm.

6. Job Scheduling Problem: Given a set of jobs with their deadlines and profits, schedule the jobs to maximize the total profit using a greedy algorithm.

7. Interval Scheduling Problem: Given a set of intervals, select the maximum number of non-overlapping intervals using a greedy algorithm.

8. Dijkstra's Algorithm: Given a weighted graph, find the shortest path from a source vertex to all other vertices using Dijkstra's algorithm, which is based on a greedy approach.

9. Egyptian Fraction: Given a fraction, represent it as a sum of unique unit fractions using a greedy algorithm.

10.Car Fueling Problem: Given the total distance to be covered, the capacity of the fuel tank, and a list of distances between fuel stations, determine the minimum number of refuelings needed to reach the destination using a greedy algorithm.

Questions on String Matching

1. Naive String Matching: Implement the naive string matching algorithm to find all occurrences of a pattern in a text.

2. Knuth-Morris-Pratt (KMP) Algorithm: Implement the KMP algorithm to efficiently find all occurrences of a pattern in a text.

3. Rabin-Karp Algorithm: Implement the Rabin-Karp algorithm to efficiently find all occurrences of a pattern in a text using hashing.

4. Longest Common Substring: Given two strings, find the longest common substring using dynamic programming or other efficient algorithms.

5. Longest Common Prefix: Given an array of strings, find the longest common prefix using a suitable algorithm.

6. Regular Expression Matching: Implement a regular expression matching algorithm to determine if a string matches a given pattern.

7. Anagrams: Given a list of strings, find all pairs of strings that are anagrams of each other.

8. Palindromic Substrings: Given a string, find all palindromic substrings using a suitable algorithm.

9. Boyer-Moore Algorithm: Implement the Boyer-Moore algorithm to efficiently find all occurrences of a pattern in a text.

10.Subsequence Matching: Given two strings, determine if one string is a subsequence of the other.

Questions on Advanced Data Structures

1. Trie: Implement a Trie data structure and solve problems such as word search, autocomplete, or finding the longest common prefix.

2. Segment Tree: Implement a Segment Tree data structure and solve problems such as range sum queries, range minimum/maximum queries, or range updates.

3. Fenwick Tree (Binary Indexed Tree): Implement a Fenwick Tree data structure and solve problems such as prefix sum queries or range updates.

4. Disjoint Set Union (DSU) / Union-Find: Implement a DSU data structure and solve problems such as connected components, cycle detection, or Kruskal's algorithm for finding the minimum spanning tree.

5. Treap: Implement a Treap (a balanced binary search tree with randomized priorities) and solve problems such as maintaining the median of a dynamic set of numbers or solving range queries on a set of intervals.

6. Suffix Array: Implement a Suffix Array data structure and solve problems such as finding the longest common substring, finding the lexicographically smallest substring, or pattern matching.

7. LCA (Lowest Common Ancestor): Implement an LCA data structure and solve problems such as finding the lowest common ancestor of two nodes in a tree or solving distance-related queries on a tree.

8. K-D Tree: Implement a K-D Tree data structure and solve problems such as nearest neighbor search or range search in a multi-dimensional space.

9. AVL Tree or Red-Black Tree: Implement a balanced binary search tree (either AVL Tree or Red-Black Tree) and solve problems such as maintaining a sorted dynamic set or solving range queries.

10.B+ Tree: Implement a B+ Tree data structure and solve problems such as indexing or range queries on a large dataset.

References to Interview Questions

- https://www.simplilearn.com/coding-interview-questions-article
- https://www.csestack.org/competitive-coding-questions/
- https://www.geeksforgeeks.org/a-competitive-programmers-interview/
- <u>https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/</u>
- https://unstop.com/blog/competitive-coding-questions-with-solutions
- https://unstop.com/blog/competitive-coding-questions-with-solutions

Semester V

COMPUTER ORGANIZATION & ARCHITECTURE

Department:	Department of Computer Science and Engineering			
Course Name:		Course Code	L-T-P	Credits

Computer Organization		ENBC301	4-0-0	4
& Architecture				
Type of	Major			
Course:	мајот			
Pre-requisite(s), if any: Concepts of Digital Electronics				

Brief Syllabus:

Computer Organization & Architecture (COA) covers topics in computer architecture and organization focusing on multicore, graphics-processor unit (GPU), and heterogeneous SOC multiprocessor architectures and their implementation issues (architect's perspective). The objective of the course is to provide in-depth coverage of current and emerging trends in computer organization and architecture focusing on performance and the hardware/software interface. The course emphasis is on analysing fundamental issues in architecture design and their impact on application performance.

UNIT WISE DETAILS

Unit Number: 1	Title:	Introduction	No. of hours: 10	
Content Summary:				

Role of abstraction, basic functional units of a computer, Von-Neumann model of computation, A note on Moore's law, Notion of IPC, and performance. Data representation and basic operations.

Unit	Title: Instruction Set	No. of hours: 10
Number: 2	Architecture (RISC-V)	

Content Summary:

CPU registers, instruction format and encoding, addressing modes, instruction set, instruction types, instruction decoding and execution, basic instruction cycle, Reduced Instruction Set Computer (RISC), Complex Instruction Set Computer (CISC), RISC-V instructions; X86 Instruction set.

Unit Number: 3	Title:	The Processor	No. of hours: 10				
Content Summary:							
Revisiting cloc	king me	ethodology, Amdahl's law,	Building a data path and control,				
single cycle pi	rocessor	, multi-cycle processor, in	struction pipelining, Notion of ILP,				
data and contr	ol hazar	ds and their mitigations.					
Unit Title: Memory hierarchy, Number: 4 Storage and I/O No. of hours: 10		No. of hours: 10					
Content Sum	mary:						
SRAM/DRAM,	locality of	of reference, Caching: diffe	erent indexing mechanisms, Trade-				
offs related to block size, associativity, and cache size, Processor-cache interactions							
for a read/write request, basic optimizations like writethrough/write-back caches,							

Average memory access time, Cache replacement policies (LRU), Memory interleaving.

Introduction to magnetic disks (notion of tracks, sectors), flash memory. I/O mapped, and memory mapped I/O. I/O data transfer techniques: programmed I/O, Interrupt-driven I/O, and DMA.

*Self-Learning Components:

1. BSim Documentation

References:

- 1. https://www.nand2tetris.org/
- 2. https://www.coursera.org/learn/computer-organization-design
- 3. https://www.geeksforgeeks.org/computer-organization-and-architecture-tutorials/
- 4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/

Text Book:

1. "Computer Organization and Design: The Hardware/Software Interface", David A. Patterson and John L. Hennessy, 5th Edition, Elsevier.

Reference Books:

1. "Computer Organization & Architecture", Smruti Ranjan Sarangi, McGraw Hill

2. "Computer System Architecture", Mano M. Morris, Pearson.

3. "Computer Organization and Embedded Systems", 6th Edition by Carl Hamacher, McGraHill Higher Education

4. "Computer Architecture and Organization", 3rd Edition by John P. Hayes, WCB/McGraw-Hill

5. "Computer Organization and Architecture: Designing for Performance", 10th Edition by William Stallings, Pearson Education.

Online References:

1. https://learning.edx.org/course/course-v1:MITx+6.004.2x+3T2015/block-

v1:MITx+6.004.2x+3T2015+type@sequential+block@c3s1/block-

v1:MITx+6.004.2x+3T2015+type@vertical+block@c3s1v1

- 2. RIPES: https://freesoft.dev/program/108505982
- 3. GEM5: https://www.gem5.org/documentation/learning_gem5/introduction/
- 4. CACTI: https://github.com/HewlettPackard/cacti
- 5. PIN: https://www.intel.com/content/www/us/en/developer/articles/tool/pina-binary-instrumentation-tooldownloads.html
- 6. TEJAS: https://www.cse.iitd.ac.in/~srsarangi/archbooksoft.html
- 7. XILINX(VHDL/Verilog

tools):

https://www.xilinx.com/support/university/students.html

Course Outcomes (CO)

COs	Statements
CO1	Understand the basics of instructions sets and their impact on processor design
CO2	Demonstrate an understanding of the design of the functional units of a digital computer system

CO3	Evaluate cost performance and design trade-offs in designing and		
COS	constructing a computer processor including memory.		
CO4	Design a pipeline for consistent execution of instructions with minimum		
hazards			
COF	Manipulate representations of numbers stored in digital computers using		
CO5	I/O devices and store them into memory		

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels(C) 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	P1
C02	C3	A2	P1
CO3	C5	A2	P2
CO4	C6	A3	Р3
CO5	C6	A4	P4

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	-	-	-	-	2	-	2	-	1
CO2	-	3	2	-	-	2	1	-	2	-
CO3	-	-	-	3		2	-	1	-	2
CO4	-	-	3	-	-	2	2	-	-	-
CO5	2	-	-	1	-	2	-	1	-	1

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

РО	PSO1	PSO2	PSO3	PSO4
CO1	2			3
CO2	2	2		2
CO3		2		
CO4				3
CO5		2		2

Relevance of the Syllabus to various indicators

Unit I	Introduction
Local	Data representation and basic operations: Local, as it focuses on specific techniques and algorithms used within a computer system. Notion of IPC: Local, as it refers to the communication and interaction between processes or components within a computer system.
Regional	-
National	-
Global	-
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit II	Instruction Set Architecture (RISC-V)
Local	-
Regional	-
National	
Global	Addressing modes: Global, as they are a fundamental concept in computer architecture and are used in various CPU architectures worldwide. Instruction set: Global, as it refers to the collection of instructions supported by a CPU architecture, which is applicable across different computer systems.

Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit III	The Processor
Local	-
Regional	-
National	-
Global	Global, as they are techniques used to improve performance and increase instruction-level parallelism, relevant across different computer architectures.
Employability	
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit IV	Memory hierarchy, Storage and I/O
Local	-
Regional	-
National	-
Global	Introduction to magnetic disks, notion of tracks, sectors, flash memory: Global, as they are fundamental concepts and technologies applicable to computer storage systems worldwide.
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
SDG	SDG 4, SDG 8, SDG 9
NEP 2020	Promoting universal access to education, holistic

	critical thinking, creativity, ICT integration, research and
	development, global competencies, and professional ethics.
POE/4 th IR	Aligns with the concepts of parallel computing, advanced
	processors, and memory architectures.

ESSENTIALS OF ETHICAL HACKING

Department:	Dej	Department of Computer Science and Engineering				
Course Name: Essentials of Ethical hacking		Course Code	L-T-P	Credits		
		ENSP319	4-0-0	4		
Type of Course:	Min	Minor				
Pre-requisite(s), if	any:					

Brief Syllabus:

The subject "Essentials of Ethical Hacking" covers an introduction to ethical hacking, including its concept, objectives, and importance in cybersecurity. It explores different types of hacker attacks, such as Footprinting, Reconnaissance, and Network Scanning, along with legal and ethical considerations. The course delves into enumeration techniques, including active and passive enumeration, sniffing, and social engineering, and their countermeasures. It further covers password cracking methods, malware threats, system hacking vulnerabilities, and network security principles, including firewalls, IDS/IPS, VPNs, wireless security, and web application security.

UNIT WISE DETAILS

Unit Number: 1	Introduction to Ethical Hacking	No. of hours: 10
Combowh Commencement		

Content Summary:

Introduction to Ethical Hacking: Understanding the concept, objectives, and importance of ethical hacking in cybersecurity; different types of hacker attacks, Foot printing and Reconnaissance, Scanning Networks, TCP flag types, types of port scans, scanning countermeasures; Legal and Ethical Considerations: Overview of laws, regulations, and ethical guidelines governing ethical hacking practices.

Unit Number: 2 Title: Enumeration

No. of hours: 10

Content Summary:

Enumeration: Role and enumeration techniques recognize how to establish a sessions, Identify enumeration countermeasures, Perform active and passive enumeration. Sniffers, types of sniffing and protocols vulnerable to sniffing, Recognize types of sniffing attacks, methods for detecting sniffing, social engineering: Different types of social engineering, and social engineering countermeasures

Unit Number: Title: System Hacking and Vulnerability 3 Analysis No. of hours: 10

Content Summary:

Password Cracking: Identify different types of password attacks, Use a password cracking tool, Identify various password cracking countermeasures; Malware Threats: Overview of various types of malware, including viruses, worms, Trojans, and ransomware; System Hacking: Exploiting vulnerabilities to gain unauthorized access to systems, Identify different ways to hide files, Recognize how to detect a rootkit, Identify tools that can be used to cover attacker tracks

Unit Number: 4	Title:	Network Security	No. of hours: 10
Content Summ	nary:		

Network Security Principles: Understanding network security concepts, including firewalls, IDS/IPS, and VPNs; Wireless Network Security: Securing wireless networks and mitigating potential risks; Web Application Security: Identifying and

addressing security vulnerabilities in web applications.

*Self-Learning Components:

- Learning to use ethical hacking tools: Metasploit, Wireshark, Nmap, Burp Suite.
- Exploring rootkit detection tools and techniques.
- Understanding wireless security protocols (WPA2, WPA3) and encryption.
- Researching social engineering attack vectors and case studies.

Reading articles on recent cybersecurity breaches and their impact.

Reference Books:

• "Ethical Hacking and Penetration Testing Guide" by Rafay Baloch

 "The Web Application Hacker's Handbook: Finding and Exploiting Security Flaws" by Dafydd Stuttard and Marcus Pinto

Reference Links:

- OWASP (Open Web Application Security Project): <u>https://owasp.org/</u>
- NIST (National Institute of Standards and Technology) Cybersecurity Framework: <u>https://www.nist.gov/cyberframework</u>

Define Course Outcomes (CO)

COs	Statements
	Recall and understand the principles and objectives of ethical hacking and the different types of hacker attacks.
	Apply enumeration techniques, scanning methods, and countermeasures in network security assessments.
CO3	Analyze and evaluate different password cracking and malware threat techniques and implement countermeasures.
CO4	Synthesize and propose network security solutions, wireless network security measures, and web application security enhancements.
CO5	Design and create system hacking strategies to exploit vulnerabilities and detect rootkits.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	Р1
CO2	C3	A2	P2
CO3	C3	A3	РЗ
CO4	C6	A4	-
CO5	C6	A5	P1

CO-PO Mapping

РО	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	2	-	-	-	1	-	-	-	-
CO2	1	3	2	-	-	1	-	-	-	1
CO3	-	-	2	3	-	2	-	1	-	-
CO4	-	-	-	3	1	2	-	-	1	-
CO5	-	-	-	-	3	1	2	-	-	-

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	3	-	-
CO2	2	3	-	-

CO3	-	2	3	-
CO4	2	-	-	3
CO5	-	2	2	3

Relevance of the Syllabus to various indicators

Unit I	Introduction to Ethical Hacking
Local	-
Regional	-
National	In the context of national security, having professionals well- versed in ethical hacking is essential to safeguard critical infrastructure and sensitive government data from cyber attacks.
Global	With the increasing global interconnectedness, cybersecurity is a shared concern. Ethical hacking helps in addressing cyber threats that can have a global impact on organizations and individuals.
Employability	Individuals trained in ethical hacking have increased employability prospects as organizations seek cybersecurity professionals to protect their systems from cyber threats.
Entrepreneurship	-
Skill Development	Technical skills, critical thinking, and problem-solving abilities related to cybersecurity and ethical hacking.
Professional Ethics	Understanding the legal and ethical aspects of ethical hacking promotes responsible and ethical computing practices.
Gender	-
Human Values	-
Environment & Sustainability	-
Unit II	Enumeration
Local	-
Regional	-
National	-
Global	Enumeration is a universal cybersecurity practice applicable to organizations worldwide, contributing to the global efforts to combat cyber threats.
Employability	Individuals proficient in enumeration techniques are sought after by organizations to identify network vulnerabilities and strengthen their cybersecurity infrastructure.
Entrepreneurship	Enumeration skills can be applied to offer cybersecurity auditing and vulnerability assessment services to businesses and organizations.
Skill Development	Students develop skills in assessing network security, identifying weaknesses, and proposing countermeasures through enumeration techniques.

