

1

SCHOOL OF EDUCATION

PROGRAMME HANDBOOK

Bachelor in Computer Applications (BCA)

With

 Specialization in AI & Data Science [Honours/Honours

with Research]

Programme Code:06

(Undergraduate Programme)

(2023-24)

2

List of Contents

S.No. Particulars Page No

 Preamble 3

1

University Vision and Mission

1.1 Vision

1.2 Mission

4

2
School of Engineering and Technology (SOET)

2.1 About the School of Engineering and Technology
 4

3

School Vision and Mission

3.1 School Vision

3.2 School Mission

5

4

Introduction to Bachelor of Computer Application (BCA) Programme

4.1. Nature of Bachelor of Computer Application (BCA) Programme

4.2. Aims of the Bachelor of Computer Application (BCA)Programme

5

5
Learning Outcome-based Curriculum Framework

6

6 Graduate Attributes of Bachelor of Computer Application 6

7
Qualification Descriptors for the Bachelor of Computer Application

(BCA)Programme

8 Programme Educational Objectives (PEO)

9 Programme Outcomes (PO)

10 Programme Specific Outcomes (PSO)

11 Programme Duration

12 Career Avenues

13 Eligibility Criteria

14 Class Timings

15 Teaching-Learning Process

16 Assessment Methods

17 Minimum Acceptable Level of Academic Standards

18 Programme Structure

19 Syllabi with Course Mapping

20 Annexures (Scheme of Studies, Sample Course Handout)

3

PREAMBLE

At K.R Mangalam University, we believe in the transformative power of education. Our curriculum is

designed to equip the learners with the knowledge, skills, and competencies necessary for success in their

chosen fields and to prepare them for the challenges of the ever-evolving global landscape. The

foundation of our curriculum is rooted in a Learning Outcomes-Based Curricular Framework (LOCF)

that ensures that the programmes are designed with clear learning objectives in mind, guiding the teaching

and learning process to facilitate learner’s growth and achievement. Our goal is to foster a holistic

educational experience that not only imparts disciplinary knowledge but also nurtures critical thinking,

problem-solving abilities, communication skills, and lifelong learning

The field of Computer Science & Engineering is at the forefront of technological advancements, shaping

the world we live in today. It encompasses a diverse range of disciplines, including computer systems,

algorithms, software development, networking, artificial intelligence, and more. As technology continues

to revolutionize every aspect of our lives, the demand for skilled computer scientists and engineers is

ever-increasing.

At K R Mangalam University, BCA with a specialization in AI and Data (Honours/research honours)

program is designed to provide students with a comprehensive understanding of the foundational

principles and practical skills needed to excel in this dynamic field. During the course, students will delve

into subjects such as programming languages, data structures, probability and stastistics, operating

systems, database management, java, and software engineering etc.

At our institution, we emphasize on a hands-on approach to learning, combining theoretical knowledge

with practical application. Students will have the opportunity to work on real-world projects, engage in

laboratory experiments, and participate in internships to gain valuable industry experience. We believe

that this experiential learning will not only strengthen technical proficiency but also foster critical

thinking, problem-solving abilities, and teamwork skills.

Furthermore, our curriculum is designed to keep pace with the rapidly evolving nature of the computer

science and engineering field. We strive to incorporate the latest trends and emerging technologies,

ensuring that our graduates are equipped with the knowledge and adaptability necessary to thrive in a

competitive industry.

As technology continues to reshape our world, computer scientists and engineers have a pivotal role to

play in driving innovation and creating solutions to complex challenges. The BCA with specialization in

AI and Data Science program aims to nurture and empower the next generation of professionals who will

shape the future of technology.

We are committed to providing a supportive and inclusive learning environment, where students can

explore their passions, develop their skills, and unlock their full potential. Through dedicated faculty,

state-of-the-art infrastructure, and a vibrant community, we strive to create an enriching educational

experience that prepares students for successful careers in the field of Computer Science & Engineering.

We invite aspiring students to embark on this exciting journey with us, as together, we explore the

limitless possibilities of computer science and engineering and make a positive impact on the world.

Furthermore, our curriculum is designed to keep pace with the rapidly evolving nature of the computer

science and engineering field. We strive to incorporate the latest trends and emerging technologies,

ensuring that our graduates are equipped with the knowledge and adaptability necessary to thrive in a

competitive industry.

4

The curriculum is aligned with the needs of the industry and the job market and is flexible enough to

adapt to changing trends and technologies. It integrates cross-cutting issues relevant to professional

ethics, gender, human values, environment and Sustainable Development Goals (SDGs). All academic

programmes offered by the University focus on employability, entrepreneurship and skill development

and their course syllabi are adequately revised to incorporate contemporary requirements based on

feedback received from students, alumni, faculty, parents, employers, industry and academic experts.

We are committed to implementing the National Education Policy (NEP) 2020 in its entirety, and to

creating a more inclusive, holistic, and relevant education system that will prepare our students for the

challenges of the 21st century. With the focus on Outcome-Based Education (OBE), our university is

continuously evolving an innovative, flexible, and multidisciplinary curriculum, allowing students to

explore a creative combination of credit-based courses in variegated disciplines along with value-addition

courses, Indian Knowledge Systems, vocational courses, projects in community engagement and service,

value education, environmental education, and acquiring skill sets, thereby designing their own learning

trajectory.

The Bachelor of Computer Application (BCA) in AI and Data Science program at K.R Mangalam

University is a comprehensive four years curriculum built upon the LOCF to prepare aspiring educators

to acquire the graduate attributes for a successful career in teaching. The programme consists of a

combination of core courses, elective courses, and field experiences. This Programme Handbook serves

as a roadmap for students and provides detailed information about the structure, learning outcomes,

courses offered, and assessment methods within the BCA programme. We encourage all students to

utilize this handbook as a valuable resource throughout their academic journey.

5

1. UNIVERSITY VISION AND MISSION

K.R. Mangalam University is the fastest-growing higher education institute in Gurugram, India. Since its

inception in 2013, the University has been striving to fulfil its prime objective of transforming young

lives through ground-breaking pedagogy, global collaborations, and world-class infrastructure.

Recognized for its virtues of quality, equality, inclusiveness, sustainability, and professional ethics,

KRMU is synonymous with academic excellence and innovation.

1.1. VISION

K.R Mangalam University aspires to become an internationally recognized institution of higher learning

through excellence in inter-disciplinary education, research and innovation, preparing socially

responsible life-long learners contributing to nation-building.

1.2 MISSION

1. Foster employability and entrepreneurship through a futuristic curriculum and progressive pedagogy

with cutting-edge technology.

2. Instil the notion of lifelong learning through stimulating research, outcomes-based education, and

innovative thinking.

3. Integrate global needs and expectations through collaborative programs with premier universities,

research centers, industries, and professional bodies.

4. Enhance leadership qualities among the youth by having an understanding of ethical values and

environmental realities.

2. SCHOOL OF ENGINEERING AND TECHNOLOGY (SOET)

2.1 About the School of Engineering and Technology

Since 2016, the School of Engineering and Technology (SOET) strives to foster and maintain a

creative environment with a deep commitment to inculcate excellence in academics and contribute

towards students’ development. The school brings an attitudinal change in prospective teachers for

their advancement into accountable agents of change in society, who are sensitive to local, national,

and global concerns and issues vital for human survival, progress, and development. The School of

Engineering and Technology offers diverse programs of studies that are designed to develop an

insight into the nuances of teaching and learning in terms of theoretical perspectives, and pedagogical

techniques that facilitate the student’s understanding of the social, emotional, and intellectual

ecosystem.

3. SCHOOL VISION AND MISSION

3.1 School Vision

To create, disseminate, and apply knowledge in science and technology to meet the higher education

needs of India and the global society, to serve as an institutional model of excellence in scientific and

technical education characterized by the integration of teaching, research, and innovation. School of

Education aspires to become an internationally recognized department through excellence in the

6

interdisciplinary arena of education, research, and innovation, preparing socially responsible lifelong

learners contributing to nation-building.

3.2 School Mission

 To create an environment where teaching and learning are prioritized, with all support activities

being held accountable for their success.

 To strengthen the institution's position as the school of choice for students across the State &

Nation.

 To promote creative, immersive, and lifelong learning skills while addressing societal concerns.

 To promote co- and extra-curricular activities for the overall personality development of the

students.

 To promote and undertake all-inclusive research and development activities.

Enhance industrial, institutional, national, and international partnerships for symbiotic

relationships.

 To help students acquire and develop knowledge, skills, and leadership qualities of the 21st

Century and beyond.

4. INTRODUCTION TO BACHELOR OF COMPUTER APPLICATION IN AI AND DS

TheBachelor in Computer Applications (BCA) with Specialization in AI & Data Science

[Honours/Honours with Research] is a Four-year program brought in association with Samatrix

and IBM, BCA in AI & Data Science focuses on the deepest insights into the science of Big Data

Analytics and how Artificial Intelligence is driving the growth. Students will receive both

theoretical and practical knowledge in subjects like Machine learning, neural network, Web

programming, net frame working, Data Warehousing, Data Mining, Mobile Application

Development & handling data.

Note** Students who wish to exit after the first two semesters will undergo a 4-credit work-based

learning/internship during the summer term in order to get a UG Certificate.

Note: Students on exit after one year will earn Undergraduate Certificate Program in Computer

Applications. Students needs to earn minimum of 40 credits .

7

4.1. Program Highlights

Building exceptional understanding and expertise to turn ideas into solutions, the Bachelor’s in

Computer Applications aims at ensuring rigorous pragmatic training and hands-on experience in

working on advanced new-age systems and technologies.

 The curriculum is specifically designed in consultation with industry insiders and experts

 Realistic hands-on training for absolute excellence

 Globally accredited certification upon successful completion of the BCA with a Specialization in

AI and data science program

 Consistent mentoring by acclaimed academicians and top industry experts

 Highly sophisticated laboratories equipped with cutting-edge tech apparatus

 Ensuring absolute preparedness for successful career progression

4.2. Aims of Bachelor of Computer Application (BCA in AI and DS) Programme

The Bachelor's program in Computer Application with a specialization in AI and Data Science is

aligned with the needs and demands of the industry and the current trends in technology. Some

key aims of the program are Strong Foundation in Computer Science, Artificial Intelligence

fundamentals and Data Science Techniques, Practical Experience, and Hands-on experience that

is crucial for preparing students to work in real-world AI and data science.

5. LEARNING OUTCOME-BASED CURRICULUM FRAMEWORK IN BACHELOR OF

COMPUTER APPLICATION IN ARTIFICIAL INTELLIGENCE AND DATA SCIENCE

The Learning Outcomes-based Curriculum Framework (LOCF) for the BCA in AI and DS programme

provides a framework for the student-teachers to develop a range of knowledge, skills, attitudes, and

values that teachers should possess to meet the educational needs of diverse learners, create an engaging

and inclusive learning environment and contribute to the overall improvement of the education system.

The curriculum has clearly articulated learning outcomes that describe what students should be able to

know, understand, and demonstrate by the end of the programme. It integrates theoretical knowledge

with practical application and allows for flexibility and adaptation to meet the needs of individual student-

teacher and changing educational contexts. It offers elective courses or specialization options, enabling

student-teachers to pursue their areas of interest or specialization within the broader field of engineering

and its applications. The curriculum includes various assessment methods and tools to measure the

attainment of learning outcomes.