Professional Ethics	Ethical consideration is emphasized when using enumeration
	for cybersecurity assessments.
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit III	System Hacking and Vulnerability Analysis
Local	-
Regional	-
National	-
Global	Cyber threats can transcend borders, and a global understanding of system hacking is essential to collectively address and respond to cyber incidents worldwide.
Employability	Knowledge of system hacking and vulnerability analysis increases employability in cybersecurity roles responsible for securing systems and detecting potential threats.
Entrepreneurship	-
Skill Development	Students acquire skills in identifying and addressing system vulnerabilities, ensuring secure system configurations.
Professional Ethics	Understanding the ethical implications of system hacking is crucial to maintain integrity in cybersecurity practices.
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit IV	Network Security
Local	Local businesses can enhance their network security using principles like firewalls, IDS/IPS, and VPNs to protect sensitive data and communications.
Regional	-
National	-
Global	Network security practices are vital for securing international communications and protecting global networks.
Employability	-
Entrepreneurship	-
Skill Development	Enhances students' abilities to implement network security measures, including firewalls and VPNs, to safeguard data transmission.
Professional Ethics	Practicing network security principles aligns with ethical responsibilities to protect user data and maintain network integrity.
Gender	
Human Values	-

Sustainability	
SDG	SDG 9
NEP 2020	Emphasis on skill development and vocational training
	Emphasize responsible and legal use of hacking techniques for defensive purposes.Ethical hacking skills are essential to protect the interconnected systems and data in the 4th IR era.

ESSENTIALS OF ETHICAL HACKING LAB

Department: Department of Computer Science and Engineering
--

Course Name: Essentials of	Course Code	L-T- P	Credits
Ethical hacking Lab	ENSP367	0-0-2	1
Type of Course:	Minor		

Defined Course Outcomes

COs	
CO 1	Comprehend the fundamental principles and theories of ethical hacking and how they apply to different scenarios.
CO 2	Apply ethical hacking techniques, tools, and methodologies to assess and
	identify vulnerabilities in computer systems and networks.
CO 3	Analyze the results of ethical hacking activities, identify security weaknesses, and evaluate the impact of potential vulnerabilities.
CO 4	Evaluate the effectiveness of countermeasures and crate defensive strategies to mitigate security risks and vulnerabilities.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Learn how to use the latest techniques and tools to perform footprinting and reconnaissance. Use Google and Whois for Reconnaisasance	C01
2	Perform WHOIS lookup and identify the domain registrar and other relevant information.	C01
3	Conduct DNS enumeration to discover subdomains associated with the target domain	CO1
4	Use Nmap or similar tools to perform port scanning on a target system and identify open ports and services.	CO2
5	Using TraceRoute, ping, ifconfig, netstat Command	CO2
6	Conduct a network scan using tools like Nmap to identify hosts, services, and vulnerabilities	CO2
7	Case study on Honeypots	CO2
8	Use CryptTool to encrypt and decrypt passwords using RC4 algorithm	CO3
9	Use password cracking tools like John the Ripper or Hashcat to crack passwords from a given set of encrypted passwords.	CO3
10	Implement dictionary attacks and brute force attacks to crack passwords of test accounts.	CO3
11	Perform SQL injection attacks on a vulnerable web application to extract sensitive data	CO3

Use WireShark sniffer to capture network traffic and analyzepackets to identify potential security issues.	CO3
Identify and analyze suspicious network traffic, such as port scanning or unauthorized access attempts.	CO3
Exploit known vulnerabilities in a target system using Metasploit or other exploitation frameworks.	CO4
Gain unauthorized access to a target system and demonstrate post-exploitation activities like privilege escalation and data exfiltration.	CO4
Perform a wireless network assessment using tools like Aircrack-ng to crack WEP or WPA/WPA2 encryption keys.	CO4
Demonstrate the use of rogue access points and man-in- the-middle attacks on a wireless network.	CO4
Case Study on Windows linux system security	CO1
Install jcrypt tool (or any other equivalent) and demonstrate Asymmetric, Symmetric Crypto algorithm	CO4
Install tool for Hash and Digital/PKI signatures studied in theory Network Security And Management	CO4
Implement Passive scanning, active scanning using Burp suit tool	CO4
Implement session hijacking using any network tool	CO4
Implement cookies extraction using Burp suit tool	CO4
Conduct a phishing attack to obtain sensitive information from users	CO4
Execute a spear-phishing attack to target specific individuals in the organization.	CO4
	 analyzepackets to identify potential security issues. Identify and analyze suspicious network traffic, such as port scanning or unauthorized access attempts. Exploit known vulnerabilities in a target system using Metasploit or other exploitation frameworks. Gain unauthorized access to a target system and demonstrate post-exploitation activities like privilege escalation and data exfiltration. Perform a wireless network assessment using tools like Aircrack-ng to crack WEP or WPA/WPA2 encryption keys. Demonstrate the use of rogue access points and man-in-the-middle attacks on a wireless network. Case Study on Windows linux system security Install jcrypt tool (or any other equivalent) and demonstrate Asymmetric, Symmetric Crypto algorithm Install tool for Hash and Digital/PKI signatures studied in theory Network Security And Management Implement Passive scanning, active scanning using Burp suit tool Implement cookies extraction using Burp suit tool Conduct a phishing attack to obtain sensitive information from users Execute a spear-phishing attack to target specific

Projects

1. Web Application Security Assessment:

Description: Build a web application or use a vulnerable web application. Perform a comprehensive security assessment using ethical hacking techniques, such as SQL injection, cross-site scripting (XSS), and other OWASP Top 10 vulnerabilities. Generate a detailed report with identified vulnerabilities and proposed countermeasures to enhance the application's security.

2. Network Penetration Testing:

Description: Set up a simulated network environment with multiple devices and services. Conduct a penetration test using tools like Nmap, Metasploit, and Wireshark to identify weaknesses in the network infrastructure and devices. Develop a report outlining the potential risks and recommendations for securing the network.

3. Wireless Network Security Assessment:

Description: Create a wireless network environment with different security protocols (WEP, WPA/WPA2, etc.). Conduct a wireless network security assessment using tools like Aircrack-ng and Wireshark to identify vulnerabilities and assess the

effectiveness of encryption methods. Provide recommendations to improve wireless network security.

4. Malware Analysis and Reverse Engineering:

Description: Obtain malware samples (with proper authorization) and analyze their behavior in a controlled environment using virtual machines or sandboxes. Reverse engineer the malware to understand its code and functionalities. Prepare a detailed analysis report with insights into the malware's intent and potential mitigation strategies.

5. Red Team vs. Blue Team Exercise:

Description: Divide students into red and blue teams. The red team's objective is to simulate an attack on a target system/network using ethical hacking techniques. The blue team's objective is to defend against the red team's attacks and identify and mitigate security breaches. The exercise aims to simulate real-world scenarios and foster a competitive yet cooperative learning environment.

DSE- I

SECURE CODING & VULNERABILITIES

Department: Department of Computer Science and Engineering

Course Name: Secure Coding & Vulnerabiliti		Course Code	L-T-P	Credits
	163	ENSP401	4-0-0	4
Type of Course:	Min	or		
Pre-requisite(s), if an	y:			
understanding and mitic covers various aspects design and architectu authentication, cryptogr will learn about commo of security breaches. Th application security to maintenance practices. and techniques to deve practices in the field of a	gati such raph raph n ap ley estir The elop	rabilities is a comprehensive ng application security threats n as security requirements gat and secure coding practice ny, session management, and oplication vulnerabilities and th will also gain knowledge and sl ng methods, as well as s course aims to equip students robust and secure application ication security.	and atta hering, se es for ir error han potention kills in sta secure d s with the	cks. The course cure application oput validation odling. Students al consequences tic and dynamic eployment and necessary tools
UNIT WISE DETAILS Unit Number: Title: 1 1 Security		oduction to coding and	No. d	of hours: 12
Content Summary: Introduction-security conc risk, attack. Coding Sta Management functions, Co to Check Return Values, multiple times,Forget to	epts anda omm ac free	-CIA Triad, Viruses, Trojans, and Vards: Dirty Code and Dirty Constant Constant of the memory management Errors cessing already freed memory, Intege the allocated memory), Intege Types, data type conversions,	ompiler, [(Initializat Freeing th r Security	Dynamic Memory ion Errors, Forge e same memory –Introduction to
		ure Application Design and	No. d	of hours: 8
Content Summary: Security requirements ga (SSDLC), Security issues Test Phase, Maintenance design, default and depl Timeline. Unit Number: Title:Se	ather wh Pha oym	ring and analysis, Secure softw ile writing SRS, Design phase se ise, Writing Secure Code – Best ent), Security principles and Se e Coding Practices and	curity, Dev Practices cure Prod	velopment Phase SD3 (Secure by
<u>3</u> Vulnera Content Summary:	bili	ties		
Input validation Techniqu authorization, Cryptograph	ny, t	whitelist validation, regular expr ouffer overflows, Session manage	ment and	protection agains

authorization, Cryptography, buffer overflows, Session management and protection against session-related attacks, Secure error handling and logging practices,SQL Injection Techniques and Remedies, Race conditions

Unit Number: Title: Application Security Testing and No. of hour	s: 12
4 Deployment	
Content Summary: Security code overview, Secure software installation. The Role of the Security Building the Security Test Plan. Testing HTTP-Based Applications, Testing File Applications, Testing Clients with Rogue Servers, Static and Dynamic Application S Testing (SAST & DAST), Secure Deployment and Maintenance,Patch management software updates,Vulnerability scanning and penetration testing.	e-Based Security
*Self-Learning Components:	
 Code Review Tools: Students can explore open-source code review such as SonarQube, ESLint, or FindBugs to understand how these to help identify security vulnerabilities in code. Security Frameworks such as OWASP (Open Web Application S Project) and their associated resources. Secure Development Tools: Students can explore tools like Burp Suit 	ols can ecurity
(Zed Attack Proxy), or WebInspect to understand how these tools can be for dynamic application security testing (DAST) and penetration testing. 4. Secure Coding in Web Applications: Students can dive deeper int application security topics, such as Cross-Site Scripting (XSS), Cro Request Forgery (CSRF), or security measures like Content Security (CSP) and HTTP security headers.	e used o web ss-Site
Reference Books:	
Writing Secure Code, Michael Howard and David LeBlanc, Microsoft Pres	s, 2nd
Edition, 2004 Buffer Overflow Attacks: Detect, Exploit, Prevent by Jason Deckard ,Syng Edition, 2005 	ress,1st
Threat Modeling, Frank Swiderski and Window Snyder, Microsoft Profession Edition , 2004 Socura Coding: Principles and Practices by Mark C. Craff, Kenneth P. va	-
 Secure Coding: Principles and Practices by Mark G. Graff, Kenneth R. va Publisher(s): O'Reilly Media, Inc., 2003 The Software Vulnerability Guide (Programming Series) by H. Thompson (A 	-
Scott G. Chase, 2005	
Reference Links: • "Secure Coding Practices" on Udemy - Offered by The App Brewery. Link: <u>https://www.udemy.com/course/secure-coding-practices/</u>	
 "Secure Coding: Preventing Software Vulnerabilities" on Plurals 	
Offered by Pluralsight. Link: <u>Secure Coding: Preventing Software Vulnerabilitie</u> • "Software Security" on edX - Offered by University of Maryland, (
Park. Link: <u>Software Security</u>	Jonege
 Identifying Security Vulnerabilities in C/C++Programming Cour 	sera
 Principles of Secure Coding Coursera 	
 Identifying Security Vulnerabilities Coursera 	
Define Course Outcomes (CO)	
COs Statements	
CO1 Understand different types of application security threats and potential impact.	their

CO2	Apply secure design principles and architectures to develop robust and secure applications.
CO3	Implement secure coding practices for input validation, authentication, cryptography, session management, and error handling.
C04	Conduct static and dynamic application security testing to identify vulnerabilities and implement secure deployment and maintenance practices.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
C01	C2	A2	P2
CO2	C3	A3	Р3
CO3	C3	A3	РЗ
CO4	C4	A4	Ρ4

CO-PO Mapping

CO-PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	1	1	2	2	1	2	2	2
CO2	3	2	-	2	2	2	2	_	1	3
CO3	3	_	3	-	2	2	2	3	3	_
CO4	2	2	1	3	2	2	2	-	-	2

1=weakly mapped

2= moderately mapped

3=strongly mapped

CO-PSO Mapping

CO-PSO	PSO1	PSO2	PSO3	PSO4
CO1	2	2	1	2
CO2	3	2	2	2
СОЗ	2	3	3	1
CO4	2	3	2	3

Relevance of the Syllabus to various indicators

Unit I	Introduction to coding and Security
Local	-
Regional	-
National	-
Global	Enhancing cybersecurity capabilities and promoting secure software development.
Employability	-
Entrepreneurship	-
Skill Development	Developing coding skills with a focus on security.
Professional Ethics	Develop applications that prioritize data security and user privacy.
Gender	-
Human Values	-
Environment & Sustainability	_
Unit II	Secure Application Design and Architecture
Unit II Local	Applying security requirements and following secure software development life cycle (SSDLC) practices aligns with local needs to protect sensitive data and ensure secure application
	Applying security requirements and following secure software development life cycle (SSDLC) practices aligns with local
Local	Applying security requirements and following secure software development life cycle (SSDLC) practices aligns with local needs to protect sensitive data and ensure secure application
Local Regional	Applying security requirements and following secure software development life cycle (SSDLC) practices aligns with local needs to protect sensitive data and ensure secure application
Local Regional National	Applying security requirements and following secure software development life cycle (SSDLC) practices aligns with local needs to protect sensitive data and ensure secure application design. - - Promotes global standards in application security, fostering a
Local Regional National Global	Applying security requirements and following secure software development life cycle (SSDLC) practices aligns with local needs to protect sensitive data and ensure secure application design. - - Promotes global standards in application security, fostering a global culture of secure software development. Proficiency in secure application design and adherence to security principles enhances students' employability in organizations seeking professionals with secure development

	
	architecture, and implementation, preparing them to tackle application security challenges.
Professional Ethics	Ethical considerations of data privacy and security, fostering responsible development practices.
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit III	Secure Coding Practices and Vulnerabilities
Local	Understanding input validation techniques, cryptography, and secure error handling directly addresses local needs for developing secure applications and mitigating common vulnerabilities.
Regional	-
National	Addressing vulnerabilities such as SQL injection and race conditions through secure coding practices aligns with national objectives of securing critical applications and preventing cyber attacks.
Global	Knowledge of secure coding practices and vulnerability mitigation strategies helps establish global standards for secure software development and promotes a secure digital environment worldwide.
Employability	-
Entrepreneurship	-
Skill Development	Hones students' skills in secure coding, vulnerability identification, and remediation, enhancing their technical capabilities in application security.
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit IV	Application Security Testing and Deployment
Local	-
Regional	-
National	-
Global	Understanding static and dynamic application security testing methods and secure deployment practices promotes global standards for secure software deployment and mitigating application vulnerabilities.
Employability	Expertise in application security testing and secure deployment enhances students' employability in roles focused on ensuring application security and secure software deployment.

Entrepreneurship	-	
Skill Development	Develops students' skills in application security testing, penetration testing, and secure deployment, equipping them with practical expertise in securing applications.	
Professional Ethics	-	
Gender	-	
Human Values	-	
Environment & Sustainability	-	
SDG	SDG-4,9,16	
NEP 2020	Skill development, employability, and entrepreneurship	
POE/4 th IR	Emphasizes the importance of cybersecurity in the digital era.	

SECURE CODING & VULNERABILITIES LAB

Department:	Department of Computer Science and Engineering
-------------	--

Course Name: Secure Coding &	Course Code	L-T-P	Credits
Vulnerabilities Lab	ENSP451	0-0-2	1
Type of Course:	Minor		L

Defined Course Outcomes

COs	
CO 1	Apply Secure Coding Techniques for enhancing application security.
CO 2	Analyze and Evaluate Security Vulnerabilities
	Evaluate and Communicate Importance of Secure Coding by analyzing potential vulnerabilities
	Design and Implement Secure Applications using secure cryptographic libraries.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Write code to convert between different data types	CO1
2	Implement dynamic memory allocation and deallocation operations, and analyze potential errors and vulnerabilities.	CO2
3	Write code snippets with initialization errors, memory leaks, and double free issues, and use tools like Valgrind to detect and fix these errors.	CO2
4	Analyze a given code snippet with dirty code practices	CO2
5	Perform static code analysis on a sample codebase using a secure coding tool SonarQube	CO3
6	Conduct dynamic code analysis on a web application using OWASP	CO2
7	Configure the tool to intercept and analyze HTTP requests and responses.	CO2
8	Implement encryption algorithms (e.g., AES) using secure cryptographic libraries or frameworks.	CO4
9	Implement and test whitelist validation techniques to ensure secure input handling.	C01
10	Develop a simple web application that requires user authentication.	CO4
11	Implement cryptographic functions for secure data protection	CO4
12	Implement input sanitization and validation techniques to prevent SQL injection attacks.	C01
13	Conduct a security audit and penetration testing on a	CO2

	provided application to identify SQL injection vulnerabilities.	
14	Identify common memory management errors such as forgetting to check return values or accessing already freed memory.	CO2
15	Write a sample code that requires input validation, such as user input or data from external sources.	C01
16	Write a sample code that involves cryptographic operations, such as encryption or hashing.	CO4
17	Conduct security testing on an HTTP-based application to identify vulnerabilities and security weaknesses.	CO2
18	Set up a local or web-based application that operates over HTTP. Perform security testing using appropriate tools and techniques, such as vulnerability scanners and penetration testing	CO2
19	Perform security testing on a file-based application to assess its security posture and identify potential vulnerabilities.	CO2
20	Utilize appropriate tools and techniques to conduct static analysis on the application's source code to identify potential vulnerabilities	CO3
21	Identify and configure important HTTP security headers, such as Strict-Transport-Security (HSTS), X-Frame- Options, X-XSS-Protection, and X-Content-Type-Options.	C01
22	Develop a sample web application that includes error handling and logging functionality.	CO4
23	Implement secure error handling techniques, such as displaying generic error messages to users and logging detailed errors only to authorized personnel.	CO4
24	Apply secure coding best practices, such as input validation, output encoding, proper error handling, and secure use of APIs and libraries.	C01
25	Test the code for vulnerabilities and discuss the importance of writing secure code to prevent potential exploitation.	CO3

Projects

- Implement a secure software development lifecycle <u>http://www.owasp.org/index.php/Category:OWASP_CLASP_Project</u>
- Establish secure coding standards
 <u>http://www.owasp.org/index.php/Category:OWASP_Guide_Project</u>
- Build a re-usable object library <u>http://www.owasp.org/index.php/Category:OWASP_Enterprise_Security_API</u>
- Verify the effectiveness of security controls

http://www.owasp.org/index.php/Category:OWASP Application Security Ver ification Standard Project

• Establish secure outsourced development practices including defining security requirements and verification methodologies in both the request for proposal (RFP) and contract.

http://www.owasp.org/index.php/Category:OWASP_Legal_Project

CYBER CRIME INVESTIGATION & DIGITAL FORENSICS

Department: Departme	ent of Computer Science and Engineering
----------------------	---

Course Name: Cyber Crime	Course Code	L-T- P	Credits	
Investigation & Digital Forensics	ENSP403	4-0-0	4	
Type of Course:	Minor			
Pre-requisite(s), if any:				
Brief Syllabus: Introduces the principles and practices of digital forensics including digital investigations, data and file recovery methods, and digital forensics analysis and invalidation. Topics include data acquisition, digital forensics tools, virtual machines, network, mobile devices and cloud forensics.				
UNIT WISE DETAILS				
Unit Number: 1 Title: Tit	le: Introduction	No. of	f hours: 8	
Introduction to Digital Forensics, Definition and types of cybercrimes, electronic evidence and handling, electronic media, collection, searching and storage of electronic media, introduction to internet crimes, hacking and cracking, credit card and ATM frauds, web technology, cryptography, emerging digital crimes and modules.				
Unit Number: 2 Title: T	ypes of Cyber Crimes	No. of	f hours: 10	
Content Summary: Crimes targeting Computers: Unauthorized Access Packet Sniffing Malicious Codes including Trojans, Viruses, Logic Bombs, etc. Online based Cyber Crimes: Phishing and its variants Web Spoofing and E- mail Spoofing Cyber Stalking Web defacement Financial crimes, ATM and Card Crimes etc Spamming Commercial espionage and Commercial Extortion online Software and Hardware Piracy Money Laundering Fraud& Cheating Other Cyber Crimes.				
Unit Number: 3 Title: In	vestigation of Cyber Crimes	No. of	f hours: 12	
Content Summary: Investigation of malicious applications Agencies for investigation in India, their powers and their constitution as per Indian Laws Procedures followed by First Responders; Evidence Collection and Seizure Procedures s of mediums Securing the Scene, Documenting the Scene, Evidence Collect on and Transportation Data Acquisition Data Analysis Reporting Unit Number: Title : Forensic Tools and Processing of No. of hours: 10				
	c Evidence	NO. 0	r nours: 10	

Content Summary:

Introduction to Forensic Tools, Usage of Slack space, tools for Disk Imaging, Data Recovery, Vulnerability Assessment Tools, Encase and FTK tools, Anti Forensics and probable counters, retrieving information, process of computer forensics and digital investigations, processing of digital evidence, digital images, damaged SIM and
investigations, processing of digital evidence, digital images, damaged SIM and
data recovery, multimedia evidence, retrieving deleted data: desktops, laptops and
mobiles, retrieving data from slack space, renamed file, ghosting, compressed
files.
*Self-Learning Components:
1. Open-Source Digital Forensics Tools: Introduction to popular open-source
digital forensics tools such as Autopsy, Sleuth Kit, and Volatility.
2. Exploring open-source threat intelligence platforms like MISP and AlienVault OTX.
3. Discussing the benefits of information sharing and collaborative efforts in
combating cyber threats.
4. Digital Forensics and Cyber-Crime
Investigation, https://www.udemy.com/course/digital-forensics-and-cyber-
crime-investigation/
Reference Books:
 Reference Books: Moore, Robert, (2011), Cybercrime, investigating high-technology
 Moore, Robert, (2011). Cybercrime, investigating high-technology
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools,
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011.
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd,
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013.
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013. Robert M Slade, "Software Forensics: Collecting Evidence from the
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013. Robert M Slade, "Software Forensics: Collecting Evidence from the Scene of a Digital Crime", Tata McGraw Hill, Paperback, 1st Edition,
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013. Robert M Slade, "Software Forensics: Collecting Evidence from the Scene of a Digital Crime", Tata McGraw Hill, Paperback, 1st Edition, 2004.
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013. Robert M Slade, "Software Forensics: Collecting Evidence from the Scene of a Digital Crime", Tata McGraw Hill, Paperback, 1st Edition, 2004. Web references:
 Moore, Robert, (2011). Cybercrime, investigating high-technology computer crime(2nd Ed.). Elsevie C. Altheide& H. Carvey Digital Forensics with Open Source Tools, Syngress, 2011. Majid Yar, "Cybercrime and Society", SAGE Publications Ltd, Hardcover, 2nd Edition, 2013. Robert M Slade, "Software Forensics: Collecting Evidence from the Scene of a Digital Crime", Tata McGraw Hill, Paperback, 1st Edition, 2004.

digital-forensics-for-everyone/

Define Course Outcomes (CO)

COs	Statements
CO1	Understand the nature and classification of conventional and cyber- crimes.
CO2	Analyze and identify various types of cyber-crimes and their modes of operation.

٦

1 () 3	Evaluate the impact of cyber-crimes on individuals, organizations, and society.
	Develop an understanding of digital forensics and the investigative procedures used in cyber-crime cases.
	Apply forensic tools and techniques to retrieve and analyze digital evidence.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	-
C02	C3	-	-
CO3	C4	A2	-
CO4	C5	-	Р5
CO5	C6	-	P2

*Please Note:

Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

COs	PO1	PO2	PO3	PO4		PO6	PO7	PO8	PO9	PO10
-----	-----	-----	-----	-----	--	-----	-----	-----	-----	------

CO1	2	1	1	-	2	2	-	2	2	1
CO2	-	3	3	-	3	2	-	2	3	-
CO3	-	1	3	-	3	2	2	3	-	-
CO4	2	2	2	3	3	3	2	2	2	-
CO5	-	2	2	3	3	3	-	2	2	-

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

- 1=weakly mapped
- 2= moderately mapped
- 3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	2	1	1
CO2	3	1	2	1
CO3	2	1	3	2
CO4	2	2	2	3
CO5	3	1	2	2

Relevance of the Syllabus to various indicators

Unit I	Introduction
Local	The knowledge and understanding of cybercrime and
	computer crime can help local communities and law
	enforcement agencies address and prevent such crimes in
	their area.
Regional	Cybercrime is a regional concern, and understanding its types
	and emerging trends can help in regional collaboration for combating cyber threats.
National	Cybercrime is a significant concern at the national level.
	Developing expertise in digital forensics and cybercrime
	investigation can enhance national security and protect
	critical infrastructure.
Global	Cybercrime has a global impact, and knowledge in this area
	can contribute to international efforts in combating cyber
	threats and promoting cybersecurity.
Employability	The skills and knowledge gained in this unit can enhance

	employability in the field of cybersecurity, law enforcement, digital forensics, and related industries.
Entrepreneurship	-
Skill Development	Developing skills in digital forensics, evidence handling, and understanding emerging digital crimes, contributing to skill development in the field.
Professional Ethics	Studying cybercrime and computer crime can raise awareness of ethical issues related to information security, privacy, and responsible use of technology.
Gender	-
Human Values	-
Environment & Sustainability	-
Unit II	Types of Cyber Crimes
Local	-
Regional	-
National	Cyber crimes pose significant challenges to national security and the economy. Understanding different types of cyber crimes allows governments and law enforcement agencies to develop robust policies, laws, and strategies to address cyber threats at the national level.
Global	Cyber crimes have a global reach and impact. By studying the types of cyber crimes, individuals and organizations can contribute to global efforts in promoting cybersecurity, sharing threat intelligence, and developing international frameworks to combat cyber threats.
Employability	Acquiring knowledge about various types of cybercrimes enhances employability in the field of cybersecurity.
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills in internet technologies and network protocols
Professional Ethics	Awareness of different types of cybercrimes raises ethical considerations surrounding privacy, data protection, and responsible use of technology.
Gender	-
Human Values	-
Environment & Sustainability	-
Unit III	Investigation of Cyber Crimes
Local	-
Regional	Collaboration among regional investigation agencies can be improved through the knowledge of investigation procedures and digital evidence handling.
National	Investigating cyber crimes is a critical aspect of national security, and this unit's content can enhance the investigation

	capabilities of agencies at the national level.
Global	Aligns with global Cooperation and sharing of best practices in cybercrime investigation.
Employability	Proficiency in cybercrime investigation and evidence handling is in high demand, offering employment opportunities in the field of digital forensics and cybersecurity.
Entrepreneurship	Knowledge in cybercrime investigation can inspire entrepreneurs to develop innovative tools and services for digital forensics and incident response.
Skill Development	Developing skills in evidence collection, data analysis, and reporting, contributing to skill development in the field of cybercrime investigation.
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit IV	Forensic Tools and Processing of Electronic Evidence
Local	The knowledge and skills gained in this unit are relevant at the local level as local law enforcement agencies and forensic professionals need to be equipped with the tools and techniques to effectively process electronic evidence in cybercrime investigations within their jurisdiction
Regional	-
National	Protecting national security and upholding the rule of law in the digital realm requires a strong capability in digital forensics. The knowledge and proficiency in forensic tools and processing of electronic evidence contribute to national efforts in preventing and investigating cybercrimes.
Global	Cybercrimes are a global concern, and international cooperation is vital in addressing them.
Employability	Proficiency in forensic tools and processing of electronic evidence enhances employability in the field of digital forensics and cybersecurity.
Entrepreneurship	Knowledge of forensic tools and techniques can inspire entrepreneurs to develop innovative solutions, tools, and services in the field of digital forensics.
Skill Development	-
Professional Ethics	
	-
Gender	
Gender Human Values	- - -
	- - - -
Human Values Environment &	- - - - SDG 4,9,16

relevant to the current and future job market, particularly in the field of cyber security.
The Fourth Industrial Revolution by providing knowledge and skills necessary to combat cyber threats and protect digital assets in an increasingly interconnected and digital world

CYBER CRIME INVESTIGATION & DIGITAL FORENSICS LAB

Department:	Department of Computer Science and Engineering
Department.	

Course Name: Cyber Crime	Course Code	L-T-P	Credits
Investigation & Digital Forensics Lab	ENSP453	0-0-2	1
Type of Course:	Minor		
Pre-requisite(s), if a	any:		

Defined Course Outcomes

COs	
CO 1	Understand the fundamental concepts and principles of digital forensics and cybercrimes.
CO 2	Apply the knowledge of digital forensics techniques and procedures to collect, analyse, and preserve electronic evidence in various types of cybercrimes.
CO 3	Evaluate and utilize forensic tools and technologies for data acquisition, analysis, and recovery in the investigation of cybercrimes.
CO 4	Analyse and interpret digital evidence obtained from different sources, such as electronic media, internet crimes, malicious applications, and various forms of cybercrimes.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Experiment on collecting and preserving electronic media for forensic analysis.	CO 2
2	Experiment on searching and retrieving digital evidence from various storage devices.	CO 2
3	Experiment on handling and analyzing malicious codes, such as Trojans, viruses, and logic bombs.	CO 2
4	Experiment on investigating unauthorized access to computer systems.	CO 2
5	Experiment on packet sniffing and analyzing network traffic for evidence.	CO 2
6	Experiment on identifying and investigating phishing attacks and their variants.	CO 2
7	Experiment on detecting and investigating web spoofing and email spoofing incidents.	CO 2
8	Experiment on cyber stalking investigation techniques.	CO 2
9	Experiment on investigating web defacement incidents and identifying the perpetrators.	CO 2
10	Experiment on investigating financial crimes, including	CO 2

	ATM and credit card frauds.	
11	Experiment on tracing and investigating spamming activities.	CO 2
12	Experiment on investigating cases related to software and hardware piracy.	CO 2
13	Experiment on tracing and investigating money laundering activities.	CO 2
14	Experiment on investigating fraud and cheating cases in the digital realm.	CO 2
15	Experiment on analyzing malicious applications and their impact on digital devices.	CO 4
16	Experiment on understanding the role and capabilities of investigation agencies in India.	CO 1
17	Experiment on following proper evidence collection and seizure procedures in digital investigations.	CO 2
18	Experiment on securing and documenting the crime scene in digital forensics.	CO 2
19	Experiment on acquiring and analyzing data from digital devices.	CO 3
20	Experiment on using forensic tools like EnCase and FTK for digital investigations.	CO 3
21	Experiment on countering anti-forensics techniques and retrieving hidden information.	CO 3
22	Experiment on recovering data from damaged SIM cards and other multimedia evidence.	CO 2
23	Experiment on recovering deleted data from desktops, laptops, and mobile devices.	CO 2
24	Experiment on analyzing data from slack space and renamed files.	CO 4
25	Experiment on forensic imaging, including ghosting and analysis of compressed files.	CO 3

Description of experiments:

Session 1:

Topic: Experiment on collecting and preserving electronic media for forensic analysis

• Introduction to electronic media collection and preservation in digital forensics

- Techniques for ensuring the integrity and authenticity of collected data
- Chain of custody and documentation procedures

Exercise: Practice collecting electronic media and preserving it for forensic analysis.

Project: Create a comprehensive report on the collection and preservation of electronic media: Document the process of collecting electronic media, maintain a chain of custody, and ensure the integrity of the collected data.

Session 2:

Topic: Experiment on searching and retrieving digital evidence from various storage devices

- Different types of storage devices and their characteristics
- Techniques for searching and retrieving digital evidence from storage devices
- File systems analysis and data carving

Exercise: Search for and retrieve digital evidence from different storage devices.

Project: Analyze and document the process of searching and retrieving digital evidence: Perform data recovery and analysis on different storage devices, document the findings, and present a comprehensive report.

Session 3:

Topic: Experiment on handling and analyzing malicious codes, such as Trojans, viruses, and logic bombs

- Introduction to different types of malicious codes
- Techniques for analyzing and understanding malicious code behavior
- Anti-malware tools and techniques

Exercise: Analyze and dissect different types of malicious codes to understand their behavior.

Project: Develop a comprehensive report on the analysis of malicious codes: Analyze and document the behavior of various malicious codes, identify their impact, and propose countermeasures.

Session 4:

Topic: Experiment on investigating unauthorized access to computer systems

- Understanding the concept of unauthorized access
- Techniques for investigating unauthorized access incidents
- Log analysis and intrusion detection systems

Exercise: Investigate and analyze unauthorized access incidents in computer systems.

Project: Create a detailed investigation report on unauthorized access incidents: Analyze log files, identify the extent of unauthorized access, determine the entry points, and propose preventive measures.

Session 5:

Topic: Experiment on packet sniffing and analyzing network traffic for evidence

- Introduction to packet sniffing and network traffic analysis
- Tools and techniques for capturing and analyzing network packets
- Identifying and extracting relevant evidence from network traffic

Exercise: Capture and analyze network packets to extract evidence.