6. GRADUATE ATTRIBUTES OF BACHELOR OF COMPUTER APPLICATION IN AI AND

DS

Graduate attributes are the qualities, skills, knowledge, and attitudes that students are expected to develop

and possess upon completion of a Bachelor of Computer Application programme. The graduate attributes

of a Bachelor of Computer Application (BCA) program with a specialization in AI and Data Science are

expected to develop students specifically for careers in these cutting-edge fields. With a deep

understanding of the principles, methodologies, and techniques of AI and Data Science. They should be

proficient in machine learning algorithms, statistical analysis, data mining, natural language processing,

and computer vision.

8

GA1. Programming Proficiency: Graduates should be highly skilled in programming languages

commonly used in AI and Data Science, such as Python, Java, and other relevant languages. They should

be able to implement and optimize AI models and data processing pipelines.

GA2. Data Handling and Pre-processing: Graduates should be adept at collecting, cleaning, and pre-

processing large datasets. They should know how to handle real-world data and understand the

importance of data quality and integrity.

GA3. Data Visualization: Graduates should be capable of visualizing data effectively to communicate

insights and findings to various stakeholders. They should be familiar with data visualization libraries

and tools.

GA4. Problem-Solving and Critical Thinking: Graduates should possess strong problem-solving and

critical thinking skills to address complex AI and data science challenges. They should be able to design

and develop innovative solutions to real-world problems.

GA5. Ethical AI and Data Usage: Graduates should be aware of the ethical considerations and legal

implications of using AI and handling data. They should understand the importance of privacy, fairness,

transparency, and bias mitigation in AI systems.

GA6. Research and Experimentation: Graduates should be trained to conduct research and experiments

in AI and Data Science. They should be able to analyze experimental results and draw meaningful

conclusions.

GA7. Industry-Relevant Projects: The program should provide opportunities for students to work on

real-world AI and Data Science projects, either through internships or industry collaborations. This

practical experience will enhance their employability.

GA8. Teamwork and Collaboration: Graduates should be adept at working in multidisciplinary teams,

as AI and Data Science projects often involve collaboration with domain experts and other professionals.

GA9. Lifelong Learning: The field of AI and Data Science is continuously evolving. Graduates should

be equipped with a mind set for lifelong learning to stay updated with the latest advancements and

technologies.

GA10. Communication Skills: Graduates should be able to communicate complex technical concepts

to both technical and non-technical audiences effectively. Strong communication skills are essential for

presenting findings and project outcomes.

GA11. Domain Knowledge: Depending on their specific interests and electives, graduates may have

domain expertise in areas like computer vision, natural language processing, robotics, healthcare

analytics, finance, etc.

7. QUALIFICATION DESCRIPTORS FOR THE BACHELOR OF COMPUTER

APPLICATION (BCA) PROGRAMME

The students who complete two years of full-time study will be awarded a Bachelor of Computer

Application in AI and DS (BCA-AI&DS) degree. Qualification descriptors for a Bachelor of Computer

Application in AI and DS program outline the knowledge, skills, and competencies that students are

expected to acquire upon completion of the programme. These descriptors serve as benchmarks for

assessing the readiness of graduates to enter the engineering application profession and may include:

1. demonstrate a comprehensive understanding of the theories, principles, and concepts related to

engineering.

9

2. proficient in developing software applications for various platforms, utilizing industry-standard tools

and methodologies.

3. will demonstrate the ability to analyze complex problems, identify requirements, and develop

effective solutions using appropriate computational and algorithmic techniques.

4. skilled in data handling, including data storage, retrieval, manipulation, and analysis.

5. working knowledge of web development technologies, including HTML, CSS, JavaScript, and

server-side scripting languages.

6. importance of information security and be able to apply security measures to protect data and systems

from potential threats and vulnerabilities.

7. will possess effective written and oral communication skills, enabling them to convey technical

concepts and collaborate with team members and stakeholders.

8. able to work effectively in multidisciplinary teams, contributing their expertise to achieve project

goals and objectives.

9. will adhere to high ethical standards in their professional practice, respecting intellectual property

rights, privacy, and confidentiality of data.

10. students may have specific knowledge and skills in areas such as artificial intelligence, data science,

mobile application development, depending on the elective subjects.

8. PROGRAMME EDUCATIONAL OBJECTIVES (PEO)

 PEO1 - Develop expertise in AI and Data Science through research-oriented learning and gain

the ability to apply advanced concepts in practical settings.

 PEO2 - Pursue a successful career in AI and Data Science by applying knowledge and skills to

industry-related problems or further academic pursuits.

 PEO3 -Engage in lifelong learning and develop innovative solutions in the domain of AI and

Data Science using research and problem-solving skills to contribute to the sustainable

development of society.

 PEO4 - Demonstrate leadership, teamwork, management, ethical and social responsibility, and

communication skills with a commitment to lifelong learning.

PROGRAMME OUTCOMES (PO)

Engineering Graduates will be able to:

 PO1. Fundamental Knowledge: Demonstrate a strong foundation in computer science

principles, mathematics, and fundamental concepts necessary for the understanding and

application of computing.

 PO2. Problem Solving: Apply analytical and critical thinking skills to identify, analyze, and

solve complex computing problems using appropriate tools, algorithms, and programming

languages.

 PO3. Software Development: Design, develop, and implement software solutions by applying

software engineering principles, programming languages, and best practices.

 PO4. Database Management: Design, implement, and manage databases, ensuring efficient

data storage, retrieval, and manipulation using database management systems.

10

 PO5. Web Technology: Develop web-based applications and utilize relevant technologies,

frameworks, and tools for effective web development and deployment.

 PO6. Network and Security: Understand network protocols, security mechanisms, and

implement secure network configurations to ensure data integrity, confidentiality, and

availability.

 PO7. Information Management: Gather, organize, and analyze information from various

sources using appropriate technologies and tools for effective decision-making and problem-

solving.

 PO8. Team Collaboration: Collaborate effectively as a member or leader in multidisciplinary

teams, demonstrating effective communication, interpersonal skills, and adaptability to work in

diverse professional environments.

 PO9. Ethical and Professional Practices: Adhere to ethical, legal, and professional standards

in computing, recognizing the social and ethical responsibilities associated with the use of

technology.

 PO10. Lifelong Learning: Recognize the need for continuous learning, keep up-to-date with

emerging trends in technology, and engage in self-directed learning to adapt to evolving

computing paradigms.

 PO11. Industry Relevance: Apply industry-relevant practices, tools, and technologies to

bridge the gap between academia and industry, ensuring the ability to meet industry

requirements and contribute effectively to the computing field.

 PO12. Entrepreneurial Mind set: Identify opportunities, demonstrate innovation, and apply

entrepreneurial thinking to create value, solve problems, and contribute to the growth of

businesses and society.

9. PROGRAMME SPECIFIC OUTCOMES (PSO)

PSO1 - Demonstrate a strong foundation in the theoretical concepts and practical applications of AI

and Data Science, including machine learning, data analysis, and data visualization.

PSO2 - Develop critical thinking, problem-solving, and research skills through hands-on projects,

independent study, and engagement in research activities related to AI and Data Science.

PSO3 - Apply knowledge and skills to solve industry-related problems through internships, capstone

projects, and experiential learning opportunities in collaboration with industry partners.

PSO4 - Demonstrate leadership, teamwork, management, ethical and social responsibility, and

communication skills by engaging in team-based projects, leadership activities, and community

outreach initiatives related to AI and Data Science.

MAPPING OF SCHOOL VISION, MISSION WITH PROGRAMME OUTCOMES (PO) AND

PROGRAMME SPECIFIC OUTCOMES(PSO)

School Vision School

Mission

Programme Outcomes

(PO)

Programme Specific Outcomes

(PSO)

11

To create, disseminate, and

apply knowledge in science and

technology to meet the higher

education needs of India and the

global society, to serve as an

institutional model of excellence

in scientific and technical

education characterized by the

integration of teaching,

research, and innovation. School

of Education aspires to become

an internationally recognized

department through excellence

in the interdisciplinary arena of

education, research, and

innovation, preparing socially

responsible lifelong learners

contributing to nation-building.

M 1 PO1, PO2 PSO 1, PSO 2

M 2 PO 3

M 3 PO 4, PO 5, PO 6, PO 7 PSO 6

M 4 PO 8, PO 9

PO 10,

PSO 4,

M 5

M 6 PO 11, PO 12 PSO 3, PSO 4

M 7

M 8

10. PROGRAMME DURATION

Name of the Programme
 Duration

Bachelor of Computer Application with

specialization in AI and DS

[honours/honours research]

4Years (8 Semesters)

12. CAREER AVENUES

Students who graduate from BCA with a specialization in Artificial Intelligence and Data Science will

have the opportunity to go into various job profiles such as

 Software Engineer

 Business Analyst

 Data Scientist

 Digital Marketer

 Cyber Security Experts

 Go for MCA

 Software Developer

12

 Block chain Professional

13. ELIGIBILITY CRITERIA

1. Candidate must have passed the 10+2 examination or equivalent in any stream with mathematics/IP

and CS as one subject with minimum 50% aggregate marks.

2. The reservation and relaxation for SC/ST/OBC/PwD and other categories shall be as per the rules of

the Central Government/ State Government, whichever is applicable.

14. CLASS TIMINGS

The class will be held from Monday to Friday from 9.10 A.M. to 4.00 P.M.

15. TEACHING- LEARNING PROCESS

The teaching and pedagogy at the School of Engineering and Technology focus on preparing students to

become skilled professionals in various fields of engineering.

1. Lectures

Many courses begin with lectures in which professors introduce important concepts, theories, and

frameworks to the class. In order to improve comprehension and application, lectures are frequently

augmented with visual aids, real-world examples, and case studies.

2. Professional Development

In order to prepare students for the workforce, the School of Engineering and Technology frequently

incorporates professional development events. Including workshops, seminars, guest lectures, and

industrial visits. Students have the chance to meet with professionals in the field and learn about current

industry trends and practices.

3. Guest Speakers and Industry Experts

Students are exposed to real-world experiences and ideas from professionals by inviting guest lecturers

and industry experts to provide lectures or take part in panel discussions. This offers students insights

into the industry, chances to network, and practical knowledge outside of the classroom.

4. Theory and Practice Integration

Engineering and technology programmes work to combine theoretical ideas with real-world applications.

Fundamental ideas and theories are taught to students, who subsequently use them practically. With this

method, teachers can be sure that students not only comprehend the underlying theory but also acquire

the abilities necessary to use their newfound knowledge in practical ways.

16. ASSESSMENT METHODS

Continuous assessment is employed to monitor student progress and provide feedback for improvement.

Assessments include examinations, project evaluations, presentations, and practical demonstrations.

Constructive feedback from instructors allows students to identify areas of strength and areas that require

further development, facilitating their overall growth. Formative assessments such as class discussions,

group activities, projects, quizzes, assignments, and presentations are conducted throughout the teaching-

learning process, enabling teachers to monitor student progress continuously. Teachers provide oral or

written feedback, engage in one-on-one discussions, and use rubrics and checklists to communicate

student performance.

7. MINIMUM ACCEPTABLE LEVEL OF ACADEMIC STANDARDS

The minimum acceptable level of achievement that a student must demonstrate to be eligible for the

award of academic credit or qualification is the minimum acceptable level of academic standards. The

Letter Grades and Grade Points which shall be used to reflect the outcome of the assessment process of

the student’s performance is indicated in Table 1.