Project: Prepare a comprehensive report on network traffic analysis for a given scenario: Analyze captured network packets, extract relevant evidence, and present the findings in a structured report.

Session 6:

Topic: Experiment on identifying and investigating phishing attacks and their variants

- Understanding phishing attacks and their impact
- Techniques for identifying and investigating phishing incidents
- Analyzing phishing emails and websites

Exercise: Identify and investigate phishing attacks by analyzing phishing emails and websites.

Project: Perform a comprehensive analysis of a phishing attack: Analyze phishing emails and websites, identify the modus operandi, and propose countermeasures to prevent future attacks.

Session 7:

Topic: Experiment on detecting and investigating web spoofing and email spoofing incidents

- Understanding web spoofing and email spoofing techniques
- Techniques for detecting and investigating web and email spoofing incidents
- Analyzing spoofed web pages and email headers

Exercise: Detect and investigate web spoofing and email spoofing incidents by analyzing spoofed web pages and email headers.

Project: Prepare a detailed investigation report on web and email spoofing incidents: Analyze spoofed web pages and email headers, identify the perpetrators, and suggest preventive measures.

Session 8:

Topic: Experiment on cyber stalking investigation techniques

- Understanding cyber stalking and its implications
- Techniques for investigating cyber stalking incidents
- Gathering digital evidence and documenting the case

Exercise: Investigate and gather digital evidence for a cyber stalking case.

Project: Create a comprehensive investigation report on a cyber stalking incident: Analyze the digital evidence, document the case details, and propose measures to protect the victim.

Session 9:

Topic: Experiment on investigating web defacement incidents and identifying the perpetrators

- Understanding web defacement and its impact
- Techniques for investigating web defacement incidents
- Analyzing web defaced pages and server logs

Exercise: Investigate web defacement incidents and analyze defaced web pages and server logs.

Project: Prepare a detailed investigation report on web defacement incidents: Analyze defaced web pages and server logs, identify the perpetrators, and suggest measures to enhance website security.

Session 10:

Topic: Experiment on investigating financial crimes, including ATM and credit card frauds

- Understanding financial crimes in the digital realm
- Techniques for investigating ATM and credit card frauds

• Analyzing financial transaction records and digital evidence

Exercise: Investigate financial crimes related to ATM and credit card frauds by analyzing financial transaction records and digital evidence.

Project: Create a comprehensive report on the investigation of financial crimes: Analyze financial transaction records, identify fraudulent activities, and propose preventive measures.

Session 11:

Topic: Experiment on tracing and investigating spamming activities

- Understanding spamming activities and their impact
- Techniques for tracing and investigating spamming incidents
- Analyzing spam emails and tracking email senders

Exercise: Trace and investigate spamming activities by analyzing spam emails and tracking email senders.

Project: Prepare a detailed investigation report on spamming activities: Analyze spam emails, trace email senders, identify the source of spamming, and propose measures to mitigate spamming incidents.

Session 12:

Topic: Experiment on investigating cases related to software and hardware piracy

- Understanding software and hardware piracy and its consequences
- Techniques for investigating piracy cases
- Analyzing pirated software and counterfeit hardware

Exercise: Investigate cases related to software and hardware piracy by analyzing pirated software and counterfeit hardware.

Project: Develop a comprehensive report on software and hardware piracy investigations: Analyze pirated software, identify counterfeit hardware, determine the extent of piracy, and propose measures to combat piracy.

Session 13:

Topic: Experiment on tracing and investigating money laundering activities

- Understanding money laundering in the digital realm
- Techniques for tracing and investigating money laundering incidents
- Analyzing financial transaction records and blockchain data

Exercise: Trace and investigate money laundering activities by analyzing financial transaction records and blockchain data.

Project: Prepare a detailed investigation report on money laundering activities: Analyze financial transaction records, track money flow, identify money laundering techniques, and propose measures to prevent money laundering.

Session 14:

Topic: Experiment on investigating fraud and cheating cases in the digital realm

- Understanding fraud and cheating in the digital realm
- Techniques for investigating fraud and cheating cases
- Analyzing digital evidence and transaction records

Exercise: Investigate fraud and cheating cases in the digital realm by analyzing digital evidence and transaction records.

Project: Create a comprehensive investigation report on fraud and cheating cases: Analyze digital evidence, identify fraudulent activities, document the case details, and propose preventive measures.

Session 15:

Topic: Experiment on analyzing malicious applications and their impact on digital devices

- Understanding malicious applications and their impact
- Techniques for analyzing and identifying malicious applications
- Analyzing malware behavior and reverse engineering techniques

Exercise: Analyze and identify malicious applications and study their impact on digital devices.

Project: Prepare a detailed analysis report on malicious applications: Analyze the behavior of different types of malicious applications, identify their impact on digital devices, and propose measures to prevent malware infections.

Session 16:

Topic: Experiment on understanding the role and capabilities of investigation agencies in India

- Introduction to investigation agencies in India
- Understanding the roles and responsibilities of investigation agencies
- Case studies and examples of investigations conducted by Indian agencies

Exercise: Study and understand the roles and capabilities of investigation agencies in India through case studies and examples.

Project: Prepare a report highlighting the role and capabilities of investigation agencies in India: Discuss the functions, powers, and responsibilities of key investigation agencies, and analyze their notable investigations.

Session 17:

Topic: Experiment on following proper evidence collection and seizure procedures in digital investigations

- Understanding the importance of proper evidence collection and seizure
- Techniques and procedures for collecting and preserving digital evidence
- Documentation and chain of custody requirements

Exercise: Practice following proper evidence collection and seizure procedures in digital investigations.

Project: Create a comprehensive report on evidence collection and seizure procedures: Document the process of evidence collection, maintain the chain of custody, and ensure compliance with legal and procedural requirements.

Session 18:

Topic: Experiment on securing and documenting the crime scene in digital forensics

- Importance of securing the crime scene in digital forensics
- Techniques for securing and documenting the crime scene
- Best practices for maintaining the integrity of digital evidence

Exercise: Secure and document the crime scene in a simulated digital forensics case.

Project: Prepare a detailed report on securing and documenting the crime scene: Describe the steps taken to secure the crime scene, document the process, and provide recommendations for improving crime scene management.

Session 19:

Topic: Experiment on acquiring and analyzing data from digital devices

- Techniques for acquiring data from digital devices
- Best practices for preserving the integrity of acquired data
- Analyzing acquired data using forensic tools and techniques

Exercise: Acquire and analyze data from different digital devices using forensic tools and techniques.

Project: Analyze and document the process of acquiring and analyzing data from digital devices: Perform data acquisition, analyze the acquired data, and present the findings in a structured report.

Session 20:

Topic: Experiment on using forensic tools like EnCase and FTK for digital investigations

- Introduction to popular forensic tools like EnCase and FTK
- Familiarization with the features and capabilities of forensic tools
- Hands-on practice with forensic tool usage in digital investigations

Exercise: Use forensic tools like EnCase and FTK to conduct digital investigations on simulated cases.

Project: Prepare a comprehensive report on the usage of forensic tools in digital investigations: Describe the features and capabilities of EnCase and FTK, document the usage in specific investigations, and evaluate their effectiveness.

Session 21:

Topic: Experiment on countering anti-forensics techniques and retrieving hidden information

- Understanding anti-forensics techniques used to hide digital evidence
- Techniques for countering anti-forensics and retrieving hidden information
- Analysis of steganography, encryption, and file obfuscation methods

Exercise: Counter anti-forensics techniques and retrieve hidden information from digital evidence.

Project: Develop a comprehensive report on countering anti-forensics techniques: Analyze different anti-forensics methods, propose countermeasures, and demonstrate the retrieval of hidden information.

Session 22:

Topic: Experiment on recovering data from damaged SIM cards and other multimedia evidence

- Techniques for recovering data from damaged SIM cards
- Recovering data from damaged multimedia evidence like CCTV footage and audio recordings
- Best practices for data recovery from different types of damaged media

Exercise: Recover data from damaged SIM cards and analyze multimedia evidence from various sources.

Project: Prepare a detailed report on data recovery from damaged media: Document the process of recovering data from damaged SIM cards and analyze recovered multimedia evidence.

Session 23:

Topic: Experiment on recovering deleted data from desktops, laptops, and mobile devices

- Techniques for recovering deleted data from different devices
- Understanding file systems and data storage mechanisms
- Analyzing recovered deleted data for evidence

Exercise: Recover deleted data from desktops, laptops, and mobile devices and analyze the recovered data for evidence.

Project: Analyze and document the process of recovering deleted data: Recover deleted data from different devices, analyze the recovered data, and present the findings in a comprehensive report.

Session 24:

Topic: Experiment on analyzing data from slack space and renamed files

- Understanding slack space and its significance in digital forensics
- Techniques for analyzing data from slack space and renamed files

• Extracting hidden information and evidence from slack space and renamed files

Exercise: Analyze data from slack space and renamed files to extract hidden information and evidence.

Project: Prepare a detailed report on the analysis of data from slack space and renamed files: Analyze the data, extract hidden information, and present the findings in a structured report.

Session 25:

Topic: Experiment on forensic imaging, including ghosting and analysis of compressed files

- Understanding forensic imaging and its importance in digital forensics
- Techniques for creating forensic images and conducting analysis
- Analyzing ghost images and compressed files for evidence

Exercise: Create forensic images, analyze ghost images, and conduct analysis on compressed files.

Project: Develop a comprehensive report on forensic imaging and analysis: Describe the process of creating forensic images, analyze ghost images, and analyze compressed files for evidence. Present the findings in a structured report.

AI IN CYBER SECURITY

Department:	Department of Computer Science and Engineering			
Course Name: AI in Cyber	Course Code	L-T-P	Credits	
Security	ENSP405	4-0-0	4	
Type of Course:	Minor			
Pre-requisite(s) it	f anv: basic understanding of we	h developmen	t technologies	

Pre-requisite(s), if any: basic understanding of web development technologies such as HTML, CSS, and JavaScript. Additionally, students should have some familiarity with networking concepts, operating systems, and databases.

Brief Syllabus:

This syllabus covers essential topics in web application security, including injection attacks, authentication and access control, cryptography, testing, security standards, best practices, and risk management. It is divided into four units and may be completed in a semester-long course. Students will gain an understanding of common web application vulnerabilities and how to prevent and mitigate them. They will also learn about authentication and access control mechanisms, cryptography techniques, and web application security testing. Finally, students will explore best practices for secure web application development and incident response and disaster recovery planning.

UNIT WISE DETAILS

Unit Number: 1 Title: Introduction to AI and Cyber Security No. of hours: 10

Content Summary:

Overview of Artificial Intelligence and its applications in Cyber SecurityHistory and evolution of AI in cyber security, Understanding of the Cyber Security threats landscape, Familiarization with the latest trends and techniques of AI in Cyber Security, Basic principles of Machine Learning and Deep Learning in Cyber Security ,Ethical considerations and challenges of using AI in cyber security.

Unit Number: Title: Machine Learning Techniques for Cyber 2 Security

Content Summary:

An introduction to Machine Learning techniques, Supervised and unsupervised Machine Learning models in Cyber Security, Feature engineering and data preparation for Machine Learning models, Case studies demonstrating the application of Machine Learning to Cyber Security problems.

Unit Number: 3	Deep Learning Techniques for Cyber	No. of hours: 10

Content Summary:

Introduction to Deep Learning techniques ,Convolutional Neural Networks (CNNs) and their application in Cyber Security ,Recurrent Neural Networks (RNNs) and their application in Cyber Security ,GANs and their application in Cyber Security ,Case studies demonstrating the application of Deep Learning to Cyber Security problems.

Content Summary:

Introduction to AI and its applications in threat detection and prevention ,Overview of different types of threats in cyber security and their characteristics ,Understanding the limitations of traditional threat detection and prevention methods ,Fundamentals of machine learning and deep learning for threat detection and prevention ,Supervised machine learning algorithms for threat detection, such as decision trees, support vector machines, and random forests ,Unsupervised machine learning algorithms for anomaly detection, such as clustering and outlier detection ,Deep learning techniques for threat detection, such as Convolutional Neural Networks (CNNs) and Recurrent Neural Networks (RNNs) ,Feature selection and feature engineering for machine learning in threat detection,Emerging trends and challenges in AI for threat detection and prevention, including adversarial machine learning, explainable AI, and privacy concerns.

*Self-Learning Components:

- 1. Anomaly Detection
- 2. Malware Detection
- 3. Adaptive Access Control
- 4. Network Traffic Analysis

Reference Books:

1. Artificial Intelligence for Cybersecurity" by Bhaskar Sinha (Auerbach Publications)

2. Machine Learning and Security: Protecting Systems with Data and Algorithms" by Clarence Chio and David Freeman (O'Reilly Media)

Define Course Outcomes (CO)

COs	Statements
CO1	Understand Understand the concepts and applications of AI in the field of cyber security.
CO2	Express the ethical and legal considerations associated with the use of AI in cyber security.
CO3	Determine emerging trends and technologies in AI for cyber security, and their potential impact on the field.
CO4	Identify strategies for integrating AI-driven solutions into existing cyber security frameworks, policies, and practices.
C05	Articulate critical thinking and problem-solving skills to address real-world cyber security challenges using AI techniques.
CO6	Design machine learning techniques for threat detection and prevention in cyber security, including supervised and unsupervised algorithms.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
C01	C2	A1	P1
C02	C3	A3	Р2
CO3	C3	A3	Р3
CO4	C4	A3	-
CO5	C4	A3	P5
CO6	C6	A4	-

*Please Note:

Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	P06	PO7	PO8	PO9	PO10
CO1	3	2	3	2	2	2	-	-	1	1
CO2	3	2	3	2	2	1	1	1	1	2

CO3	3	3	3	3	3	2	2	1	2	1
CO4	2	2	3	3	3	1	-	-	1	2
CO5	3	2	3	3	3	2	-	1	2	1
CO6	3	3	2	3	3	2	1	1	2	1

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

1=weakly mapped

2= moderately mapped

3=strongly mapped

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	2	3	2
CO2	3	3	3	2
CO3	3	3	3	3
CO4	3	3	3	2
CO5	3	3	3	3
CO6	3	3	3	2

CO-PSO Mapping

Relevance of the Syllabus to various indicators

Unit I	Introduction to AI and Cyber Security
Local	Addresses local understanding of the Cyber Security and its
	impact on society
Regional	Addresses regional Cyber Security infrastructure
	requirements.
National	Contributes to national Cyber Security literacy and its impact
	to the nation.
	Aligns with global trends in Cyber Security technologies and
	network protocols
Employability	Develops skills in using Cyber Security and its tools for

	network protocols
Entrepreneurship	Build entrepreneurship
Skill	Develops basic knowledge and skills in Cyber Security
Development	technologies and network protocols
Professional	
Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit II	Machine Learning Techniques for Cyber Security
Local	Addresses local understanding of the Internet and its impact
	on society
Regional	-
National	Contributes to national digital literacy and internet
	connectivity strategies
Global	Aligns with global trends in internet technologies and network
	protocols
Employability	Develops skills in using Machine learning techniques and
.	understanding network protocols
Entrepreneurship	-
Skill	Develops basic knowledge and skills in Machine learning
Development	techniques technologies and network protocols
Professional Ethics	
Gender	-
Human Values	-
	-
Environment &	
Sustainability Unit III	- Deen Leavning Techniques fay Cyber
_	Deep Learning Techniques for Cyber
Local	Addresses local network security needs and practices
Regional	
National	Contributes to national network security strategies and
Clahal	protocols
Global	Aligns with global trends in network security techniques and protocols
Employability	Develops skills in Deep learning techniques and network
Employability	security techniques
Entrepreneurship	
Skill	Develops knowledge and skills in Deep learning techniques
Development	and network security
Professional	
Ethics	-
Gender	_

Human Values	-			
Environment &				
Sustainability	-			
Unit IV	AI for Cyber Security: Threat Detection and Prevention			
Local	Addresses local understanding of Threat Detection and Prevention. and implementation of internet-based services			
Regional	-			
National	Contributes to national digital communication strategies and multimedia applications			
Global	Aligns with global trends in internet telephony, multimedia applications, and SEO			
Employability	Develops skills in Threat Detection and Prevention.			
Entrepreneurship	-			
Skill	Develops knowledge and skills in Threat Detection and			
Development	Prevention			
Professional				
Ethics	-			
Gender	-			
Human Values	-			
Environment &				
Sustainability	-			
SDG	SDG 4			
NEP 2020	-			
POE/4 th IR	Aligns with the concepts of internet telephony, multimedia applications, and SEO			

AI IN CYBER SECURITY LAB

Department:	Department of Computer Science and Engineering					
Course Name: AI in Cyber	Course Code	L-T-P	Credits			
Security LAB	ENSP455	0-0-2	1			

Type of Course:	Minor
-----------------	-------

Pre-requisite(s), if any: basic understanding of web development technologies such as HTML, CSS, and JavaScript. Additionally, students should have some familiarity with networking concepts, operating systems, and databases.

Defined Course Outcomes

COs	Comprehensive Understanding of AI in Cyber Security:
CO 1	Practical Experience with AI Tools and Techniques
CO 2	Enhanced Malware Detection and Classification Skills
CO 3	Critical Thinking and Problem-Solving Abilities
CO 4	Research and Innovation in AI Cyber Security

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Malware detection: Develop an AI model to detect and classify different types of malware.	CO 2
2	Intrusion detection: Build an AI system to identify and alert on network intrusions and suspicious activities.	CO 1
3	Phishing detection: Train an AI algorithm to recognize and flag phishing emails or websites.	CO 1, CO 3
4	Vulnerability assessment: Use AI techniques to identify potential vulnerabilities in software or systems.	CO 1, CO 3
5	Botnet detection: Develop an AI model to detect and track botnet activities on a network.	CO 1
6	Password cracking: Build an AI system to analyze and crack weak passwords.	CO 1, CO 3
7	Network traffic analysis: Use AI algorithms to analyze network traffic and identify patterns or anomalies.	CO 1, CO 3
8	Behavioral authentication: Develop an AI model to authenticate users based on their behavioral patterns.	CO 1, CO 3
9	Anomaly detection: Train an AI system to detect anomalous behavior in user activities or system logs.	CO 1
10	Zero-day vulnerability detection: Use AI techniques to identify unknown or previously undiscovered vulnerabilities.	CO 1, CO 3
11	Social engineering detection: Build an AI system to recognize and alert on social engineering attempts.	CO 1, CO 3
12	Web application security: Develop an AI model to identify and mitigate web application vulnerabilities.	CO 3, CO 4

K.R. MANGALAM	UNIVERSITY
---------------	------------

13	Data exfiltration detection: Train an AI algorithm to detect and prevent unauthorized data exfiltration attempts.	CO 3, CO 4
14	Ransomware detection: Use AI techniques to identify and block ransomware attacks in real-time.	CO 3, CO 4
15	Firewall optimization: Employ AI algorithms to optimize firewall rules and configurations for better security.	CO 3, CO 4
16	Network anomaly prediction: Build an AI system to predict network anomalies before they occur.	CO 1, CO 3
17	Security log analysis: Use AI techniques to automatically analyze and correlate security logs for identifying threats.	CO 3, CO 4
18	DDoS attack detection: Develop an AI model to detect and mitigate Distributed Denial of Service (DDoS) attacks.	CO 3, CO 4
19	Mobile application security: Train an AI algorithm to identify security vulnerabilities in mobile applications.	CO 3, CO 4
20	Network segmentation optimization: Employ AI techniques to optimize network segmentation for enhanced security.	CO 1, CO 3
21	Threat intelligence analysis: Use AI algorithms to analyze and extract insights from threat intelligence feeds.	CO 1, CO 3
22	Security incident response automation: Develop an AI system to automate and streamline security incident response processes.	CO 3, CO 4
23	Deepfake detection: Train an AI model to identify and flag manipulated or forged media content.	CO 1, CO 3
24	Network forensics: Use AI techniques to analyze network traffic and digital artifacts for forensic investigations.	CO 3, CO 4
25	Security policy compliance: Develop an AI system to assess and ensure compliance with security policies and regulations.	CO 3, CO 4

SOCIAL MEDIA SECURITY

Department:	Department of Computer Science and Engineering				
Course Name: Social Media	Course Code	L-T-P	Credits		
Security	ENSP407	4-0-0	4		

Type of Course:	Programme Elective-I (Cybe	r Security)				
Pre-requisite(s), i	if any:					
Brief Syllabus: Social media has become an integral part of our lives, shaping our online behaviors and interactions in numerous ways. People join social media platforms to share information, connect with friends, and engage in online communities. While social media offers these advantages, it also brings forth concerns regarding privacy and security. The constant flow of personal information shared on these platforms makes individuals vulnerable to various risks. Therefore, it is crucial for all of us to understand and address the issues surrounding privacy and security in the realm of social media. By acquiring knowledge about these challenges, we can adopt safer practices and protect ourselves from potential threats while enjoying the benefits of social media platforms. Being aware and proactive about social media security empowers us to navigate the digital landscape responsibly and ensure our online safety.						
UNIT WISE DETA	ils					
Unit Number: 1	: Social Media Overview	No. of hours: 8				
media monitoring, opportunities, and Online Social Media Analysis - Node Ce	ial media. Types of Social m Hashtag, Viral content, So pitfalls in online social net , Social Media Content Anal entrality Measures, Degree ent, Power Law; Synthet	edia, Social media platforms, Social ocial media marketing, challenges, tworks, APIs, Collecting data from ysis - BoW Model, TF-IDF; Network Distribution, Average Path Length, cic Networks - Random Graphs,				
Unit Title Number: 2 Soci	: Security Issues in al Media	No. of hours: 11				
Content Summary Overview, Review concerns with netw and behaviours, An Social Phishing, I Spamming, Rumou Flagging and report	r: of Machine Learning, The orked technologies, Context onymity in a networked wo Fake, Compromised, Sybil or Misinformation, Cyber ing of inappropriate content.	evolution of privacy and security tual influences on privacy attitudes rld, Identity Theft - Profile Cloning, accounts and their behaviour, bullying, Collective Misbehaviours,				
Unit Title Number: 3 Med	: Privacy Issues in Socia	No. of hours: 11				
Inference Attacks,	Settings, PII Leakage, Ident De-anonymization Attacks,	tity vs Attribute Disclosure Attacks, Privacy Metrics - k-anonymity, l- ial Privacy, Social Media and User				

Title: Social Media Security:							
Unit Number: 4 Case Studies	No. of hours: 10						
Content Summary:							
Laws regarding posting of inappropriate content,							
media, Content Moderation and Removal Policie							
Control, Security Awareness and Education, So	-						
Twitter, Instagram, YouTube, LinkedIn, StackO Reddit, FourSquare, Yelp.	vernow, Github, Quora, Shapchat,						
*Self-Learning Components:							
• •	lackorel						
1. Social Media Security 101 - Stop The H							
2. Privacy and Security in Online Social M	leula						
3. CompTIA Social Media Security References:							
1. <u>https://www.udemy.com/course/social</u>	I-media-security-101-stop-the-						
hackers/	media security for stop the						
2. https://onlinecourses.nptel.ac.in/noc20	Cc31/preview						
3. https://niccs.cisa.gov/education-trainir							
social-media-security							
Please Note:							
At least 5-10 % syllabus will be asked in er	nd term exams from self-learning						
components							
Reference Books:							
1. Mastering Social Media Mining, Bonzanini I							
2. Mining the Social Web, Mikhail Klassen	and Matthew A. Russell, O'Reilly						
Media, Inc	awawi Dama Mahawawa d Ali Abba si						
3. Social media mining: an introduction, Zafa	arani, Reza, Monammad Ali Abbasi,						
and Huan Liu, Cambridge University Press4. Social Media Security: Leveraging Social	Notworking While Mitigating Rick						
Michael Cross, Syngress	Networking while Mitigating Kisk,						
5. Social Media and the Law: A Guidebook	for Communication Students and						
Professionals, Daxton R. Stewart, Taylor & Fra							
6. Security in the Digital Age: Social Media							
by Henry A. Oliver, Create Space Independent Publishing Platform.							
Online References:							
1. https://media.defense.gov/2021/Sep/16/2							
1/0/CSI_KEEPING_SAFE_ON_SOCIAL_MEDIA	—						
	https://www.technology.pitt.edu/security/best-practices-safe-social-						
networking							
3. https://www.mdpi.com/1999-5903/10/12,	/114						

Course Outcomes (CO)

Statements

CO1	Demonstrate an understanding of the different types of social media platforms, their features, and their impact on communication, marketing, and society.
CO2	Acquire knowledge and skills in social media monitoring techniques, including data collection, analysis, and the use of relevant tools and technologies.
СО3	Develop the ability to analyze and evaluate viral content on social media, understand the factors contributing to its spread, and recognize its implications for marketing and online engagement.
CO4	Identify and analyze the challenges, opportunities, and pitfalls associated with social media marketing, and formulate strategies for effective audience targeting, engagement, and brand promotion.
CO5	Develop strategies to safeguard personal information, foster user trust, and mitigate associated risks.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels(C) 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A3	P1
C02	C2	A2	P2
CO3	C4	A5	-
CO4	C4	A3	P4
CO5	C6	A4	P5

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	3	-	1	-	3	-		-	-
CO2	2	3	-	1	-	-	-	2	-	-
CO3	-	3	-	2	-	-	1		3	-
CO4	-	3	3	2	-	-		2	2	2
CO5	-			1	2	2	3		-	1

1=weakly mapped

2= moderately mapped 3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	1	-	-
CO2	-	2	1	-
CO3	-	-	2	1
CO4	-	-	-	2
CO5	-	-	-	-

Relevance of the Syllabus to various indicators

Unit I	Social Media Overview
Local	-
Regional	-
National	Provides essential knowledge and skills related to social media platforms, social media marketing, and data collection from online social media.
Global	Covers key aspects of social media platforms, social media marketing, and data analysis techniques that have global applicability
Employability	Highly valued in the job market.
Entrepreneurship	Explore entrepreneurial opportunities in the digital marketing and social media industry.
Skill Development	Enhances students' technical skills in understanding and utilizing social media effectively.
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit II	Security Issues in Social Media
Local	Addresses local indicators by covering security issues in social media.
Regional	-
National	Provides essential knowledge and skills related to security issues in social media, which are relevant at the national level for ensuring online safety.
Global	Covers key aspects of security issues in social media that have global relevance.
Employability	Highly valued in the job market, particularly in roles related to cybersecurity, digital risk management, and social media governance.

Entrepreneurship	Equips with knowledge of security issues in social media, allowing to identify entrepreneurial opportunities in developing innovative solutions for securing social media platforms.		
Skill Development	Enhances technical skills in identifying, analyzing, and		
	addressing security threats.		
Professional Ethics	Indirectly promotes professional ethics by emphasizing the importance of protecting user privacy, preventing cyberbullying, and addressing collective misbehaviors in social media platforms.		
Gender	-		
Human Values	Indirectly supports human values by fostering a safe and inclusive online environment.		
Environment &			
Sustainability	-		
Unit III	Privacy Issues in Social Media		
Local	Addresses local indicators by covering privacy issues in social media that are relevant to the local context.		
Regional	-		
National	Provides essential knowledge and skills related to privacy issues in social media, which are relevant at the national level for ensuring data protection and privacy rights.		
Global	Covers key aspects of privacy issues in social media that have global relevance, such as identity and attribute disclosure attacks.		
Employability	Highly valued in the job market, particularly in roles related to data privacy, information security, and compliance with privacy regulations.		
Entrepreneurship	Equips with knowledge of privacy issues in social media, allowing them to identify entrepreneurial opportunities in developing privacy-enhancing solutions for social media platforms.		
Skill Development	Enhances technical skills in privacy settings, data protection, and privacy metrics.		
Professional Ethics	Indirectly promotes professional ethics by emphasizing the importance of respecting user privacy, protecting personal information, and ensuring transparency.		
Gender	-		
Human Values	Indirectly supports human values by fostering a culture of privacy and user trust in social media platforms.		
Environment &			
Sustainability	-		
Unit IV	Social Media Security: Laws, Best Practices, and Case Studies		
Local	Addresses local indicators by covering laws regarding posting of inappropriate content that are relevant to local jurisdictions		

	and regulations.				
Regional	Provides regional relevance by including case studies of popular social media platforms that are widely used in the regional context, such as Facebook, Twitter, Instagram, and LinkedIn.				
National	Covering laws related to social media and best practices for the use of social media platforms				
Global	Includes case studies of various global social media platforms.				
Employability	Highly valued in roles related to social media management, digital marketing, content moderation, and information security				
Entrepreneurship	Equips with knowledge of social media security laws, best practices, and case studies, allowing them to identify entrepreneurial opportunities in providing social media security services				
Skill Development	Enhances students' skills in content moderation, user authentication, access control, security awareness, and education.				
Professional Ethics	Emphasizing the importance of adhering to social media laws.				
Gender	-				
Human Values	Indirectly supports human values by promoting responsible use of social media, ensuring user privacy and safety, and addressing ethical considerations.				
Environment & Sustainability	-				
SDG	-				
NEP 2020	Digital literacy, Critical thinking, Ethical use of technology				
POE/4 th IR	Technological advancements, innovation, adaptability, digital fluency, problem-solving, collaboration, and lifelong learning.				

SOCIAL MEDIA SECURITY LAB

Department:		ment of Comput	er Science and	and Engineering			
		Course Code	L-T-P	Credits			
		ENSP457	0-0-2	1			

Type of Course:	Programme Elective-I (Cyber Security)
Pre-requisite(s),	if any:

Course Outcomes (CO)

Т

COs	Statements					
C01	Understand the risks and vulnerabilities associated with social media platforms.					
CO2	Understand the social and ethical implications of social media security.					
CO3	Develop practical skills to secure social media accounts and data.					
CO4	Analyze and respond to social media security incidents.					
CO5	Evaluate the effectiveness of social media security controls.					

Proposed Lab Experiments

Ex. N	o Experiment Title	Mapped CO/COs
1	 Exploring Different Social Media Platforms a. Research and analyze various social media platforms. b. Identify their key features, target audiences, and unique characteristics. c. Compare and contrast their usage, advantages, and challenges. 	CO1, CO2, CO5
2	 Monitoring Social Media Trends a. Use social media monitoring tools to track popular hashtags and viral content. b. Analyze the patterns and trends in social media conversations. c. Identify the factors contributing to the popularity of certain content. 	CO1, CO5
3	Social Media Marketing Analysis a. Study real-world social media marketing campaigns. b. Analyze their strategies, target audience engagement, and impact. c. Evaluate the challenges and opportunities in social media marketing.	CO2, CO3
4	Collecting and Analyzing Social Media Data a. Utilize APIs to collect data from online social	CO3

	media platforms. b. Perform content analysis using techniques like Bag-of-Words (BoW) model and TF-IDF. c. Extract insights and patterns from the collected data.	
5	 Social Network Analysis a. Perform network analysis on social media data. b. Calculate node centrality measures, degree distribution, average path length, and clustering coefficient. c. Identify key influencers and community 	CO3, CO5
6	structures within the social network. Creating Synthetic Networks a. Generate random graphs and preferential attachment models to simulate social networks. b. Analyze the characteristics of the synthetic networks. c. Compare and contrast them with real-world social networks.	CO1, CO5
7	 Profile Cloning and Identity Theft a. Study different types of identity theft in social media. b. Analyze profile cloning, social phishing, and compromised accounts. c. Understand the behavioral patterns and impacts of these attacks. 	CO1, CO2
8	 Dealing with Spam and Misinformation a. Analyze the spread of spam and misinformation in social media. b. Identify techniques to detect and mitigate spamming activities. c. Evaluate the effectiveness of flagging and reporting mechanisms. 	CO4
9	 Privacy Settings Evaluation a. Evaluate the privacy settings of popular social media platforms. b. Assess the level of protection they provide for Personally Identifiable Information (PII). c. Propose recommendations for enhancing user privacy. 	CO2, CO5
10	Privacy Attacks and Anonymity a. Study different privacy attacks in social media,	CO2

	such as inference attacks and de-anonymization attacks.	
	 Analyze the impact of identity disclosure and attribute disclosure attacks. 	
	 c. Explore techniques like differential privacy for preserving user privacy. 	
11	Privacy Metrics Analysis	CO2
	a. Investigate privacy metrics like k-anonymity and I-diversity.	
	b. Apply these metrics to analyze the privacy risks in social media datasets.	
	c. Discuss the trade-offs between personalization and privacy in social media.	
12	Understanding Social Media Laws and Regulations a. Study the laws and regulations related to social media usage.	CO2
	b. Analyze the legal implications of posting inappropriate content.	
	 c. Explore content moderation policies and user responsibilities. 	
13	User Authentication and Access Control	CO3
	a. Evaluate user authentication mechanisms in	
	popular social media platforms.	
	b. Analyze access control policies and user	
	permissions.	
	 c. Discuss best practices for ensuring secure user authentication. 	
14	Security Awareness and Education	CO2
	 a. Develop security awareness campaigns for social media users. 	
	b. Design educational materials to raise	
	awareness about social media security risks.	
	c. Evaluate the effectiveness of these campaigns	
	through surveys or assessments.	
15	Case Study Analysis - Facebook	CO1, CO2,
	a. Analyze the security and privacy practices of Facebook.	CO4
	b. Explore the challenges faced by Facebook in	
	maintaining user data privacy.	
	 c. Discuss notable security incidents and their impact on user trust. 	
16	Case Study Analysis - Twitter	CO1, CO2,
	a. Investigate the security measures	CO4

	implemented by Twitter.	
	b. Analyze the response to cybersecurity	
	incidents on the platform.	
	c. Discuss the role of Twitter in addressing	
	misinformation and cyberbullying.	
17	Case Study Analysis - Instagram	CO1, CO2,
	a. Analyze the privacy and security features of	CO4
	Instagram.	
	b. Investigate the effectiveness of content	
	moderation policies.	
	c. Discuss the impact of influencer marketing and	
	brand safety on Instagram.	
18	Case Study Analysis - YouTube	CO1, CO2,
	a. Evaluate the security controls and privacy	CO4
	settings of YouTube.	
	b. Analyze the challenges of content moderation	
	and copyright infringement.	
	c. Discuss the role of YouTube in combating hate	
	speech and harmful content.	
19	Case Study Analysis - LinkedIn	CO1, CO2
	a. Study the security and privacy considerations	,
	on LinkedIn.	
	b. Analyze the protection of professional user	
	data and connections.	
	c. Discuss the impact of LinkedIn in job search	
	and professional networking.	
20	Case Study Analysis - StackOverflow	CO1, CO2
	a. Investigate the security practices implemented	001/002
	on StackOverflow.	
	b. Analyze the trust and reputation systems	
	within the community.	
	c. Discuss the role of StackOverflow in	
	knowledge sharing and code collaboration.	
21	Case Study Analysis - GitHub	CO1, CO2
<u> </u>	a. Analyze the security measures adopted by	001,002
	GitHub for source code repositories.	
	b. Investigate the role of vulnerability reporting	
	and code review processes.	
	c. Discuss the importance of secure coding	
	practices in open-source projects.	
22		CO1 CO2
22	Case Study Analysis - Quora	CO1, CO2
	a. Evaluate the privacy controls and content	
	moderation on Quora.	