Table 1

Marks Range (%) Letter Grade Grade Points Description of the Grade

>90 O 10.0 Outstanding

80-90 A+ 9.0 Excellent

70-80 A 8.0 Very Good

60-70 B+ 7.0 Good

55-60 B 6.0 Above Average

50-55 C 5.5 Average

40-50 P 5.0 Pass

<40 F 0 Fail

- AB 0 Absent

% marks≥ 50 S - Satisfactory

% marks <50 US - Unsatisfactory

 W 0 Withdrawal

18. PROGRAMME STRUCTURE

THREE-YEAR BCA in AI & DS PROGRAMME AT A GLANCE

19 Scheme of Studies for BCA (AI&DS) Programme

 Semester

I

Semester

II

Semester

III

Semester

IV

Semester

V

Semester

VI

Total

Course

s

9 8 10 10 10 9 56

Credits 24 21 26 25 26 23 169

SO

ET
SCHEME OF STUDIES (2023-26) BCA

YEA

R

ODD SEMESTER (I)

EVEN SEMESTER (II)

S.

N

O

COUR

SE

CODE

COURS

E TITLE

Cours

e Type
L T P C

S.

N

O

COUR

SE

CODE

COURSE

TITLE

Cours

e Type
L T P C

F
IR

S
T

1
ENCA1

01

Web

Designin

g Using

HTML,C

SS, Java

Script &

PHP

Major 4 0 - 4 1
ENCA1

02

Fundamentals

of Object

Oriented

Programming

using C++

Major

3 1 - 4

2
ENMA

103

Basics of

Mathemat

ics

Major

3 1 - 4 2
ENCA1

04

Discrete

Structure

Major

3 1 - 4

3
ENSP1

01

Clean

Coding

with

Python

Minor

4 0 0 4 3
ENSP1

02

Overview of

AI, Data

Science,

Ethics and

Foundation of

Data Analysis

Minor

4 0 0 4

4
ENCA1

03

Essentials

of

Software

Engineeri

ng

Major

3 1 0 4 4
SEC03

9

R

Programming

for Data

Science and

Data

Analytics Lab

SEC

0 0 4 2

5
 ENCA

151

Web

Design

Lab

Major - - 2 1 5
ENCA1

52

Object

Oriented

Programming

Lab using

C++

Major - - 2 1

6
ENSP1

51

Clean

Coding

with

Python

Lab

Minor 0 0 2 1 6
ENSP1

52

Overview of

AI, Data

Science,

Ethics and

Foundation of

Data Analysis

Lab

Minor 0 0 2 1

7

Environm

ental

Studies &

Disaster

Managem

ent

(Online

Moodle)

VAC I 2 - -
2

7

Open Elective

-1

Open

Electiv

e

3 - - 3

8
ENCA1

53

Essentials

of

Software

Engineeri

ng Lab

Major 0 0 1 2 8
ENCA2

02

Extension

Activities(co

mmunity

engagement

service)

VAC

II
2 - - 2

9
SEC03

7

Data

Visualizat

ion using

Power BI

SEC 0 0 4 2

 TOTAL
1

6
2 9

2

4
 TOTAL

1

5
2 8

2

1

SO

E

T

SCHEME OF STUDIES (2023-26) BCA

YE

AR

ODD SEMESTER (I)

EVEN SEMESTER (II)

S.

NO

COUR

SE

CODE

COURS

E TITLE

Cours

e Type
L T P C

S.

N

O

COUR

SE

CODE

COURSE

TITLE

Cours

e Type
L T P C

S
E

C
O

N
D

1
ENCA2

01

Fundame

ntals of

Data

Structures

Major 3 1 0 4 1
ENCA2

02

Fundamentals

of Operating

Systems

Major

4 - - 4

2
ENCA2

03

Fundame

ntals of

Java

Program

ming

Major

3 1 0 4 2
ENCA2

04

Fundamentals

of Database

Management

Systems

Major

3 1 0 4

3
ENSP2

05

Probabilis

tic

Modellin

g and

Reasonin

g

Minor

0 0 4 2 3
ENSP2

12

Foundation of

Machine

Learning

Minor

4 0 0 4

4
ENCA2

05

Fundame

ntals of

Artificial

Intelligen

ce

Major

3 1 0 4 4
ENCA2

52

Fundamentals

of Operating

System Lab

Major

- - 2 1

5
ENCA2

51

Fundame

ntals of

Java

Program

ming Lab

Major 0 0 2 1 5
ENSP2

62

Foundation of

Machine

Learning Lab

Minor 0 0 2 1

6
ENCA2

53

Fundame

ntals of

Data

Structures

Lab

Major 0 0 2 1 6
ENCS2

54

Fundamentals

of Database

Management

Systems Lab

Major 0 0 2 1

7

Open

Elective -

II

Open

Electiv

e

3 0 0
3

7

Open Elective

-III

Open

Electiv

e

3 0 0 3

8 VAC III VAC 2 0 0 2 8
AEC01

2

Life Skills for

Professionals-

II

AEC 3 0 0 3

9
AEC01

1

Life

Skills for

Professio

nals-I

AEC 3 0 0 3 9 VAC IV VAC 2 0 0 2

10

Summer

Internship

/Project

INT 0 0 0 2 10
ENSI25

2
Minor

project-I
 0 0 0 2

 TOTAL
1

7
3 8

2

6
 TOTAL

1

9
1 6

2

5

SO

ET
SCHEME OF STUDIES (2023-26) BCA

YEA

R

ODD SEMESTER (I)

EVEN SEMESTER (II)

S.

N

O

COUR

SE

CODE

COURS

E TITLE

Cours

e Type
L T P C

S.

N

O

COUR

SE

CODE

COURSE

TITLE

Cours

e Type
L T P C

T
H

IR
D

1
ENCA3

01

Design

and

Analysis

of

Algorith

ms

Major 3 1 0 4 1
Department

Elective I

Minor

4 - - 4

2
ENCA3

03

Theory of

Automata

Major

3 1 0 4 2
ENCA3

02

Introduction

to Computer

Organization

&

Architecture

Major

3 1 - 4

3
ENSP3

02

Introducti

on to

Natural

Language

Processin

g

Minor

4 0 0 4 3
ENCA3

04

Introduction

to Computer

Networks

Major

4 - - 4

4
ENSP3

09

Big Data

Analysis

with

Scala and

Spark

Minor

4 - - 4 4
ENCA3

06

Basics of

Neural

Networks and

Deep

Learning

Major

4 - - 4

5
SEC04

0

Data

Science -

Tools and

Techniqu

es Lab

SEC 0 0 4 2 5
Department

Elective I Lab
Minor - - 2 1

6
AEC01

3

Life

Skills for

Professio

nals-III

AEC 3 0 0 3 6
ENCA3

52

Computer

Networks Lab
Major - - 2 1

7
ENCA3

51

Design &

Analysis

of

Algorith

ms Lab

Major 0 0 2
1

7

ENCA3

54

Neural

Networks and

Deep

Learning Lab

Major - - 2 1

8
ENSP3

52

Natural

Language

Processin

g Lab

Minor 0 0 2 1 8
SEC03

6

Competitive

Coding
SEC - - 4 2

9
ENSP3

59

Big Data

Analysis

with

Scala and

Spark

Lab

Minor - - 2 1 9
ENSI35

2

Minor

Project-II
Proj - - - 2

10

Summer

Internship

/Project

INT 0 0 0 2

 TOTAL
1

7
2

1

0

2

6
 TOTAL

1

5
1

1

0

2

3

SEMESTER-WISE STRUCTURE FOR BCA in AI & DS PROGRAMME

YEA

R

ODD SEMESTER (I)

S.

N

O

COUR

SE

CODE

COURSE TITLE
Course

Type
L T P C

F
IR

S
T

1
ENCA1

01

Web Designing Using

HTML,CSS, Java

Script & PHP

Major 4 0 - 4

2
ENMA

103

Basics of

Mathematics

Major
3 1 - 4

3
ENSP1

01

Clean Coding with

Python

Minor
4 0 0 4

4
ENCA1

03

Essentials of Software

Engineering

Major
3 1 0 4

5
 ENCA

151
Web Design Lab Major - - 2 1

6
ENSP1

51

Clean Coding with

Python Lab
Minor 0 0 2 1

7

Environmental

Studies & Disaster

Management (Online

Moodle)

VAC I 2 - -
2

8
ENCA1

53

Essentials of Software

Engineering Lab
Major 0 0 1 2

9
SEC03

7

Data Visualization

using Power BI
SEC 0 0 4 2

 TOTAL 16 2 9 24

Department:
Department of Computer Science and Engineering

Course Name:

Web Designing Using

HTML,CSS, Java Script

& PHP

Course Code ENCA101 L-T-P Credits

 3-0-2 4

Type of Course: Major

Pre-requisite(s), if any: Basic computer skills and familiarity with HTML and CSS are

recommended pre-requisites for this syllabus.

COURSE OBJECTIVES

The course will enable the student-teacher to:

COs Statements

CO1 Understand: Demonstrate a clear understanding of the fundamental concepts and

principles of web designing using HTML, CSS, JavaScript, and PHP.

CO2 Express: Express ideas and concepts effectively through the implementation of HTML,

CSS, JavaScript, and PHP in web design projects.

CO3 Determine appropriate strategies and techniques to solve web design problems using

HTML, CSS, JavaScript, and PHP.

CO4
Identify: Identify and analyze the different components and elements required for

effective web design, including HTML structure, CSS styles, JavaScript functions, and

PHP scripts.

CO5
Articulate: Articulate the purpose, functionality, and interaction of various web design

elements, including HTML tags, CSS selectors, JavaScript events, and PHP database

operations.

CO6 Design: Design and develop visually appealing and responsive web pages using HTML,

CSS, JavaScript, and PHP, considering user experience and accessibility.

CATALOG DESCRIPTION

Brief Syllabus:

The syllabus for "Web Designing Using HTML, CSS, JavaScript, and PHP" covers the essential

elements of web design and development. It starts with an introduction to HTML, teaching students

about the structure of HTML documents, tags, and text formatting. CSS is then introduced, covering

selectors, styling text and backgrounds, and working with colors and fonts. The course progresses

to JavaScript, where students learn about variables, data types, conditional statements, loops,

functions, and events. They also gain knowledge of DOM manipulation, allowing them to interact

with HTML elements dynamically. The next unit focuses on PHP, teaching students server-side

scripting. They learn about PHP syntax, variables, handling forms and user input, working with files

and directories, and integrating databases using MySQL. The final unit involves a web design

project. Students plan and design a website, implementing their skills in HTML, CSS, JavaScript,

and PHP. They learn about integrating front-end and back-end development, testing, debugging, and

deploying the project to a hosting server. Overall, this syllabus equips students with the necessary

skills to create visually appealing and interactive websites using HTML, CSS, JavaScript, and PHP.

UNIT WISE DETAILS

Unit Number: 1
Introduction to HTML (Hypertext Markup

Language) and CSS
No. of hours: 4

Content Summary:

Introduction to HTML (Hypertext Markup Language), Basic structure of HTML documents

HTML tags and elements , Text formatting and links , Images, Introduction to CSS (Cascading

Style Sheets), Internal, External and Embedded CSS, selectors Styling text and backgrounds

Working with colors and fonts.

Unit Number: 2 Advanced HTML and CSS No. of hours: 8

Content Summary:

HTML forms and input elements, HTML tables, CSS layout techniques, Box model and positioning

Responsive design principles, CSS transitions and animations, Working with media (images, audio,

and video).

Unit Number: 3 JavaScript Fundamentals No. of hours: 8

Content Summary:

Introduction to JavaScript, JavaScript variables and data types, Java operators, Conditional

statements and loops, JS Functions and events, JavaScript Arrays, DOM, Data Validation using JS,

Accessing and modifying HTML elements.

Unit Number: 4 Dynamic Web Development with PHP No. of hours: 8

Content Summary:

Introduction to server-side scripting, PHP syntax and variables, PHP data types, working with forms

and user input, Handling files and directories, working with databases (MySQL), Database

connections and queries, Inserting, updating, and retrieving data.