	 b. Analyze the impact of user-generated content and knowledge sharing. c. Discuss the challenges of maintaining a respectful and inclusive community. 	
23	Case Study Analysis - SnapChat a. Study the privacy and security features of SnapChat. b. Analyze the ephemeral messaging and privacy-by-design approach. c. Discuss the challenges of preventing data leaks and unauthorized access.	CO1, CO2
24	Case Study Analysis - Reddit a. Analyze the security and privacy considerations on Reddit. b. Investigate the moderation policies and community-driven content curation. c. Discuss the challenges of maintaining a balance between free speech and harmful content.	CO1, CO2

DEPARTMENT ELECTIVE – II

MOBILE APPLICATION DEVELOPMENT USING IOS

Department: Department of Compu	uter Science and Engineering
---------------------------------	------------------------------

Course Name:			a						
Mobile Application	Course Code	L-T-P	Credits						
Development using iOS	ENSP409	4-0-0	4						
Type of Course: Depar	Type of Course: Departmental Elective								
Pre-requisite(s), if any	: NA								
worldwide on mobile d is therefore necessary for android operating s	The Android operating system (OS) has the highest market share worldwide on mobile devices. Android held 71.93 percent of the market.It is therefore necessary for students to know that how to build mobile apps for android operating system. This course covers the necessary concepts which are required to understand mobile communication and to develop								
	troduction to	No. of hour	s: 10						
call, SMS, MMS, LBS, MAC, LBS, MArchitecture of Mobile computing, Characteristic Communication, Security Gateway required for mole Mobile IP, Basic Mobile Communication	Computing(3 tier), ics of Mobile Cor Concern Related to bile Computing, Mak	Design consi mmunication, A Mobile Compu	derations for mobile Application of Mobile uting, Middleware and						
Unit Title: In	troduction to	No. of hour	s: 10						
Content Summary: Overview of Android, Ar Environment setup for	Overview of Android, Android Internals, Android for mobile apps development, Environment setup for Android apps Development, Framework -Android-SDK, Emulators - Android AVD, Android Emulation – Creation and set up, First Android								
Unit Title: An Number: 3 and GUI	droid Activities Design:	No. of hour	s: 10						
Content Summary: Activity Lifecycle of Android, Design criteria for Android Application : Hardware Design Consideration, Design Demands For Android application, Intent, Activity, Activity Lifecycle and Manifest, Creating Application and new Activities, Simple UI - Layouts and Layout properties: Introduction to Android UI Design, Introducing Layouts, Fragments, Push Button, Text / Labels, Edit Text, Toggle Button, Padding									
Unit	ckground Tasks	No. of hour	s: 10						

Content Summary:

Customizations: Floating hints and Auto Complete, Create Custom Layout, Create Custom Toast.

Save Data Locally on Phone: Save User Preferences, Save data using text files, Making use of Async Task class: Intro to Async Task Loader, load In Background(), Async Task Loader callbacks, Benefits of loaders. Connecting to data by SQL Lite Database: Overview of SQLite, Open Helper Android class, Querying (dev) Searching (user) databases, Best practices for using databases in Android, Best practices for testing your database

Permissions:The permissions model, Libraries: Using libraries, Widgets: What are widgets?, When to use them and how to implement them, Publishing your App: Different ways to monetize your app, Making and publishing APKs: Guidelines for publishing in Google Play, Make and sign the APK, Beta test your app, Publish your app to Google Play

*Self-Learning Components:

1. BSim Documentation

References:

1. https://www.nand2tetris.org/

2. https://www.coursera.org/learn/computer-organization-design

3. https://www.geeksforgeeks.org/computer-organization-and-architecture-tutorials/

4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/

Please Note:

At least 5-10 % syllabus will be asked in end term exams from self-learning components

Text Book:

1. Reto Meier, "Professional Android Application Development", Wiley India Pvt Ltd

Reference Books:

1. Mark L Murphy, "Beginning Android", Wiley India Pvt Ltd

2. Sayed Y Hashimi and SatyaKomatineni, "Pro Android", Wiley India Pvt Ltd

Online References:

1. https://learning.edx.org/course/course-

v1:MITx+6.004.2x+3T2015/block-

v1:MITx+6.004.2x+3T2015+type@sequential+block@c3s1/block-

v1:MITx+6.004.2x+3T2015+type@vertical+block@c3s1v1

2. RIPES: https://freesoft.dev/program/108505982

3. GEM5:

https://www.gem5.org/documentation/learning_gem5/introduction/

4. CACTI: https://github.com/HewlettPackard/cacti

5. PIN:

https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-

binary-instrumentation-tooldownloads.html

6. TEJAS: https://www.cse.iitd.ac.in/~srsarangi/archbooksoft.html

7. XILINX(VHDL/Verilog

https://www.xilinx.com/support/university/students.html

tools):

Course Outcomes (CO)

COs	Statements
CO1	Understand functioning of different mobile technology
CO2	Demonstrate Android Activities Life Cycles
CO3	Execute Operations on GUI objects
CO4	Perform Event Driven Programming
CO5	Apply various techniques on working with the menu

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels(C) 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	P1
C02	C3	A2	P1
CO3	C5	A2	P2
CO4	C6	A3	P4
CO5	C6	A3	P4

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	3	-	-	-	-	2	-	1	1	-
CO2	-	3	2	-	-	2	2	-	-	-
CO3	-	-	-	3		2	-	2	-	2
CO4	-	-	3	-	-	2	1	-	2	-
CO5	2	-	-	-	-	2	-	-	-	1

1=weakly mapped 2= moderately mapped 3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	2	-	1	3
CO2	2	2	-	2
CO3	-	2	-	-
CO4	-	-	1	3
CO5	-	2	-	2

Relevance of the Syllabus to various indicators

Unit I	Introduction to IDE and SDK of iOS App Development
Local	-
Regional	-
National	-
Global	Xcode is the official IDE provided by Apple for iOS app development. It is available globally and widely used by developers worldwide. Xcode includes a suite of tools, such as Interface Builder, Instruments, and iOS Simulator, along with an extensive SDK for building iOS apps.
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit II	Objective-C
Local	-
Regional	-
National	
Global	Objective C can be used globally with its syntax and syntactic rules
Employability	-

Entrepreneurship	-
Skill	
Development	-
Professional	
Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
Unit III	Encapsulating Data
Local	In programming, "local" usually refers to variables, data, or methods that are confined to a specific scope, such as within a function or a block. Local variables are only accessible within the block or function where they are declared.
Regional	-
National	-
Global	
Employability	
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit IV	Developing iOS Applications

Г

Local	-
Regional	-
National	"National" might represent initiatives or policies related to iOS app development adopted or regulated at the national level. For example, it could include national-level educational programs or government-supported initiatives promoting digital skills and app development.
Global	
Employability	-
Entrepreneurship	-
Skill Development	-
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
SDG	SDG 4, SDG 8, SDG 9
NEP 2020	Promoting universal access to education, holistic development, multidisciplinary approach, skill development, critical thinking, creativity, ICT integration, research and development, global competencies, and professional ethics.
POE/4 th IR	Skill Development / Coding / Programming Software

MOBILE APPLICATION DEVELOPMENT USING IOS LAB

Department:	Department of Co Engineering	omputer S	cience and
Course Name:	Course Code	L-T-P	Credits
Mobile Application Development using iOS Lab	ENSP459	0-0-2	1
Type of Course:	Departmental Elective IV (Minor)		
Pre-requisite(s), if any: Basics of Android			

Defined Course Outcomes

Cos	
CO 1	Create iPhone apps using Objective-C and Apple's new programming language, use industry tools and frameworks such as Cocoa, Xcode, UIKit, Git.
CO 2	Understand and know how to use properly UIKit, asynchronous code, Core Image, NSURL Session and JSON Map Kit and Core Location, Auto Layout, Source Control, Core Data, Animation, and the app submission process.
CO 3	Read and write programs based on Objective-C, also have a strong grasp of Objective-C objects
CO 4	Organize their code professionally using objects and blocks, prototype several entry- level apps and try to publish on App store.

Proposed Lab Experiments

Ex No	Experiment Title	Mapped CO/COs
1	Case Study of Objective-C language.	CO2
2	Case study of Windows and MAC systems	CO2
3	Case Study of XCode based on MAC Systems	CO2
4	Design an App for UISwitch based on Objective-C	CO1
	language	
5	Design an App for UISlider based on Objective-C	CO1
	language	
6	Design an App for UIStepper based on Objective-C	CO1
	language	
7	Write a program for creating Story Boards	CO1
8	Design an App for UIAnimation based on Objective-C	CO1
	language	
9	Create a Simple Calculator using Objective-C	CO1
	Language	
10	Design an App for UIProgress Bar based on	CO1
	Objective-C language	
11	Design an App for UIDatePicker Bar based on	CO1
	Objective-C language	
12	Write an Objective-C program to print factorial of a	CO3
	given number	
13	Write an Objective-C program to print Fibonacci	CO3
	series	
14	Write an Objective-C program that displays the	CO3
	Phrase "Hello World"	
15	Write an Objective-C program for displaying the	CO3
	value of variables	

16	Write an Objective-C program for displaying the sum and subtraction of two variables	CO3
17	Write an Objective-C program for displaying the multiplication and division of the two variables	CO3
18	Write an Objective-C program that demonstrate control structure of Objective-C language	CO3
19	Create a Button using Objective-C	CO3
20	Write an Objective-C program to print the value of a variable inside a text, place it in parentheses, and insert a backslash just prior to the opening parenthesis	CO3
21	Write an Objective-C program to print Floyd's Triangle.	CO3
22	Write an Objective-C program to print palindrome of a number.	CO3
23	Write an Objective-C program to print pyramid.	CO3
24	Write an Objective-C program to find greatest number in between three numbers	CO3
25	Write an Objective-C program to check whether a number is even or odd.	CO3
	Mini Project 1: Make an interactive project based on iOS App using Objective-C Language	CO4
	Mini Project 2: Upload your iOS App in Apple AppStore and Publish it	CO4

DEVOPS & AUTOMATION

Department of Computer Science and Engineering			ce and
Course Name:	Course Code	L-T-P	Credits
DevOps & Automation	ENSP411	4-0-0	4
Type of Course:	Minor		
Pre-requisite(s), if any:			
Brief Syllabus:			
 DevOps is basically creating a niche or environment that emphasize bringing both development and operational team together. The key objective is to concentrate on the requirements of the project or the entire business requirement. Analysis: Analysis of the entire business requirement and then gathering the necessary information or data. Design: Putting all the gathered data into a proper format and then proceed with the development activity. The development teams should develop code: Optimized and ready to move codes. Compilation: Simultaneous compilation of codes to keep a check on the beauty of the code. Test: Without this phase, any software product is not ready for deployment; therefore, it is very much needed to go through testing in each phase. 			
UNIT WISE DETAILS			
Unit Number: 1 Title	: Introduction	N	o. of hours: 8
Content Summary: Learning Objectives, DevOps Overview, Relationship between Agile and DevOps, DevOps Tool chain, Challenges with the traditional approach, Addressing challenges through DevOps, DevOps approach to the challenges, Overview of the DevOps tools, workflow of DevOps, JIRA Suggested sources: https://www.atlassian.com/software/jira/guides/use- cases/what-is-jira-used-for			
Unit Number: 2	:: VERSION CONTROL	N	o. of hours: 12
Content Summary: VERSION CONTROL role of versiocontrol systems – T – Overview of Git – Overview of		nd their	supporting tools

Jenkins, Overview and F of TeamCity, Setup Tear Suggested Source: 1. https://www.jenkins.i 2. http://maven.apache	us Integration, Overview and Feature Features of Maven, - Setup Maven, O mCity io/doc/ e.org/ 3. int.com/continuous_integration/contir	BUILDING TOOL: es of Jenkins, Set up overview and Features
Unit Number: 4	Title: software testing	No. of hours: 8
SOFTWARE AND AUTOMATION TESTING FRAMEWORKS: Software Testing overview, Testing levels Approach and Automation Tools, Test driven development approaches and JUnit5, Behaviour driven development approach with cucumber. CONFIGURATION MANAGEMENT TOOLS: Overview of configuration management tools, overview of puppet, puppet configuration, overview of Chef, Chef configuration, overview of Ansible, Ansible configuration, containerization and Docker. *Self-Learning Components: Suggested Source: 2. <u>https://www.tutorialspoint.com/puppet/index.html</u>		
3. <u>https://puppet.co</u>	om/blog/how-get-started-puppet-begin	nners-guide
4. <u>https://www.tuto</u>	rialspoint.com/chef/index.htML	
5. <u>https://docs.chef</u> .	.io/chef_overview	
6. <u>https://www.tuto</u> 7.	rialspoint.com/ansible/index.htmL	
8. <u>https://docker-cu</u> 9. <u>https://howtodoir</u>	<u>irriculum.com</u> njava.com/junit-5-tutorial	
10. <u>https://junit.org/j</u>	junit5/docs/current/user-guide	
	l David Farley, Continuous Deliver , Test, and Deployment Automation	•

2. Jennifer Davis, Katherine Daniels, Effective DevOps: Building a Culture of

Collaboration, Affinity, and Tooling at Scale, O'Reilly, 2016 REFERENCE BOOKS 3. Gene Kim, Jez Humble, Patrick Debois, and John Willis, THE DEVOPS HANDBOOK How to Create World-Class Agility, Reliability, & Security in Technology Organizations, IT Revolution Press, 2016.

Define Course Outcomes (CO)

COs	Statements
CO1	Identify the difference between Agile and Devops.
CO2	Practice of GitHub
CO3	Illustrate various Building tools
CO4	Analyse various Testing tools
CO5	Illustrate various Configuration management tools.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2		P1
C02	C3		Ρ2
CO3	C3		Р3
CO4	C1		-
CO5	C1		P1

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1	-	2	2	1	1	-	1	2	-
CO2	-	1	-	1		2	-	-	-	-
CO3	1	2	2	3	1	2	1	2	-	2
CO4	-	3	1	2	-	2	2	-	-	-
CO5	2	1	3	-	-	2	-	-	-	1

Please Note:

- Refer to POs while mapping each CO.
- Mark " " if not applicable
- If attainment of a CO is strongly mapped with a PO , Mark 3
- If attainment of a CO is moderately mapped with a PO , Mark 2
- If attainment of a CO is weakly mapped with a PO , Mark 1

Justification for mapping must be relevant

1=weakly mapped

2= moderately mapped

3=strongly mapped

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	-	1	2
CO2	-	2	-	1
CO3	2	-	2	1
CO4	-	1	-	-
CO5	2	-	1	1

CO-PSO Mapping

Relevance of the Syllabus to various indicators

Unit I	Introduction
Local	Addresses local understanding of the Internet and its
	impact on society
	Addresses regional internet connectivity and network
	infrastructure requirements
National	Contributes to national digital literacy and internet
	connectivity strategies
Global	Aligns with global trends in internet technologies and

	network protocols
Employability	Develops skills in using internet-based services and understanding network protocols
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills in internet technologies and network protocols
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	-
Unit II	
Local	Addresses local understanding of the Internet and its impact on society
Regional	-
National	Contributes to national digital literacy and internet connectivity strategies
Global	Aligns with global trends in internet technologies and network protocols
Employability	Develops skills in using internet-based services and understanding network protocols
Entrepreneurship	-
Skill Development	Develops basic knowledge and skills in internet technologies and network protocols
Professional Ethics	-
Gender	-
Human Values	-
Environment & Sustainability	_
Unit III	
Local	Addresses local network security needs and practices
Regional	-
National	Contributes to national network security strategies and protocols
Global	Aligns with global trends in network security techniques and protocols
Employability	Develops skills in network programming and network security techniques
Entrepreneurship	-
Skill Development	Develops knowledge and skills in client-server programming and network security
Professional Ethics	-
Gender	-

Human Values	-
Environment &	
Sustainability	-
Unit IV	
Local	Addresses local understanding and implementation of internet-based services
Regional	-
National	Contributes to national digital communication strategies and multimedia applications
Global	Aligns with global trends in internet telephony, multimedia applications, and SEO
Employability	Develops skills in internet telephony, multimedia applications, and SEO
Entrepreneurship	-
Skill Development	Develops knowledge and skills in internet telephony, multimedia applications, and SEO
Professional Ethics	-
Gender	-
Human Values	-
Environment &	
Sustainability	-
SDG	SDG 4
NEP 2020	-
POE/4 th IR	Aligns with the concepts of internet telephony, multimedia applications, and SEO

DEVOPS & AUTOMATION LAB

Department:	Department of Computer Science and Engineering			
Course Name: DevOps &	Course Code	L-T-P	Credits	
Automation Lab	ENSP461	4-0-0	4	
Type of Course:	Minor	·		
Pre-requisite(s), if any:				

Defined Course Outcomes

COs	Course Outcomes (COs)
CO 1	Manage Software Version Control using GitHub
CO 2	Configure Management tools
CO 3	Analyze various Testing tools

Proposed Lab Experiments

Ex. No	Experiment Title	hours
1	Deploy three servers	2 lab hours
2	Set up static websites on two servers using Nginx. Make a small change in the index.html file of one of the websites to differentiate between two servers.	2 lab hours
3	Configure Nginx to load and balance traffic between two static websites.	2 lab hours
4	Add the Nginx Load balancer IP to the DNS A record.	2 lab hours
5	Set up Nginx on the third server. It will act as a load balancer.	2 lab hours
6	Try different Nginx load-balancing algorithms and options.	2 lab hours
7	Understand L7 load balancing	2 lab hours
8	Try accessing the website. Every time you reload the website you should see a different index.html.	2 lab hours
9	Access the DNS and validate the WordPress website setup.	2 lab hours
10	Set up the LAMP stack on the server. Configure WordPress Application	2 lab hours

.NET FRAMEWORK

Department:	artment: Department of Computer Science and Engineering				
Course Name: .NET Framework	Course Code	L-T-P	Credits		
	ENSP413	4-0-0	4		
Type of Course: Minor					
Pre-requisite(s), if a	ny:				
programming languag management, Window	" syllabus covers intro es, Visual Studio, OC s Forms/WPF, ASP.NET, Emphasis on practical secure applications.	DP, exception , web services,	handling, memory , .NET Core, Entity		
UNIT WISE DETAILS Unit Number: Title: 1 Framev	Introduction to .NET	No. of he	ours: 8		
.NET Framework, Key Language Runtime (CLF Language (CIL) and Inter the primary language for	work ,Introduction to the . components and archited () and Just-In-Time (JIT) rmediate Language (IL), Pr · .NET development & Visu and configuration of .NET rd-party libraries	cture of .NET F compilation, Co ogramming Lang al Basic .NET),	ramework, Common ommon Intermediate uages in .NET (C# as Introduction to Visual		
Unit Number: Title: 2	.NET Framework ientals	No. of h	ours: 8		
Object-Oriented Programming (OOP) in .NET, Classes, objects, and inheritance, Exception Handling and Debugging, Debugging techniques and tools in Visual Studio, Logging and error reporting in .NET applications, Memory Management and Garbage Collection, Automatic memory management in .NET, Garbage collection concepts and algorithms, Finalizers and the Dispose pattern, Performance considerations and best practices					
	Building Applications wi amework	th No. of he	ours: 12		
Windows Forms and Wi Presentation Foundation Event-driven programm WinForms/WPF application ASP.NET applications, W	PF Applications, Introducti (WPF), Designing user inter- ing and event handling, ons, ASP.NET Web Develo /eb Services and RESTful tication and security consid	erfaces using Wir Data binding pment, Data acc APIs, Creating	nForms/WPF controls, and data access in ess and validation in and consuming web		

Unit Number: Title: Advanced Topics in .NET	No. of hours: 12
4 Framework	NO: 01 110013. 12

Content Summary:

.NET Core and Cross-Platform Development, Introduction to .NET Core and its advantages, Building cross-platform applications with .NET Core, Deploying and hosting .NET Core applications, Entity Framework and Database Connectivity, Overview of Entity Framework and Object-Relational Mapping (ORM), Creating and manipulating databases with Entity Framework, Querying data using LINQ (Language Integrated Query), Handling database migrations and versioning, Windows Communication Foundation (WCF), Introduction to WCF and service-oriented architecture (SOA), Creating and consuming WCF services, Message exchange patterns and bindings in WCF, Security and reliability in WCF applications

*Self-Learning Components:

1. Online Tutorials and Documentation: Direct students to the official Microsoft documentation for .NET Framework, which provides comprehensive guides and resources. <u>Microsoft .NET Documentation</u>

2. Hands-on Coding Exercises: Assign coding exercises from platforms like LeetCode or HackerRank that focus on implementing concepts of .NET Framework. LeetCodeHackerRank

3. Project-Based Learning: Encourage students to work on small projects using different aspects of the .NET Framework. Provide examples of project ideas and resources like GitHub repositories for inspiration. <u>GitHub</u>

*students will demonstrate the self-learning components through classroom presentations

Reference/Text Books:

- 1. "Mastering C# and .NET Framework" by Jayantha Dhanapala
- 2. "Pro C# and .NET Framework" by Andrew Troelsen
- 3. ".NET Framework Programming with C#" by G. Shankar
- 4. ".NET Programming: Concepts and Practice" by Atul Kumar

Define Cours	se Outcomes	(CO)
---------------------	-------------	------

COs	Statements
CO1	Knowledge: Understanding the fundamental concepts and components of the .NET Framework.
CO 2	Application: Applying knowledge to design and develop applications using Windows Forms, WPF, and ASP.NET.
CO 3	Analysis: Analyzing performance considerations and troubleshooting errors in the .NET Framework.
CO 4	Synthesis: Integrating advanced topics like .NET Core, Entity Framework, and WCF for cross-platform development and service creation.

CO 5 Evaluation: Assessing security, reliability, scalability, and performance of applications developed using the .NET Framework.

COs Mapping with Levels of Bloom's taxonomy

СО	Cognitive levels© 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C1	A1	Р1
C02	C3	A2	Р2
CO3	C2	A3	Р3
CO4	-	-	-
CO5	C5	-	P5

*Please Note:

Map only 1 or 2 Levels in each category. If a higher level is given, no need to mention lower level

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	1	-	3	-	2	2	-	1	-	1
CO2	-	1	2	3	1	2	-	2	2	-
CO3	2	2	-	2	-	2	2	-	-	2
CO4	-	-	2	-	-	2	-	-	1	1
CO5	1	1	-	3	2	2	1	-	-	-

Relevance of the Syllabus to various indicators

Unit I	Introduction to .NET Framework
Local	
Regional	
National	Understanding the evolution and history of the .NET Framework provides context specific to the national software development landscape.
Global	
Employability	Understanding the .NET Framework provides valuable skills and knowledge sought by employers in the software development industry.
Entrepreneurship	Understanding the .NET platform can support the development of innovative software products and services.
Skill Development	Studying the .NET Framework helps develop technical skills in application development and programming.
Professional Ethics	Familiarity with the .NET Framework enables professionals to adhere to ethical practices while developing software applications.
Gender	
Human Values	-
Environment & Sustainability	-
Unit II	NET Framework Fundamentals
Local	Understanding OOP in .NET can have local relevance in terms of specific programming practices and patterns adopted within the local software development community.
Regional	-
National	
ινατιστιαι	Understanding classes, objects, and inheritance in the .NET Framework is relevant at all levels of software development.
Global	.NET Framework is relevant at all levels of software
	.NET Framework is relevant at all levels of software development. Aligns with global trends in internet technologies and
Global	.NET Framework is relevant at all levels of software development. Aligns with global trends in internet technologies and network protocols Knowledge of classes, objects, and inheritance enhances employability in the software development

	improves technical skills required
Professional	
Ethics	
Gender	-
Human Values	-
Environment	
&Sustainability	-
Unit III	Building Applications with .NET Framework
Local	Understanding Windows Forms and WPF applications is relevant at a local level as it involves designing user interfaces and developing desktop applications specific to the local context.
Regional	Understanding Windows Forms and WPF applications is relevant at a regional level as these frameworks are commonly used in software development within a specific region.
National	Introduction to Windows Forms and WPF is important at a national level as these frameworks serve as the foundation for developing various types of applications used nationwide.
Global	Introduction to Windows Forms and WPF is important globally as these frameworks are fundamental to developing user interfaces and applications used on a global scale.
Employability	Understanding the basics of Windows Forms and WPF is crucial for employability in software development roles. Proficiency in these frameworks demonstrates competence and versatility, making individuals more desirable to potential employers.
Entrepreneurship	Knowledge of Windows Forms and WPF applications enables entrepreneurs to create innovative software products and services, driving business growth and success.
Skill Development	Understanding Windows Forms and WPF applications enhances technical skills in software development, enabling individuals to design and develop user- friendly and visually appealing applications.
Professional Ethics	Familiarity with Windows Forms and WPF applications ensures adherence to ethical standards in software development, including data privacy, accessibility, and industry best practices for usability and security.
Gender	-

Human Values	-
Environment &	
Sustainability	-
Unit IV	Advanced Topics in .NET Framework
Local	the content on .NET Core, Entity Framework, and
	Windows Communication Foundation (WCF) has local
	relevance as it addresses the specific development and
	database connectivity needs within the local context.
Regional	
National	The content on .NET Core, Entity Framework, and
	Windows Communication Foundation (WCF) is
	nationally relevant as it addresses specific
	development and database connectivity needs within the country, considering national requirements and
	technologies.
Global	addresses development and database connectivity
Global	needs on a global scale, considering international
	requirements and technologies.
Employability	Content equips individuals with the skills and
,	knowledge necessary for software development roles.
	Proficiency in these technologies enhances
	employability prospects and opens up opportunities in
	the job market.
Entrepreneurship	Understanding these technologies enables
	entrepreneurs to create and scale their own software
	ventures.
Skill Development	Learning and applying these technologies contribute to
	the development of practical skills that are in demand
	in the industry, improving professional capabilities and
Drofossional	career prospects
Professional Ethics	
Gender	
Human Values	
Environment &	
Sustainability	
SDG	SDG 9, SDG 4, and SDG 8,
NEP 2020	-
POE/4 th IR	the content on .NET Core, Entity Framework, and
	Windows Communication Foundation (WCF) addresses
	professional ethics and aligns with the demands and
	innovations of the Fourth Industrial Revolution (4IR).

.NET FRAMEWORK LAB

Department:		Department of Computer Science and Engineering				
Course Name: .NET Framework	Lab	Course Code	L-T-P	Credits		
		ENSP463	0-0-2	1		
Type of Course:	Min	or				
Pre-requisite(s), if a	ny:					

Defined Course Outcomes

COs	
CO 1	Knowledge and Understanding: Gain a thorough understanding of the core concepts and components of the .NET Framework.
	Application and Problem Solving: Apply .NET Framework knowledge to design and develop applications, solving programming problems effectively.
	Analyze and troubleshoot .NET applications, using debugging techniques and optimizing performance.
	Integrate advanced .NET topics like .NET Core, Entity Framework, and WCF to create cross-platform applications, work with databases, and build services.

Proposed Lab Experiments

Ex. No	Experiment Title	Mapped CO/COs
1	Installing and setting up the .NET Framework, Visual Studio IDE, and NuGet package manager	C01
2	Creating a basic console application in C# or Visual Basic.NET and running it in Visual Studio.	C01
3	Write a program to display "Hello World" using C#.	CO2
4	Create a Windows Forms application to design a simple calculator.	CO2
5	Develop a console application to perform basic arithmetic operations	CO2
6	Create a class hierarchy to represent different types of vehicles.	CO2
7	Implement inheritance and polymorphism concepts in a	CO2

	C# program.	
8	Design a Windows Forms application to manage student records.	CO3
9	Create a WPF application to build a simple photo gallery.	CO3
10	Develop a web application to display and manage a list of books using ASP.NET	CO3
11	Implement form validation and data access in an ASP.NET application.	CO3
12	Build a RESTful API using ASP.NET Web API to perform CRUD operations on a database.	CO3
13	Create a client application to consume a web service and display the retrieved data.	CO2
14	Implement a cross-platform application using .NET Core.	CO3
15	Develop a database-driven application using Entity Framework for data manipulation.	CO3
16	Design and implement a WCF service to provide secure communication between client and server.	CO4
17	Connect a .NET application to a database using ADO.NET and retrieve data.	CO3
18	Use LINQ (Language Integrated Query) to perform data querying and manipulation operations.	CO3
19	Deploy a .NET application to a web server or a cloud platform.	CO4
20	Configure and manage the hosting environment for a	CO4
21	Use debugging techniques and tools in Visual Studio to identify and fix bugs in a program.	CO2
22	Create a program to demonstrate the automatic memory management feature in .NET.	CO4
23	Implement a program to analyze and optimize memory usage in a .NET application.	CO2
24	Develop a WCF service to perform CRUD operations on a database.	CO4
25	Design a client application to consume the WCF service and display the retrieved data.	CO4

NEW-AGE PROGRAMMING LANGUAGES

Department:	Department of Comput	er Science and	Engineering
Course Name:	Course Code	L-T-P	Credits
New-Age	ENSP415	4-0-0	4
programming languages		100	
languages			
Type of Course:	Minor		
Pre-requisite(s),	if any:		
languages. It ex Kotlin, and devel The course will c	he concepts and applica plore the features and b op practical skills in pro over language syntax, o amming concepts, concu	enefits of GO, F ogramming using lata types, conti	#, Clojure, and g these languages. rol structures,
Unit Titl Number: 1 Lan	e: GO programming	No. of hours	: 10
languages, Installa syntax and data ty slices, and maps management, Cor Programming in G functions, Reflecti	y: #, Clojure, and Kotlin, Contion and setup of developing ypes, Control structures, in GO, Structs and cust incurrency and parallelism GO, Advanced GO Concepion and type introspection and parallel programs.	ment environmer Functions and pac om data types, F n in GO, Error ots- Function clos	nt, Introduction to GO ckages in GO, Arrays, Pointers and memory Handling, Concurrent ures and anonymous
	e: F# Programming Iguage	No. of hours	: 10

Content Summary:

Overview of Clojure and its features, Setting up the development environment, Basic syntax and data structures in Clojure, Functional Programming in Clojure, Immutable data and pure functions, Higher-order functions and recursion, Collections and sequence operations in Clojure, Destructuring and pattern matching, Macros and metaprogramming in Clojure, Concurrency models in Clojure, Asynchronous programming with core.async, Parallel programming with reducers and pmap, Interacting with Java libraries and APIs, Java interoperability in Clojure, Working with Java collections and objects, Web Development with Clojure, Building web applications using Clojure and Ring, Database access and persistence in Clojure, Error Handling and Testing: Exception handling and error management in Clojure, Testing strategies and frameworks in Clojure, Data Manipulation and Transformation: Data manipulation with Clojure's sequence functions, Data transformation with transducers, Data-driven development with data literals and data readers

Unit	Title: Introduction to Kotlin	No. of hours: 10	
Number: 4	Programming		

Content Summary:

Overview of Kotlin and its advantages, Setting up the development environment, Basic syntax and data types in Kotlin, Conditional statements and loops, Function declarations and parameters, Lambda expressions and higher-order functions, Object-Oriented Programming in Kotlin: Classes, objects, and inheritance, Properties and access modifiers, Interfaces and abstract classes, Understanding nullable and non-nullable types, Safe calls and the Elvis operator, Type inference and smart casting, Collections and Functional Programming: Working with lists, sets, and maps in Kotlin, Collection operations and transformations, Introduction to functional programming concepts in Kotlin, Creating extension functions in Kotlin, Using DSLs for domain-specific problems, Builder pattern and DSL implementation.