*Self-Learning Components:

1. Codecademy Web Development Skill Path: https://www.codecademy.com/learn/paths/web-

development

2. FreeCodeCamp Responsive Web Design Certification:

https://www.freecodecamp.org/learn/responsive-web-design/

3. Codecademy Web Development Skill Path: https://www.codecademy.com/learn/paths/web-

development

Reference Books:

1. JavaScript and JQuery: Interactive Front-End Web Development" by Jon Duckett

Assessment & Evaluation

Components Assignment Mid Term

Examination

Attendance End Term

Examinatio

n

Weightage (%) 20 20 10 50

Programme and Course Mapping

Course

Code

and

Title

Course

outcome

PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

E
N

C
A

1
0

1
 /
W

eb

D
es

ig
n

in
g
 U

si
n

g

H
T

M
L

,C
S

S
,

J
a
v
a

S
cr

ip
t

&

P
H

P

CO1 3 2 3 2 2 2 - - 1 1 1 1 3 2 3 2

CO2 3 2 3 2 2 1 1 1 1 2 1 2 3 3 3 2

CO3 3 3 3 3 3 2 2 1 2 1 2 1 3 3 3 3

CO4 2 2 3 3 3 1 - - 1 2 1 1 3 3 3 2

CO5 3 2 3 3 3 2 - 1 2 1 1 1 3 3 3 3

CO6 3 3 2 3 3 2 1 1 2 1 1 1 3 3 3 2

 Department:
Department of Computer Science and Engineering

Course Name:

Web Designing Using

HTML,CSS, Java Script

& PHP Lab

Course Code ENCA151 L-T-P Credits

 0-0-2 1

Type of Course: Major

Pre-requisite(s), if any: Basic computer skills and familiarity with HTML and CSS are

recommended pre-requisites for this syllabus.

Course Outcomes

COs Proficiency in HTML, CSS, JavaScript, and PHP.

CO 1 Ability to Design and Implement Interactive Web Elements.

CO 2 Problem-solving and Critical Thinking Skills.

CO 3 Application of Web Development Concepts

CO 4 Effective Collaboration and Communication Skills.

Ex. No Experiment Title Mapped CO/COs

1 Creating a Basic HTML Page: Learn to create a simple HTML

page with headings, paragraphs, and basic elements.

CO 2

2 CSS styling sheets: Create a web page to differentiate the use of

internal, external and Embedded Styling sheets.

CO 1

3 Styling with CSS: Apply CSS styles to enhance the appearance of

HTML elements, such as fonts, colors, and backgrounds.

CO 1

4 Designing a Web Page: Working with Frames. CO 1

5 Designing a Web Page: Working with Images and Hyperlinks. CO 1, CO 3

6 Create HTML table: Create a Table using HTML and CSS

properties like border, outline, and margin.

CO 1, CO 3

7 Create Lists: Create a webpage using lists in HTML and CSS

properties.

CO 1, CO 3

8 Responsive Web Design: Design a responsive webpage that adjusts

its layout based on different screen sizes using media queries.

CO 1, CO 3

9 Image Gallery: Develop an image gallery using HTML and CSS,

with features like thumbnails and light box effects.

CO 1

10 Create Form: Design a form in a web page using HTML & CSS

properties.

CO 1, CO 3

11 Form Validation: Use JavaScript to validate form inputs, such as

required fields, email format, and password strength.

CO 1, CO 3

12 Implementing data types, variables, expression, and operator in

JavaScript.

CO 1, CO 3

13 Use of conditional statements & looping statements in Java Script. CO 1

14 Write a JavaScript Program to check whether the given positive

number is a multiple of 3.

CO 1, CO 3

15 JavaScript Operators: Write a JavaScript program to calculate

multiplication and division of two numbers.

CO 3,CO 4

16 JavaScript Arrays: Write a JavaScript program to compute the sum

of elements of given array of integers.

CO 3,CO 4

17 Dropdown Menus: Design dropdown menus using HTML, CSS,

and JavaScript to provide a hierarchical navigation structure.

CO 1, CO 3

18 Introduction to PHP: Learn the basics of PHP and create a simple

PHP script to display dynamic content on a webpage.

CO 3,CO 4

19 Database Connectivity: Connect PHP with a MySQL database to

retrieve and display data on a webpage.

CO 3,CO 4

20 User Registration and Login System: Implement a user registration

and login system using PHP and MySQL.

CO 3,CO 4

21 Addition Operations: Perform addition operations using PHP and

MySQL to manage database records.

CO 3,CO 4

22 Retrieve/View Operations: Perform Retrieve/View Operations

using PHP and MySQL to manage database records.

CO 1, CO 3

23 Delete Operation: Perform delete operations using PHP and

MySQL to manage database records.

CO 3,CO 4

24 Update Operation: Perform update operations using PHP and

MySQL to manage database records.

CO 3,CO 4

25 Content Management System (CMS): Build a simple CMS using

PHP and MySQL to manage website content dynamically.

CO 3,CO 4

26 Website Deployment: Learn how to deploy a web project on a

server, configure domain and hosting settings, and make the

website live on the internet.

CO 3, CO 4

Department

Department of

Computer Science and

Engineering

Course

Name: Clean

Coding with

Python

Course Code L-T-P Credits

ENSP101 4-0-0 4

Type of Course: Minor

Pre-requisite(s), if

any: NA

NA

Course Outcomes

CO1
Understand Python syntax and semantics and be fluent in the use of 

Python flow control and Functions.

CO2
Implement Python programs using core data structures like Lists, Dictionaries, and

use of Strings Handling methods. 

CO3 Apply Machine Learning Algorithms to real-world problems. 

CO4 Interpretation of Data, Data Handling and Use Cases.

Brief Syllabus:

Python is a language with a simple syntax and a powerful set of libraries. It is an interpreted language,

with a rich programming environment, including a robust debugger and profiler. While it is easy for

beginners to learn, it is widely used in many scientific areas for data exploration. This course is an

introduction to the Python programming language for students without prior programming experience.

This course covers data types, control flow, object-oriented programming, and graphical user interface-

driven applications. The examples and problems used in this course are drawn from diverse areas such

as text processing, simple graphics creation and image manipulation, HTML and web programming,

and genomics.

UNIT WISE DETAILS

Introduction Clean Coding

Unit Number: 1

Content Summary:

What is Bad Code? What is Clean Code? Purpose of Clean Code, Thought of experienced

programmers, Meaningful Names, Intention Revealing Names, Make Meaningful Distinctions, Use

Pronounceable Names , Avoid Encodings and Mental Mappings , Difference between smart and

professional programmer , Class and Method Names, Function Size Matters, Blocks and Indenting

Do only one thing within a function, One level of abstraction per function, Use Descriptive Names

Function Arguments, Advantages of Having Less Arguments, Command Query Separation, Prefer

Exceptions to Returning Error Codes , Extract Try/Catch Blocks ,Error Handling Is One Thing

Unit Number: 2 Introduction to Python

Content Summary:

What is Python?, Advantages and disadvantages, Downloading and installing, Which version of

Python, Running Python Scripts, Using the interpreter interactively, Using variables, String types:

normal, raw and Unicode String operators and expressions, Math operators and expressions, Writing

to the screen, Reading from the keyboard, Indenting is significant, The if and elif statements, While

Loops, Using List, Dictionaries, Using the for statement, Opening, reading and writing a text file, Using

Pandas, the python data analysis library and data frames, Grouping, aggregating and applying, merging

and joining, Dealing with syntax errors, Exceptions, Handling exceptions with try/exception.

Unit Number: 3 Data Handling and Use Cases

Content Summary:

RE Pattern Matching, Parsing Data, Introduction to Regression, Types of Regression, Use Cases,

Exploratory data analysis, Correlation Matrix, Visualization using Matplotlib, Implementing linear

regression.

Unit Number: 4 Advance Concepts

Content Summary:

Machine Learning - Algorithm Algorithms – Random forest Super vector Machine Random Forest

Build your own model in Python Comparison between random forest and decision tree

*Self-Learning Components:

 Object-oriented programming concepts,

 Numpy

 File Handling

 Jupyter Notebook

 PyCharm

Reference Books:

1. IBM Material

Assessment & Evaluation

Components Assignment Mid Term

Examination

Attendance End Term

Examinatio

n

Weightage (%) 20 20 10 50

Program and course Mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

 E
N

S
P

1
0
1

/C
le

a
n

C
o
d

in
g
 w

it
h

P
y
th

o
n

CO1 1 2 3 2 - - - - 2 - - 2 2 - 2 -

CO2 1 2 3 2 2 - - - 2 - - 2 2 - 2 -

CO3 1 2 3 2 2 - - - 2 - - 2 3 3 2 -

CO4 1 2 3 2 2 - - - 2 - - 2 3 3 2 -

Department:
Department of Computer Science and Engineering

Course Name: Clean

Coding with Python Lab

Course Code L-T-P Credits

ENSP151 0-0-2 1

Type of Course: Minor

Pre-requisite(s), if any: NA

Defined Course Outcomes

COs

CO 1 Develop solutions to simple computational problems using Python programs.

CO 2
Solve problems using conditionals and loops in Python. Develop Python programs by

defining functions and calling them.

CO 3 Implement Python lists, tuples, and dictionaries for representing compound data.

CO 4 Implementation of Machine Learning Algorithms.

Ex.

No

Experiment Title Mapped

CO/COs

1 Develop programs to understand the control structures of python CO 1

2 Develop programs to implement list CO 3

3 Develop programs to implement Dictionary CO 3

4 Develop programs to implement tuples CO 3

5 Develop programs to implement function with stress on scoping CO 2

6 Develop programs to implement classes and objects CO 3

7 Develop programs to implement exception handling. CO 1

8 Develop programs to implement linear search and binary search. CO 2

9 Develop programs to implement insertion sort CO 2

10 Develop programs to implement bubble sort. CO 2

11 Develop programs to implement quick sort. CO 2

12 Develop programs to implement heap sort. CO 2

Department:
Department of Computer Science and Engineering

Course Name:

Essentials of Software

Engineering

Course Code L-T-P
Credits

ENCA103 3-1-0 4

Type of Course: Major

Pre-requisite(s), if any: NA

CO1 Identify and describe different software development methodologies.

CO2 Summarize the stages and activities involved in the software development life cycle.

CO3 Analyze and evaluate software requirements to identify potential risks and constraints.

CO4 Evaluate software documentation and code quality against industry standards.

CO5 Design and develop a complex software system that meets specified requirements.

Brief Syllabus:

This course covers the fundamentals of software engineering, including understanding system

requirements, finding appropriate engineering compromises, effective methods of design, coding,

and testing, team software development, and the application of engineering tools, Requirements

Engineering technique, Development of UML Diagrams, Software Architecture and Design

patterns, Software Testing- Black Box and White Box, Developing Test cases using Equivalence

and Boundary value partitioning techniques, Test Driven Development with Junit in Eclipse,

Software Refactoring.

UNIT WISE DETAILS

Unit Number: 1 Introduction to Models and SRS  No. of hours: 8

Content Summary:

Introduction to Software Engineering: The evolving role of software, changing nature of software,

Software Crisis, Software Processes & Characteristics. 

Process models: The Waterfall model, Agile model, Evolutionary process model, Spiral model. 

Software Requirements analysis & specifications: Requirement engineering, requirement elicitation

techniques, Requirements analysis using DFD, ER Diagrams, Requirement documentation, Nature

of SRS, Characteristics & organization of SRS. 

Unit Number: 2 Software Metrics and System Design  No. of hours: 12

Content Summary:  

Software Metrics: Size Metrics like LOC, Token Count, Function Count, Design Metrics, Data

Structure Metrics, Information Flow Metrics. Cost Estimation Models: COCOMO, COCOMO-II. 

System Design: Design Concepts, design models for architecture, components, data, and user

interfaces; Problem Partitioning, Abstraction, Cohesiveness, Coupling, Top-Down, and Bottom-Up

design approaches; Functional Versus Object Oriented Approach, Design Specification. 

Unit Number: 3
 Unified Modeling Language and Software

Reliability 
 No. of hours: 10

Content Summary:  

Unified Approach and Unified Modeling Language: The Unified Approach: Layered Approach to

OO Software Development, UML: UML Diagrams for Structure Modeling, UML Diagrams for

Behavior Modeling, UML Diagram for Implementation and deployment modeling. 

Software Reliability: Importance, Hardware Reliability & Software Reliability, Failure and Faults,

Reliability Models, Basic Model, Logarithmic Poisson Model, Software Quality Models, CMM &

ISO 9001. 

Unit Number: 4 Software Testing and Maintenance  No. of hours: 10

Content Summary: 

Software Testing: Testing process, Design of test cases, Functional testing: Boundary value analysis,

Equivalence class testing, Decision table testing, Cause effect graphing, Structural testing, Path

Testing, Data flow, and mutation testing, Unit Testing, Integration and System Testing, Debugging,

Alpha & Beta Testing, Testing Tools & Standards. 

Software Maintenance: Management of Maintenance, Maintenance Process, Maintenance Models,

Regression Testing, Reverse Engineering, Software Re-engineering. 

Text Books 

1. K. K. Aggarwal & Yogesh Singh, “Software Engineering”, New Age International. 

2. R. S. Pressman, “Software Engineering – A practitioner’s approach”, McGraw Hill 

3. W.S. Jawadekar, “Software Engineering – Principles and Practices”, McGraw Hill 

Reference Books/Materials 

1. Stephen R. Schach, “Classical & Object-Oriented Software Engineering”, IRWIN, TMH. 

2. James Peter, W. Pedrycz, “Software Engineering: An Engineering Approach”, John Wiley &

Sons. 

3. I. Sommerville, “Software Engineering”, Addison Wesley. 

4. K. Chandrasehakhar, “Software Engineering & Quality Assurance”, BPB. 

Program and Course Outcome Mapping

Course

Code and

Title

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

 E
N

C
A

1
0
3

E

ss
en

ti
a
ls

o
f

S
o

ft
w

a
re

E
n

g
in

ee
ri

n
g

CO1 3 2 3 - - - - - 2 2 2 1 1 2 1 2

CO2 2 3 3 - - - - 2 2 2 2 - 2 3 2 2

CO3 2 3 3 1 1 - 2 - 2 - - - 2 2 3 2

CO4 3 2 3 - - - - 2 3 - 2 - 2 2 1 2

CO5 3 3 3 - - - - 2 2 - 3 1 3 3 3 2

Department:
Department of Computer Science and Engineering

Course Name:

Essentials of Software

Engineering Lab

Course Code L-T-P Credits

ENCA153 0-0-1 2

Type of Course: Major

Pre-requisite(s), if any: NA

Course Outcomes

CO 1 
Apply knowledge of software engineering principles and concepts to formulate clear

problem statements.

CO 2 
Apply software engineering lifecycle models and methodologies to develop and

maintain software systems.

CO 3 
Design software development processes that align with technical understanding and

meet specified requirements.

CO 4  Analyze software requirements using appropriate modeling techniques and tools.

CO 5 
Generate test case specifications and implement test cases based on given software

requirements.

Ex.

No

Experiment Title Mapped

CO/COs

1 Student Result Management System

2 Library management system

3 Inventory control system

4 Accounting system

5 Fast food billing system

6 Bank loan system

7 Blood bank system

8 Railway reservation system

9 Automatic teller machine

10 Video library management system

11 Hotel management system

12 Hostel management system

13 E-ticking

14 Share online trading

15 Hostel management system

 Complete the following tasks for any five mentioned topics from the above

list.

1 Write the complete problem statement CO1

2 Write the software requirement specification document CO1, CO3

3 Draw the entity relationship diagram CO2, CO4

4 Draw the data flow diagrams at level 0 and level 1 CO2, CO4

5 Draw a use case diagram CO2, CO4

6 Draw an activity diagram of all use cases. CO2, CO3

7 Draw a state chart diagram of all use cases CO2. CO3

8 Draw a sequence diagram of all use cases CO2, CO3

9 Draw a collaboration diagram of all use cases CO2, CO3

10 Assign objects in sequence diagram to classes and make class diagram CO2, CO3

11 Create test cases for the testing of the modules CO1, CO5

EVEN SEMESTER (II)

S. NO COURSE CODE COURSE TITLE Course Type L T P C

1 ENCA102

Fundamentals of Object

Oriented Programming using

C++

Major

3 1 - 4

2 ENCA104 Discrete Structure Major 3 1 - 4

3 ENSP102

Overview of AI, Data Science,

Ethics and Foundation of Data

Analysis

Minor

4 0 0 4

4 SEC039
R Programming for Data

Science and Data Analytics Lab

SEC
0 0 4 2

5 ENCA152
Object Oriented Programming

Lab using C++
Major - - 2 1

6 ENSP152

Overview of AI, Data Science,

Ethics and Foundation of Data

Analysis Lab

Minor 0 0 2 1

7 Open Elective -1 Open Elective 3 - - 3

8 ENCA202
Extention Activities(community

engagement service)
VAC II 2 - - 2

 TOTAL 15 2 8 21

Department: Department of Computer Science and Engineering

Course Name:

Fundamentals of

Object-Oriented

Programming using

C++

Course Code
L-T-

P
Credits

ENCA102 3-1-2 4

Type of Course: Major

Pre-requisite(s), if any: Basics of C programming

CO1 Understand object-oriented programming concepts.

CO2
Applying the concepts of object-oriented paradigm (Classes, Objects, inheritance,

polymorphism etc.) for designing solution of a given programming problem

CO3 Developing applications that can manipulate data stored in files

CO4
Developing applications by considering all possible scenarios thereby employing

appropriate exception handling.

Brief Syllabus:
The objective of this course is to introduce object-oriented programming. To explore and
implement the various features of OOP such as inheritance, polymorphism, Exceptional handling
using programming language C++. After completing this course student can easily identify the
basic difference between the programming approaches like procedural and object oriented.

UNIT WISE DETAILS
Unit Number:

1
 Introduction No. of hours: 10

Content Summary:
Procedure Oriented and Object-Oriented Approach. Basic Concepts: Objects, classes, Principals
like Abstraction, Encapsulation, Inheritance and Polymorphism. Dynamic Binding, Message
Passing. Characteristics of Object-Oriented Languages, Functions, Returning values from
functions, Data Types
Unit Number:

2
 CLASSES AND OBJECTS No. of hours: 10

Content Summary:
Abstract data types, Object & classes, attributes, methods, C++ class declaration, Local Class and
Global Class, State identity and behaviour of an object, Local Object and Global Object, Scope
resolution operator, Friend Functions, Inline functions, Constructors and destructors,

instantiation of objects, Types of Constructors, Static Class Data, Array of Objects, Constant
member functions and Objects, Memory management Operators.

Unit Number:
3

 INHERITANCE & POLYMORPHISM

No. of hours: 12

Content Summary:
Inheritance, Types of Inheritance, access modes – public, private & protected, Abstract Classes,
Ambiguity resolution using scope resolution operator and Virtual base class, Aggregation,
composition vs classification hierarchies, overriding inheritance methods, Constructors in
derived classes, Nesting of Classes
Polymorphism, Type of Polymorphism – Compile time and runtime, Function Overloading,
Operator Overloading (Unary and Binary) Polymorphism by parameter, Pointer to objects, this
pointer, Virtual Functions, pure virtual functions.

Unit Number:

4
STRINGS AND EXCEPTION HANDLING No. of hours: 10

Content Summary:
Manipulating strings, String Manipulation Functions, formatted and Unformatted Input output.
Exception handling, reshowing exception, Exception Handling Techniques

*Self-Learning Components:
Students should explore Platforms like LeetCode, HackerRank for C++.
Students can refer the following courses as per the Open Source University Curriculum

1. Introduction to C++" and "C++ Programming for C Programmers" offered by edX
"C++ Programming for Beginners," and "Learn Advanced C++ Programming." offered by Udemy

Reference Books:
1. E. Balagurusamy ,“Object Oriented Programming with C++”, Mc Graw Hill,6th Edition,2013.
2. Schildt Herbert, “C++: The Complete Reference”, Wiley DreamTech, 2005.Parasons, “Object Oriented

Programming with C++”, BPB Publication, 1999.
3. Steven C. Lawlor, “The Art of Programming Computer Science with C++”, Vikas Publication, 2002.
4. Yashwant Kanethkar, “Object Oriented Programming using C++”, BPB, 2004

Program and Course Outcome Mapping

Course

Code

and

Title

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

ENCA1

02

Funda

mentals

of

Object-

Oriente

d

Progra

mming

using

C++

CO1

1 - 3 - 3 - - - 2 2 1 2 3 2 2 1

CO2

1 - 3 - 3 - - - 2 2 1 2 2 3 2 1

CO3

1 - 3 2 3 - 2 - 2 3 1 2 2 3 2 1

CO4

1 - 3 2 3 - 2 - 2 3 1 2 2 3 2 1

Ex. No Experiment Title Mapped CO/COs

1 Write a program for Functions with default arguments

2 Simple Classes for understanding objects, member functions and

Constructors

i.Classes with primitive data members

3 Write a program for Classes with constant data members, Classes

with static member functions

4 Write a program for Classes with pointers as data members –

String Class

5 Write a program for Classes with arrays as data members

6 Implementation of Call by Value, Call by Address and Call by

Reference

7 Write a Program to illustrate New and Delete Keywords for

dynamic memory allocation

8 Write a Program Containing a Possible Exception. Use a Try

Block to Throw it and a Catch Block to Handle it Properly.

9 Project 1: interactive Basic Calculator: Create a calculator that

accepts two numbers and an operator (+, -, /, *,&, <,>,// etc) using

keyboard. Depending on operator, calculator must calculate the

appropriate answer

10 Write a Program to Demonstrate the Catching of All Exceptions.

11 Write a program fir passing object as argument to a function with

help of a program to add marks of two students in two different

subjects respectively. Marks of first student in “sub1” should be

added with marks of second student in “sub1” and respectively for

marks of “sub2” added for both students and then displayed.

12 Write a program to illustrate the concept of one class with two

objects by taking student data.

13 Write a program to show the relationship of class and object to

display roll no., grade and fee paid by student.

14 Write a program to define the member function outside and inside

the class.

15 Write a program to read and display the information of N persons to

illustrate the concept of array of objects.

16 Write a program to add two numbers to illustrate the use of friend

function.

Department: Department of Computer Science and Engineering

Course Name:

Object Oriented

Programming Lab using

C++

Course Code
L-T-

P
Credits

ENCA152 3-1-2 4

Type of Course: Major

Pre-requisite(s), if any: Basics of C programming

17 Write a program to assign and copy values to illustrate the concept

of parametrized and copy constructor.

18 Write a program to show the order of constructor and destructor.

19 Write a program to add two numbers using binary operator

overloading.

20 Write a program to illustrate the assignment operator overloading.

21 Sample Programs using inheritance in and accessing objects of

different derived classes

(a) Write a program to compute the marks explaining the

concept of multiple inheritance.

22 Write a program to find the factorial of a number using inheritance

23 Sample Programs using polymorphism and virtual functions (using

pointers)

(a) Write a program to find the volume of cylinder and cuboid

using function overloading.

(b) Write a program to reverse a string using pointers.