*Self-Learning Components:

- 1. Web programming with GO
- 2. F# for Data Science and Machine Learning:
- 3. Metaprogramming and DSLs in Clojure:
- 4. Android App Development with Kotlin:

References:

- 1. Building Modern Web Applications with Go (Golang) by Udemy
- 2. https://www.jetbrains.com/academy/
- 3. https://www.classcentral.com/subject/f-sharp
- 4. https://www.classcentral.com/subject/clojure

Please Note:

At least 5-10 % syllabus will be asked in end term exams from self-learning components

Reference Books:

1. The Go Programming Language, Alan A. A. Donovan and Brian W. Kernighan, Addison-Wesley Professional.

2. An Introduction to Programming in Go, Caleb Doxsey, CreateSpace Independent Publishing.

3. Real-World Functional Programming: With Examples in F# and C#, Tomas Petricek and Jon Skeet, Manning.

4. Programming F# 3.0: A Comprehensive Guide for Writing Simple Code to Solve Complex Problems, Chris Smith, O'Reilly Media.

5. Getting Clojure: Build Your Functional Skills One Idea at a Time, Russ Olsen, O'Reilly.

- 6. The Joy of Clojure, Michael Fogus and Chris Houser, Manning Publication.
- 7. Atomic Kotlin, Bruce Eckel and Svetlana Isakova, Mindview LLC.

8. Kotlin in Action, Dmitry Jemerov and Svetlana Isakova, Manning Publication.

- 1. <u>https://gobyexample.com/</u> [
- 2. https://golang.org/doc/
- 3. https://www.youtube.com/playlist?list=PLlxmoA0rQ-

LwgK1JsnMsakYNACYGa1cjR

- 4. https://kotlinlang.org/docs/home.html
- 5. https://docs.microsoft.com/en-us/dotnet/fsharp/
- 6. https://www.udemy.com/course/learning-functional-programming-with-f/
- 7. https://clojure.org/guides/getting_started

Course Outcomes (CO)

COs	Statements
CO1	Understand the fundamental principles and paradigms of modern programming languages, including functional programming, object-oriented programming, and concurrent programming.
CO2	Develop proficiency in using the syntax, data structures, and control flow constructs of each language (GO, F#, Clojure, and Kotlin) to solve programming problems.
CO3	Explore the unique features and strengths of each language, such as Go's focus on concurrency, F#'s functional programming capabilities, Clojure's emphasis on immutability and simplicity, and Kotlin's interoperability with existing Java code.
CO4	Apply the languages' respective development tools, such as Go's gofmt and go vet, F#'s F# Interactive (FSI), Clojure's Leiningen or Boot, and Kotlin's integrated development environment (IDE) support, to improve code quality and productivity.
CO5	Design and implement projects that integrate multiple programming languages, using appropriate inter-language communication mechanisms and libraries (e.g., Go and Kotlin interacting via REST APIs, F# and Clojure communicating via message queue

COs Mapping with Levels of Bloom's taxonomy

CO	Cognitive levels(C) 1. Knowledge 2. Understand 3. Apply 4. Analyze 5. Evaluate 6. Create	Affective levels(A) 1. Receiving 2. Responding 3. Valuing 4. Organizing 5. Characterizing	Psychomotor levels(P) 1. Imitation 2. Manipulation 3. Precision 4. Articulation 5. Improving
CO1	C2	A1	-
C02	C3	A2	P2
CO3	C2	A3	-
CO4	C3	A4	Р3
CO5	C6	-	P4

CO-PO Mapping

PO	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10
CO1	2	2	1	-	2	2	2	1	1	2
CO2	2	2	-	-	2	2	-	1	-	2
CO3	2	2	-	3	-	2	1	-	1	-
CO4	-	-	3	-	3	2	-	-	-	3
CO5	1	-	-	-	-	2	1	2	2	2

1=weakly mapped 2= moderately mapped

3=strongly mapped

CO-PSO Mapping

PSO	PSO1	PSO2	PSO3	PSO4
CO1	3	-	-	3
CO2	3	2	-	-
CO3	-	2	-	3
CO4	-	2	-	3
CO5	-	2	2	2

Relevance of the Syllabus to various indicators

Unit I	Introduction to New-Age Programming Languages and GO
	programming Language
Local	-
Regional	-
National	Provides essential knowledge and skills related to modern programming languages like GO, F#, Clojure, and Kotlin, which are widely used in national software development projects and initiatives.
Global	Relevant in the global software development community, as these languages and concepts have international adoption and usage.
Employability	Highly valued in the job market, as these languages are used in various industries and offer opportunities for software development roles.
Entrepreneurship	Equips students with knowledge of modern programming languages and advanced concepts, enabling them to explore entrepreneurial opportunities in software development and innovation using these languages.
Skill Development	Enhances students' technical skills in software development, making them more competent in the field of computer science.
Professional Ethics	While not directly related to professional ethics, the syllabus indirectly promotes ethical practices by emphasizing the importance of error handling, writing efficient and concurrent programs, and following best practices in software development.
Gender	-
Human Values	Indirectly supports human values by fostering the development of software solutions that are efficient, maintainable, and user-friendly, aligning with values such as accessibility, usability, and user-centric design.
Environment & Sustainability	_
Unit II	- F# Programming Language
Local	_
Regional	_
National	Provides essential knowledge and skills which are relevant at the national level for software development, data analysis, and database management projects.
Global	As a globally recognized programming language used in various industries and research domains.

	ALL THE REPORT OF T
Employability	Highly valued in the job market, as these skills are sought after by companies and organizations involved in software development, data analysis, and database management.
Entrepreneurship	Equips with knowledge that allows to explore entrepreneurial opportunities in software development, data-centric applications, and database-driven solutions.
Skill Development	Enhances technical skills in programming, functional programming paradigms, and data manipulation, making them more competent in the field of computer science.
Professional Ethics	Indirectly promotes ethical practices by emphasizing good programming practices, data integrity, and security considerations
Gender	-
Human Values	Indirectly supports human values by fostering the development of software solutions that are efficient, maintainable, and user-friendly, aligning with values such as accessibility, usability, and user-centric design.
Environment & Sustainability	-
Unit III	Introduction to Clojure Programming
Local	-
Regional	-
National	Provides essential knowledge and skills which are relevant at the national level for software development, web application development, and data-driven solutions

development, and data-driven solutions. Global As a globally recognized programming language used in various industries and research domains. Language is highly valued in the job market. The skills are Employability sought after by companies and organizations involved in software development, web application development, and data analysis. Entrepreneurship Explores entrepreneurial opportunities in software development, web application startups, and data-centric solutions

Skill Development	Enhances technical skills, making more competent in the field of computer science
Professional Ethics	Indirectly promotes ethical practices by emphasizing good programming practices, data integrity, and security considerations.
Gender	-
Human Values	Indirectly supports human values by fostering the development of software solutionsthat are efficient, maintainable, and user-friendly, aligning with values such as accessibility, usability, and user-centric design.
Environment & Sustainability	-

Unit IV	Introduction to Kotlin Programming
Local	-
Regional	-
National	Provides essential knowledge relevant at the national level for software development, mobile app development, and general-purpose programming.
Global	Language has global applicability.
Employability	Highly valued in the job market. These skills are sought after by companies and organizations involved in software development, mobile app development, and DSL-based solutions.
Entrepreneurship	Explore entrepreneurial opportunities in software development, mobile app startups, and domain-specific language development
Skill Development	Make more competent in the field.
Professional Ethics	Indirectly promotes ethical practices by emphasizing good programming practices, code readability, and modularity.
Gender	-
Human Values	Indirectly by fostering the development of software solutions efficient, maintainable, and user-friendly.
Environment & Sustainability	_
SDG	SDG 4, SDG 8, SDG 9
NEP 2020	Quality education, equity, critical thinking, digital literacy, skill development.
POE/4 th IR	Technological advancements, digital transformation, and future-ready skills.

NEW AGE PROGRAMMING LANGUAGES LAB

Department:	Department of Computer Science and Engineering				
New Age Programming	Course Code	L-T-P	Credits		
languages Lab	ENSP465	0-0-2	1		
Type of Course:	Minor				
Pre-requisite(s)	, if any:				

Course Outcomes (CO)

COs	Statements
	Understand the fundamental principles and paradigms of modern programming languages
CO2	Develop proficiency in using the syntax, data structures, and control flow constructs of each language
CO3	Explore the unique features and strengths of each language, such as Go's focus on concurrency, F#'s functional programming capabilities, Clojure's emphasis on immutability and simplicity, and Kotlin's interoperability with existing Java code.
CO4	Apply the languages' respective development tools and best practices.
CO5	Design and implement projects that utilize the strengths of each language to tackle complex problems or tasks.

Proposed Lab Experiments

Ex.	Experiment Title	Mapped
No		CO/COs
	Practicals on GO Programming Language	
1	Write a program that takes user input and performs basic calculations (e.g., addition, subtraction, multiplication) using different data types like integers and floats. Use control structures like if statements and loops to handle different scenarios and validate user input.	CO2
2	Create a package that contains multiple functions to perform common tasks, such as string manipulation or mathematical operations. Use these functions in a separate program to	CO1

	demonstrate their functionality and reusability.	
3	Implement a program that stores a collection of elements using arrays. Perform operations like adding, removing, or updating elements	CO2
4	Define a struct Person with the following members: name, age, job and salary. Create methods associated with the struct to read data in structure and print data.	CO4
5	Develop a program that utilizes pointers to modify and manipulate data in memory. Explore concepts like referencing, dereferencing, and memory allocation/deallocation.	CO2
6	Write a program that demonstrates the use of Go routines and channels to achieve concurrent execution of tasks.	CO3
7	Create a program that handles various error scenarios and provides appropriate error messages or responses. Write unit tests for critical functions and verify their correctness using Go's testing package.	CO5
8	Mini Project : Task Manager Application in Go Create a task manager application using the Go programming language. The application should allow users to manage their tasks by adding, updating, and deleting tasks. The tasks should have attributes such as title, description, due date, and status (e.g., "in progress", "completed").	CO5
	Practicals on F# Programming Language	
9	 WAP to read marks of 4subjects and calculate the Percentage of student and find the result according to given conditions a. 60>=1st Division 60<&& 50>= 2nd Division 50<&& 40>=3rd Division 40<=fail. 	CO2
	b. WAP to accept an integer and check whether it is prime or not.	
10	 a. Write a function that takes a string as input and returns the reverse of the string. Also check if a given string is a palindrome b. Create a function that takes a string as input and performs the following transformations: i.If the string contains only alphabetic characters, convert it to uppercase. ii.If the string contains only numeric characters, convert it to an integer and double its value. iii.If the string contains a mix of alphabetic and numeric characters, return it as is. c. Design a function that validates an email address based on specific rules, such as the presence of an '@' symbol and a valid domain name. Use pattern matching to check if the input string matches the expected email format. 	CO2

25	19 WAP for print following o/p	CO2
	Practicals on Kotlin Programming Language	
	database for data storage and retrieval.	
	reading and commenting on blog posts. It should utilize a relational	
	blog posts, manage user accounts, and provide functionality for	
	Create a Blogging Platform using the Clojure programming language. The platform should allow users to create and publish	
24	Mini Project: Blogging Platform with Clojure	CO5
<u></u>	and error management, in Clojure.	
23	Implement error handling mechanisms, such as exception handling	CO4
	operations, and handle transactions.	
22	content. Write functions that interact with the database, perform CRUD	C05
-	routes, handle HTTP requests and responses, and render dynamic	
21	Develop a web application using Clojure and the Ring library. Set up	CO5
20	Write code that calls Java methods, creates Java objects, and works with Java collections and objects from Clojure.	CO4
19	Implement a program that showcases asynchronous programming using the core.async library.	CO3
	operations such as map, filter, reduce, and take.	
18	Write functions that manipulate and transform sequences using	CO2
17	Write a program that demonstrates the basic syntax and data structures in Clojure, such as lists, vectors, maps, and sets.	COI
17	Practicals on Clojure Programming Language	C01
	records.	
	information, update employee details, and delete employee	
	provide functionality to add new employees, retrieve employee	
	operations on employee records stored in the database. It should	
	should allow users to perform CRUD (Create, Read, Update, Delete)	
	Create an Employee Management System using the F# programming language and a relational database. The system	
16	Mini Project: Employee Management System	CO5
	on the databases.	
	ii.Perform basic CRUD operations (Create, Read, Update, Delete)	
	databases using appropriate database drivers or libraries.	
15	i.Establish a connection to both the relational and NoSQL	004
15	inheritance hierarchies using F#'s OOP syntax. Create a program that demonstrates the following tasks:	CO4
	programming (OOP) capabilities of F#. Define classes, objects, and	
14	Create a program that demonstrates the object-oriented	CO3
	asynchronous workflows and parallel programming constructs.	
	computationally intensive tasks concurrently using F#'s	
13	Implement a program that performs multiple I/O-bound or	CO3
	strings).Write pure functions that demonstrate the map, filter, reduce/fold operations.	

		Hello Kotlin!!!	
	20		
	experience. Calculate bonus according to following criteria		
		i.dept_code = $101 \&\& exp \le 2$ bonus = 3%	
		ii.dept_code = 102 && exp <= 4 bonus = 5%	
		iii.dept_code = 103 && exp <= 7 bonus = 8%	
	21	WAP to accept an integer and display average of digit.	
26	Write a program in Kotlin that demonstrates various aspects of		CO2
		declarations, parameters, and higher-order functions.	
	a. Implement a function that takes two integer parameters and		
	returns their sum.		
	b. Create a function that has default parameter values for an		
	optional third parameter, which is a string representing a		
	greeting. If no greeting is provided, the function should use a default greeting.c. Explore named parameters by creating a function that takes multiple parameters and demonstrate how to call the function by		
	specifying the parameter names explicitly.		
	d. Implement a variable-length argument function that takes a		
	variable number of integers and calculates their average.		
	e. Utilize a higher-order function by creating a function that		
	accepts a lambda expression as a parameter. The lambda should		
	take an integer parameter and return the square of that integer		
27	WAP to create a class Student with data members' rollno, student		C01
27	name, course and percentage and member functions to accept and		
	display the details of student.		
	,		
	a. Implement properties, methods, and constructors in classes.		
	b. Explore access modifiers and visibility scopes in Kotlin.		
28	Implement a program that demonstrates the declaration and usage		CO3
	of nullable and non-nullable variables. Utilize safe calls (?.) and the		
	Elvis op	erator (?:) to handle nullable values and provide alternative	
	values c	values or perform fallback actions.	
29	WAP to implement various collections like lists, sets, and maps in		CO2
		nd perform common operations on them. Use collection	
		is and transformations such as map, filter, and reduce to	
		ate data.	
30		ent a DSL for a domain-specific problem, showcasing Kotlin's	C05
50			005
21		ive syntax and extension functions.	<u> </u>
31	Implement a program that demonstrates the creation and usage of		CO3
		on functions in Kotlin(Choose a specific class or data type,	
		String). For example, you can create an extension function	
		ints the number of vowels in a string or reverses the string.	
32	Mini Project: Quiz App		CO5
	Build a d	quiz application that presents users with multiple-choice	
		ns on various topics. Users can select their answers, and the	
		vides instant feedback on correctness. Keep track of the	
		core and display the result at the end of the quiz questions.	
L		the same stepts, the recent at the one of the quiz quebtioner	