24 Write a program to explain the relationship of inheritance and

virtual function.

25 Project2: Create Tic Tac Toe game using C++ concepts CO4

26 Project 3: Quiz Game: Design a quiz game program where users

can answer multiple-choice questions from various topics. The

program should keep track of the score and provide feedback on

the user's performance.

Department: Department of Computer Science and Engineering

Course Name:

Discrete Mathematics
Course Code L-T-P Credits

ENCS203 3-1-0 4

Type of Course: Programme Core

Pre-requisite(s), if any: Basic of Mathematics

CO1 Understand foundational concepts: Gain a solid understanding of fundamental concepts in

discrete mathematics, including logic, sets, relations, and functions

CO2 Express proficiency in logical reasoning and constructing mathematical proofs using

various proof techniques such as direct proofs, proof by contradiction, and mathematical

induction.

CO3 Determine methods to Explore various discrete structures, such as sets, sequences,

functions, relations, and formal languages. Understand the properties and applications of

these structures.

CO4 Identify and develop problem-solving skills by applying discrete mathematics concepts to

solve mathematical problems and real-world scenarios. Enhance logical thinking and

analytical reasoning abilities.

CO5 Articulate real-world applications of discrete mathematics in computer science,

cryptography, network analysis, optimization problems, scheduling, and decision-making.

Brief Syllabus:

This course will discuss fundamental concepts and tools in discrete mathematics with emphasis on

their applications to computer science. Topics include logic and Boolean circuits, sets, functions,

relations, deterministic algorithms and randomized algorithms, analysis techniques based on counting

methods and recurrence relations, trees and graphs etc.

UNIT WISE DETAILS

Unit Number: 1 Propositional Logics & Relations No. of hours: 12

Mathematical Logic:  Introduction to Mathematical Thinking, Propositional and Predicate Logic,

Propositional Equivalences, Sets, Binary Relation, Equivalence Relation, Logical operations,

Conditional Statements, Tautologies, Contradictions, Logical Equivalence, The use of Quantifiers,

Normal Forms, Predicates and Quantifiers, Nested Quantifiers, Rules of Inference. Sets and

Relations: Set Operations, Representation, and Properties of Relations & Functions, Equivalence

Relations, Partially Ordering.

Unit Number: 2
Title: Counting, Mathematical Induction,

and Discrete Probability
No. of hours: 12

Basics of Counting, Pigeonhole Principle, Permutations and Combinations, Inclusion-Exclusion

Principle, Mathematical Induction, Probability, Bayes’ Theorem, Discrete Probability Theory,

Discrete Structures in Computing, Counting Principles, Permutations and Combinations, Probability

Theory, Discrete Random Variables, Discrete Optimization - Optimization Problems and Algorithms,

Linear Programming, Integer Programming, Algebraic Structures - Groups (Definition, Properties,

Subgroups, Cyclic Groups), Rings (Definition, Properties, Integral Domains, Fields), Isomorphisms

and Homomorphisms, Counting and combinatorics.

Unit Number: 3
Title: Group Theory & Discrete

Probability
No. of hours: 8

Groups, Subgroups, Semi Groups, Product and Quotients of Algebraic Structures, Isomorphism,

Homomorphism, Automorphism, Rings, Integral Domains, Fields, Applications of Group Theory,

Combinatorial optimization: basic concepts and algorithms, Sample spaces, events, and probability

axioms, Conditional probability and Bayes' theorem.

Unit Number: 4 Title: Graph Theory No. of hours: 8

Simple Graph, Multigraph, Weighted Graph, Paths and Circuits, Shortest Paths in Weighted Graphs,

Eulerian Paths and Circuits, Hamiltonian Paths and Circuits, Planner graph, Graph Coloring, Bipartite

Graphs, Trees and Rooted Trees, Prefix Codes, Tree Traversals, Spanning Trees and Cut-Sets,

digraphs, Graph Coloring, Euler’s formulae, Graph Theory, Networks and Flows.

*Self-Learning Components:

Topics (with book references):

1. Applications of Graph Coloring: Timetable Scheduling ("Discrete Mathematics and Its

Applications" by Kenneth H. Rosen: Chapter 10.3: Graph Coloring)

2. Network Analysis, Routing & Optimization, using graph theory.(Introduction to Graph Theory"

by Richard J. Trudeau)

3. Combinatorial Optimization & Error Detection & correction using The Pigeonhole Principle

("Combinatorial Optimization: Algorithms and Complexity" by Christos H. Papadimitriou and

Kenneth Steiglitz)

4. Scheduling and Task Prioritization, using Partial ordering. ("Introduction to Scheduling" by Yves

Robert and Frederic Vivien)

5. Rules-based system and Algorithm design using conditional statements. (Chapters 10, 22, 23, of

Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig).

Online Certification Courses for Discrete Mathematics (With Links):

1. Discrete Mathematics: https://www.coursera.org/learn/discrete-mathematics

2. Mathematics For Computer Science, https://ocw.mit.edu/courses/6-042j-mathematics-for-

computer-science-fall-2010/

3. Introduction to Discrete Mathematics for Computer Science Specialization,

https://www.coursera.org/specializations/discrete-mathematics

4. Discrete Math Series : Propositional Logic masterclass

https://www.udemy.com/course/discretemathematics/

5. Master Discrete Mathematics: Sets, Math Logic, and More:

https://www.udemy.com/course/master-discrete-mathematics/

6. Master Math by Coding in Python: https://www.udemy.com/course/math-with-python/

7. Discrete Mathematics for Computer Science in C, Java, Python:

https://www.udemy.com/course/discrete-mathematics-and-its-applications/

8. Discrete Mathematics - Complete Course: https://www.udemy.com/course/discrete-

mathematics-complete-course/

9. Discrete Optimization: https://www.coursera.org/learn/discrete-optimization

10. Introduction to Discrete Mathematics for Computer Science Specialization:

https://www.coursera.org/specializations/discrete-mathematics

NPTEL Lecture Links for Discrete Mathematics (With Links):

1. Discrete Mathematics _ IIITB, IIIT Bangalore, Prof. Ashish Choudhury:

https://nptel.ac.in/courses/106108227

https://www.coursera.org/learn/discrete-mathematics
https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-fall-2010/
https://ocw.mit.edu/courses/6-042j-mathematics-for-computer-science-fall-2010/
https://www.coursera.org/specializations/discrete-mathematics
https://www.udemy.com/course/discretemathematics/
https://www.udemy.com/course/master-discrete-mathematics/
https://www.udemy.com/course/math-with-python/
https://www.udemy.com/course/discrete-mathematics-and-its-applications/
https://www.udemy.com/course/discrete-mathematics-complete-course/
https://www.udemy.com/course/discrete-mathematics-complete-course/
https://www.coursera.org/learn/discrete-optimization
https://www.coursera.org/specializations/discrete-mathematics
https://nptel.ac.in/courses/106108227

Program and Course mapping

Course

Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11

PO12

PSO1 PSO2 PSO3 PSO4

 E
N

C
S

2
0

3
/

D
is

cr
et

e

M
a

th
em

a
ti

cs

CO1 3  2  2  -  2  -  2  -  -  -  -  2  3 2 2 1

CO2 1  2  -  1 3  2  1  -  -  -  -  2  2 3 2 1

CO3 -  -  -  1 3  -  2  - -  3  -  2  2 3 2 1

CO4 -  2 -  -  3  1  2  -  -  3  -  2  2 3 2 1

CO5 -  2  -  -  3  -  2  - -  3  -  2  2 3 2 1

2. Discrete Mathematics, IIT Ropar: https://nptel.ac.in/courses/106106183

Reference Books of Discrete Mathematics:

1. Elements of Discrete Mathematics, C. L Liu, McGraw-Hill Inc, 1985. Applied Combinatorics,

Alan Tucker.

2. Concrete Mathematics, Ronald Graham, Donald Knuth, and Oren Patashnik, 2nd Edition -

Pearson Education Publishers.

3. Combinatorics: Topics, Techniques, Algorithms by Peter J. Cameron, Cambridge University

Press.

4. Topics in Algebra, I.N. Herstein, Wiley.

5. Kenneth H. Rosen, Discrete Mathematics and its Applications, Tata McGraw – Hill

6. Satinder Bal Gupta: A Text Book of Discrete Mathematics and Structures, University Science

Press, Delhi.

E-Books of Discrete Mathematics (with Links):

1. Discrete Mathematics: An open Introduction, by Oscar Levin, 3rd Edition:

https://discrete.openmathbooks.org/pdfs/dmoi-tablet.pdf

2. Lecture Notes on Discrete Mathematics, IITK,

https://home.iitk.ac.in/~arlal/book/mth202.pdf

3. Mathematical Foundations And Aspects of Discrete Mathematics, Jean Gallier and Jocelyn

Quaintance, https://www.cis.upenn.edu/~jean/discmath-root-b.pdf

4. Discrete Mathematics for Computer Science, Gary Haggard, John Schlipf, Sue Whitesides,

https://www2.cs.uh.edu/~arjun/courses/ds/DiscMaths4CompSc.pdf

5. DISCRETE MATHEMATICS FOR COMPUTER SCIENCE, Herbert Edelsbrunner and

Brittany Fasy, https://courses.cs.duke.edu/spring09/cps102/Lectures/Book.pdf

6. Discrete Mathematics and its Applications, Rosen,

https://faculty.ksu.edu.sa/sites/default/files/rosen_discrete_mathematics_and_its_applications_7

th_edition.pdf

https://nptel.ac.in/courses/106106183
https://home.iitk.ac.in/~arlal/book/mth202.pdf
https://www.cis.upenn.edu/~jean/discmath-root-b.pdf
https://www2.cs.uh.edu/~arjun/courses/ds/DiscMaths4CompSc.pdf
https://courses.cs.duke.edu/spring09/cps102/Lectures/Book.pdf
https://faculty.ksu.edu.sa/sites/default/files/rosen_discrete_mathematics_and_its_applications_7th_edition.pdf
https://faculty.ksu.edu.sa/sites/default/files/rosen_discrete_mathematics_and_its_applications_7th_edition.pdf

Department:
Department of Computer Science and Engineering

Course Name:

Overview of AI,

Data Science, Ethics

and Foundation of

Data Analysis

Course Code L-T-P Credits

ENSP102 4-0-0 4

Type of Course: Programme Core

Pre-requisite(s), if any: Basic knowledge of Excel.

COs Statements

CO1 Outline the key concepts of AI and how AI has evolved

CO2 Identify the key concepts of Machine Learning and will be able to differentiate

between key algorithms such as supervised learning and unsupervised learning

CO3 Distinguish key Data Science concepts such as structured and unstructured data,

SQL, and NoSQL Database

CO4 Examine the process required the successfully execute a Machine Learning or Data

Science project

CO5 Infer the large-scale data using Excel

Brief Syllabus:

The students will be studying about Introduction to Data Science, Natural Language,

Machine generated Data, Graph-based or Network Data, Audio, Image, Video, and

Streaming data. Also, six steps of data science processes define research goals, data

retrieval, cleansing data, and correct errors as early as possible, integrating – combining

data from different sources, transforming data, exploratory data analysis, Data modeling,

model and variable selection, presentation, and automation would be taught to the

students. Introduction to Machine Learning and Introduction to Data Analytics is also

included in the syllabus.

UNIT WISE DETAILS

Unit

Number: 1
Introduction to Data Science No. of hours: 8

Content Summary: Defining Data Science and Big Data, Benefits and Uses of Data

Science and Big Data, Facets of Data, Structured Data, Unstructured Data, Natural

Language, Machine generated Data, Graph based or Network Data, Audio, Image, Video,

Streaming data, Data Science

Process, Big data ecosystem and data science, distributed file systems, Distributed

programming framework, data integration framework, machine learning framework, No

SQL Databases, scheduling tools, benchmarking tools, system deployments

Unit

Number: 2
Data Science Processes No. of hours: 8

Content Summary: Six steps of data science processes define research goals, data

retrieval, cleansing data, and correct errors as early as possible, integrating – combine

data from different sources, transforming data, exploratory data analysis, Data modelling,

model and variable selection, model execution, model diagnostic and model comparison,

presentation and automation.

Unit

Number: 3
Introduction to Machine Learning No. of hours: 8

Content Summary: What is Machine Learning, Learning from Data, History of Machine

Learning, Big Data for Machine Learning, Leveraging Machine Learning, Descriptive vs

Predictive Analytics, Machine Learning and Statistics, Artificial Intelligence and

Machine Learning, Types of Machine Learning – Supervised, Unsupervised, Semi-

supervised, Reinforcement Learning, Types of Machine Learning Algorithms,

Classification vs Regression Problem, Bayesian, Clustering, Decision Tree,

Dimensionality Reduction, Neural Network and Deep Learning, Training machine

learning systems

Unit

Number: 4
Introduction to AI No. of hours: 8

Content Summary: What is AI, Turing test, cognitive modeling approach, the law of

thoughts, the relational agent approach, the underlying assumptions about intelligence,

techniques required to solve AI problems, level of details required to model human

intelligence, successfully building an intelligent problem, history of AI

Unit

Number: 5
Introduction to Data Analytics No. of hours: 4

Content Summary: Working with Formula and Functions, Introduction to Power BI &

Charts, Logical functions using Excel, Analysing Data with Excel.

*Self-Learning Components:

1. Artificial Intelligence Professional Program,

https://online.stanford.edu/programs/artificial-intelligence-professional-program

2. Artificial Intelligence (AI), https://www.edx.org/course/artificial-intelligence-

ai#!

3. 21st-Century Teaching & Learning: Data Science,

https://online.stanford.edu/courses/xeduc315n-21st-century-teaching-learning-data-

science

4. Artificial Intelligence: Principles and Techniques,

https://online.stanford.edu/courses/xcs221-artificial-intelligence-principles-and-

techniques

5. Data Visualization, https://online.stanford.edu/courses/cs448b-data-

visualization

Reference Books:

1. Artificial Intelligence 3e: A Modern Approach Paperback – By Stuart J Russell

& Peter Norvig; Publisher – Pearson

2. Artificial Intelligence Third Edition By Kevin Knight, Elaine Rich, B. Nair –

McGraw-Hill

3. Artificial Intelligence Third Edition By Patrick Henry Winston – Addison-Wesley

Publishing Company

https://online.stanford.edu/programs/artificial-intelligence-professional-program
https://www.edx.org/course/artificial-intelligence-ai
https://www.edx.org/course/artificial-intelligence-ai
https://online.stanford.edu/courses/xeduc315n-21st-century-teaching-learning-data-science
https://online.stanford.edu/courses/xeduc315n-21st-century-teaching-learning-data-science
https://online.stanford.edu/courses/xcs221-artificial-intelligence-principles-and-techniques
https://online.stanford.edu/courses/xcs221-artificial-intelligence-principles-and-techniques
https://online.stanford.edu/courses/cs448b-data-visualization
https://online.stanford.edu/courses/cs448b-data-visualization

Program and Course Outcome Mapping

Course

Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

E
N

S
P

1
0

2
 /

O
v

er
v

ie
w

 o
f

A
I,

 D
a

ta
 S

ci
en

ce
,

E
th

ic
s

a
n

d
 F

o
u

n
d

a
ti

o
n

 o
f

D
a

ta
 A

n
a
ly

si
s

CO1 3 

2  2  -  2  -  2  -  -  -  -  2  3 2 2 1

CO2 1 

2  -  1 3  2  1  -  -  -  -  2  2 3 2 1

CO3 - 

-  -  1 3  -  2  - -  3  -  2  2 3 2 1

CO4 - 

2 -  -  3  1  2  -  -  3  -  2  2 3 2 1

CO5 -  2  -  -  3  -  2  - -  3  -  2  2 3 2 1

Department: Department of Computer Science and Engineering

Course Name:

Overview of AI, Data

Science, Ethics and

Foundation of Data

Analysis

Course Code L-T-P Credits

 ENSP152

0-0-2 1

Type of Course: Programme Core

Pre-requisite(s), if any: Basic knowledge of Excel.

COs After performing the practical in Overview of AI, Data Science, Ethics and

Foundation of Data Analysis lab, the students would be able to:

CO 1 Learn the basics of primary data structures.

CO 2 Perform various operations over these data structures.

CO 3 Learn the basics of Data Science & Analytics.

CO 4 Implement the basics of Data Science & Analytics.

Ex. No Experiment Title Mapped CO/COs

1 Write a program that uses functions to perform the following

operations on singly linked list:

i.Creation

ii.Insertion

iii.Deletion

iv.Traversal

CO1, CO2

2 Write a program that uses functions to perform the following

operations on doubly linked list:

i.Creation

ii.Insertion

iii.Deletion

iv.Traversal

CO1, CO2

3 Write a program that uses functions to perform the following

operations on circular linked list:

i.Creation

ii.Insertion

iii.Deletion

iv.Traversal

CO1, CO2

4 Write a program that implement stack and its operations using:

i.Arrays

ii.Pointers

CO1, CO2

5 Write a program that implement queue and its operations using:

i.Arrays

CO1, CO2

ii.Pointers

6 Write a program that implements the following sorting methods to

sort a given list of integers in ascending order:

i.Bubble sort

ii.Selection sort

iii.Insertion sort

CO1, CO2

7 Write a program that use both recursive and non-recursive

functions to perform the following searching operations for a Key

value in a given list of integers:

i.Linear search

ii.Binary search

CO1, CO2

8 Write a program to implement the tree traversal methods. CO1, CO2

9 Write a program to implement the graph traversal methods. CO1, CO2

10 Program on Comparative Analysis of Matching Algorithms CO3, CO4

11 Analyzing the Impact of COVID-19 using Data Science: A

Comprehensive Case Study

CO3, CO4

12 Program for Enhancing Data Visualization with Conditional

Formatting

CO3, CO4

13 Exploring Pivot Tables in Data Science CO3, CO4

14 Data Visualization with Power Map CO3, CO4

15 Write a program for Data Science with Power BI CO3, CO4

16 Write a program for Building Predictive Models in data science CO3, CO4

17 Analyzing Sales Wallet Transactions using Data Science:

Extracting Insights and Driving Business Growth

CO3, CO4

18 Harnessing the Power of Power Query in Data Science: Extract,

Transform, and Analyze Data with Efficiency and Precision

CO3, CO4

19 "Exploring Correlation Methods in Data Science: Unveiling

Relationships and Patterns in Complex Datasets

CO3, CO4

ODD SEMESTER (III)

SNo Course Code Course Title Category L T P C

1 ENCA201 Fundamentals of Data Structures Major 3 1 0 4

2 ENCA203 Fundamentals of Java Programming Major 3 1 0 4

3 ENSP205 Probabilistic Modelling and Reasoning Minor 0 0 4 2

4 ENCA205 Fundamentals of Artificial Intelligence Major 3 1 0 4

5 ENCA251 Fundamentals of Java Programming Lab Major 0 0 2 1

6 ENCA253 Fundamentals of Data Structures Lab Major 0 0 2 1

7 Open Elective -II Open

Elective

3 0 0 3

8 VAC III VAC 2 0 0 2

9 AEC011 Life Skills for Professionals-I AEC 3 0 0 3

 Summer Internship/Project INT 0 0 0 2

 Total 17 3 8 26

Department: Department of Computer Science and Engineering

1. Course Name:

Fundamentals of Data

Structure

Course Code
L-T-

P
Credits

ENCA201 3-1-2 4

Type of Course: Major

Pre-requisite(s), if any: Basics of Computer Programming

COs Statements

CO1 Evaluate the efficiency of different data structures in terms of time and space complexity.

CO2 Implement a given Search problem (Linear Search and Binary Search).

CO3 Demonstrate an understanding of how data structures are implemented and their logical

organization.

CO4 Design & implement the algorithm for Selection Sort, Bubble Sort, Insertion Sort, Quick Sort,

Merge Sort, Heap sort. Compare their performance in term of Space and time complexity

Brief Syllabus:

Solving computational problems requires the knowledge of efficient data organization and the

ability to make effective choices among multiple solutions. In this course, we will explore several

fundamental data structures in computer science and learn to implement them. The course aims

to teach the fundamentals of data structures, their design, implementation and effective use in

problem solving approach. With the knowledge of data structures and practical experience in

implementing them, students can become much more effective designer and developer. The

course will start with the basic introduction of linear such as arrays, stack and queues as well as

non-linear data structures such as trees and graphs. They will further proceed with the

programming intensive task of implementing them.

UNIT WISE DETAILS

Unit Number: 1 Introduction to Data Structure No. of hours: 8

Content Summary:

Introduction to Data Structures: Definition of data structures and abstract data types, Static

and Dynamic implementations, Examples and real-life applications; Arrays: ordered lists,

representation of arrays in memory

Basic Analysis: Differences among best, average, and worst-case behaviors of an algorithm,

Asymptotic analysis of upper and expected complexity bounds, Big O notation: formal definition

and use, big omega and big theta notation, Complexity classes, such as constant, logarithmic,

linear, quadratic, and exponential, Time and space trade-offs in algorithms.

Unit Number: 2 Stacks, Queues and Linked List No. of hours: 12

Content Summary:

Stacks: ADT Stack and its operation, Array based implementation of stacks, Examples: Infix,

postfix, prefix representation, Conversions, Evaluation of postfix expression using stacks.

Queues: ADT Queue and its operation, Array based implementation of linear Queues, Circular

Queues, Priority queues

Linked List: Definition, Components of linked list, Representation of linked list, Advantages

and Disadvantages of linked list. Types of linked list: Singly linked list, doubly linked list,

Circular linked list and circular doubly linked list. Operations on singly linked list: creation,

insertion, deletion, search and display (based on the different position as specified by the user).

Linked representation of Stacks & Queues.

Unit Number: 3 Trees and Graphs No. of hours: 12

Trees: Basic Terminology, Binary Trees and their representation, expression evaluation,

Complete Binary trees, traversing binary trees, Searching, Insertion and Deletion in binary search

trees.

Graphs: Terminology and Representations, Directed Graphs, Sequential representation of

graphs, Adjacency matrices, Transversal Connected Component and Spanning trees, algorithms

and their analysis.

Unit Number: 4 Sorting and Searching No. of hours: 8

Content Summary:

Sorting Algorithms: Introduction, insertion, selection, bubble, quick, merge, heap sort,

algorithms and their analysis

Searching Algorithms: Straight Sequential Search, Binary Search (recursive & non–recursive

Algorithm

*Self-Learning Components:

1. Students should explore Platforms like LeetCode, HackerRank for Data

 structure

2. Students can refer the following courses as per the Open-Source University Curriculum

 "Algorithms, Part I" by Robert Sedgewick and Kevin Wayne (available on Coursera)

 "Algorithms, Part II" by Robert Sedgewick and Kevin Wayne (available on Coursera)

Reference Books:

1. E. Horowitz and S. Sahani, “Fundamentals of Data Structures”, Galgotia Book source

Pvt. Ltd.

2. Data Structures & Algorithms in Python by John Canning, Alan Broder, Robert Lafore

Addison-Wesley Professional.s

3. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein.

4. Problem Solving with Algorithms and Data Structures Using Python" by Brad Miller and

David Ranum.

Program and Course Outcome Mapping

Course

Code

and

Title

 PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

ENCA2

01
Funda

mentals

of Data

Structu

re

CO1

3 3 3 - - - - - - 3 2 - 3 2 3 -

CO2

3 3 2 - - - - - - 3 1 - 3 3 3 -

CO3

3 3 3 - - - - - - 3 1 - 3 - 2 -

CO4

3 3 3 - - - - - - 3 1 - 3 - 3 -

Department: Department of Computer Science and Engineering

Course Name:

Fundamentals of Data

Structure LAB

Course Code
L-T-

P
Credits

ENCA253 3-1-2 4

Type of Course: Major

Pre-requisite(s), if any: Basics of Computer Programming

COs List of CO’s

CO 1 Apply the concepts learned of operators, if-else, loops and arrays to java-based application

development.

CO 2 Demonstrate the use of various types of inheritances, polymorphisms, class objects,

inheritances, packages and other concepts to basic and complex java programming

problems.

CO 3 Demonstrate graphical applications based on java applets, swings and event handling

CO 4 Apply knowledge of event handling and AWT controls to create some new dynamic

graphical applications.

Ex No Experiment Title Mapped CO/COs

1 Sample Programs using Objects and classes, Variable

Types, Modifier Types, operators, Loops Decision Making,

Strings and Arrays,

(a) WAP to display “Hello, it’s a first program in

java”.

(b) WAP to find sum of two integers taken as input

from user at runtime.

(c) WAP to find sum of two float numbers taken as

command line arguments

(d) WAP to find changed case of entered character.

(e) WAP to find maximum of 3 integer numbers taken

as input from user at runtime.

CO1

2 Sample Programs using Inheritance, Overriding,

Polymorphism, Interfaces, Packages

a. WAP in java to illustrate the concept of interfaces.

b. Write a program in java to showcase uses of super

keyword

CO1

3 Sample Programs using exception handling and threads CO2

a) Write a program to demonstrate the use of nesting

of try-catch block

b) WAP in java to illustrate the concept of using

multiple catch clauses to handle different types of

exceptions.

c) WAP in java to create a user defined Exception and

throw it explicitly.

4 Sample Programs using event handling and AWT controls CO1

5 Sample Programs using swings Write an applet which will

display “HAPPY”and “DEEPAVALI” as: The word

“HAPPY” will roll from top to bottom and “DEEPAVLI”

from bottom to “top” . Both will run at the same speed and

stop simultaneously at the center of the applet.

CO3

6 WAP in java to create a frame with various AWT controls

(like choice, list, TextField and Buttons) and handle the

events thrown by them.

CO3

7 WAP in java to create a frame with AWT controls (like

label, push buttons, Checkbox, Checkbox Group) and

handle various events generated by them.

CO4

8 WAP to create a package as MyPack having a class with

three methods: max, fact and show. Use it in other folder

with setting classpath and without setting class path.

CO2

9 WAP to create a frame and illustrate the concept of using

an adapter class in place of interfaces for handling various

mouse events generated over frame window.

CO3

10 Write a program to display “hello” in different color where

user clicks left mouse button and “world” where right

mouse button is clicked. Use black background.

CO2

11 a) Demonstrate thread using Thread class and Runnable

interface

b) Demonstrate various thread methods using a program

CO3

12 Write a java program to create an abstract class named

Shape that contains two integers and an empty method

named printArea(). Provide three classes named Rectangle,

Triangle and Circle such that each one of the classes

extends the class Shape. Each one of the classes contain

only the method printArea() that prints the area of the

given shape.

CO4

13 (a) WAP to create class with “name” as String and “age”

as integer data members. The class should have two

methods to take input from user and display the data.

(b) WAP to find factorial of a number using class and

object.

CO3

14 Write a java program that implements a multi-thread

application that has three threads. First thread generates

random integer every 1 second and if the value is even,

CO4

second thread computes the square of the number and

prints. If the value is odd, the third thread will print the

value of cube of the number.

15 Create an Frame with one single button with caption

“Click”. On clicking the button will open a new Frame

with title “Factorial”. The frame will have two three

controls :TextField, Label and button. On clicking button

calculate the factorial entered in TextField control.

CO4

16 Project 1: Simple Calculator: Build a basic calculator

application that performs arithmetic operations like

addition, subtraction, multiplication, and division. You

can add a user interface using Java Swing or JavaFX for a

more interactive experience.

CO4

17 Project 2: Tic-Tac-Toe Game: Implement the classic Tic-

Tac-Toe game where two players take turns marking X or

O on a 3x3 grid. Allow players to play against each other.

CO4

18 Project 3: Quiz Application: Design a quiz application

that presents multiple-choice questions to users and keeps

track of their scores. Include features like a timer,

question randomization, and a scoring system.

CO4

19 Project 4: Hangman Game: Create a Hangman game

where players guess letters to uncover a hidden word.

Include features such as displaying the word's progress,

tracking incorrect guesses, and providing hints.

CO4

Department:
Department of Computer Science and Engineering

Course Name:

Fundamentals of Java

Programming

Course Code L-T-P Credits

ENCA203 3-1-0 4

Type of Course: Programme Core

Pre-requisite(s), if any: C++ Programming

COs Statements

CO1
Recognize features of object-oriented design such as encapsulation, polymorphism

inheritance and composition of systems based on object identity.

CO2
Articulate re-usable programming components using Abstract Class, Interfaces and

other permitted ways in packages.

CO3
Apply access control mechanism to safeguard the data and functions that can be applied

by the object.

CO4 Design GUI applications using pre-built frameworks available in Java.

Brief Syllabus:

The objective is to impart programming skills used in this object-oriented language java. The

course explores all the basic concepts of core java programming like object, classes, data types,

features, operators, control structures, interfaces, packages, applets, AWT, Swings. The

students are expected to learn it enough so that they can develop the basic applications as well

as web solutions like creating applets etc.

11. UNIT WISE DETAILS

Unit Number: 1 Introduction to Java No. of hours: 12

Content Summary:

Concepts of OOP, Features of Java, How Java is different from C++, Environmental setup,

Basic syntax, Objects and classes, Basic Data Types, Variable Types, Modifier Types, Basic

operators, Loop Control, Decision Making, Strings and Arrays, Methods, I/O. Introducing

classes, objects and methods: defining a class, adding variables and methods, creating objects,

constructors.

Unit Number: 2 Arrays and Strings No. of hours: 8

Content Summary:

Classes: String and String Buffer classes, Wrapper classes: Basics types, using super,

Multilevel hierarchy, abstract and final classes, Object class, Access protection, Inheritance,

Overriding, Polymorphism, Abstraction, Encapsulation, Interfaces, Packages, Exploring

java.util package.

Unit Number: 3 Exceptional Handling & Multithreading No. of hours: 12

Content Summary:

Exception Hierarchy, Exception Methods, Catching Exceptions, Multiple catch Clauses,

Uncaught Exceptions Java’s Built-in Exception. Creating, Implementing and Extending thread,

thread priorities, synchronization suspending, resuming and stopping Threads, Multi-

threading.

Unit Number: 4 Input/output Programming & File handling No. of hours: 8

Basics Streams, Byte and Character Stream, predefined streams, Reading and writing from

console and files. Reading data from files using input streams, writing data to files using output

streams.

*Self-Learning Components:

Students should explore Platforms like LeetCode, HackerRank for JAVA and JAVA IDE like

eclipse, Netbeans etc.

Students can refer the following courses as per the Open-Source University Curriculum

1. "Java Programming Masterclass for Software Developers" on Udemy by Tim

Buchalka

2. "Java Fundamentals: The Java Language" on Pluralsight by Jesse Liberty,

Reference Books:

1. Herbert Schildt, ―Java – The Complete Reference‖, Oracle Press.

2. Cay S. Horstmann, ―Core Java Volume – I Fundamentals‖, Pearson.

Course

Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

E
N

C
A

2
0

3
/

F
u

n
d

a
m

en
ta

ls
 o

f

J
a

v
a

P
ro

g
ra

m
m

in
g

CO1 3 2 2 - 2 - 2 - - - - 2 3 2 2 1

CO2 1 2 - - 3 - 1 - - - - 2 2 3 2 1

CO3 - - - - 3 - 2 1 - 3 - 2 2 3 2 1

CO4 - - - - 3 - 2 - - 3 - 2 2 3 2 1

CO5 3 2 2 - 2 - 2 - - - - 2 3 2 2 1

Department:
Department of Computer Science and Engineering

Course Name:

Fundamentals of Java

Programming Lab

Course Code L-T-P Credits

ENCA251 3-1-0 4

Type of Course: Programme Core

Pre-requisite(s), if any: C++ Programming

Ex No Experiment Title Mapped CO/COs

1 Sample Programs using Objects and classes, Variable Types,

Modifier Types, operators, Loops Decision Making, Strings

and Arrays,

a. WAP to display “Hello, it’s a first program in

java”.

b. WAP to find sum of two integers taken as

input from user at runtime.

c. WAP to find sum of two float numbers taken

as command line arguments

d. WAP to find changed case of entered

character.

e. WAP to find maximum of 3 integer numbers

taken as input from user at runtime.

CO1

2 Sample Programs using Inheritance, Overriding,

Polymorphism, Interfaces, Packages

a. WAP in java to illustrate the concept of

interfaces.

b. Write a program in java to showcase uses of

super keyword

CO1

3 Sample Programs using exception handling and threads

a. Write a program to demonstrate the use of

nesting of try-catch block

b. WAP in java to illustrate the concept of using

multiple catch clauses to handle different types of

exceptions.

c. WAP in java to create a user defined

Exception and throw it explicitly.

CO2

4 Sample Programs using event handling and AWT controls CO1

5 Sample Programs using swings Write an applet which will

display “HAPPY” and “DEEPAVALI” as: The word

“HAPPY” will roll from top to bottom and “DEEPAVLI”

from bottom to “top” . Both will run at the same speed and

stop simultaneously at the center of the applet.

CO3

6 WAP in java to create a frame with various AWT controls

(like choice, list, TextField and Buttons) and handle the

events thrown by them.

CO3

7 WAP in java to create a frame with AWT controls (like

label, push buttons, Checkbox, Checkbox Group) and

handle various events generated by them.

CO4

8 WAP to create a package as MyPack having a class with three

methods: max, fact and show. Use it in other folder with

setting classpath and without setting class path.

CO2

9 WAP to create a frame and illustrate the concept of using an

adapter class in place of interfaces for handling various

mouse events generated over frame window.

CO3

10 Write a program to display “hello” in different color where

user clicks left mouse button and “world” where right mouse

button is clicked. Use black background.

CO2

11 a. Demonstrate thread using Thread class and

Runnable interface

b. Demonstrate various thread methods using a

program

CO3

12 Write a java program to create an abstract class named Shape

that contains two integers and an empty method named

printArea(). Provide three classes named Rectangle, Triangle

and Circle such that each one of the classes extends the class

Shape. Each one of the classes contain only the method

printArea() that prints the area of the given shape.

CO4

13 a. WAP to create class with “name” as String

and “age” as integer data members. The class should

have two methods to take input from user and display

the data.

b. WAP to find factorial of a number using class

and object.

CO3

14 Write a java program that implements a multi-thread

application that has three threads. First thread generates

random integer every 1 second and if the value is even,

second thread computes the square of the number and prints.

If the value is odd, the third thread will print the value of

cube of the number.

CO4

15 Create an Frame with one single button with caption

“Click”. On clicking the button will open a new Frame with

title “Factorial”. The frame will have two three controls

:TextField, Label and button. On clicking button calculate

the factorial entered in TextField control.

CO4

16 Project 1: Simple Calculator: Build a basic calculator

application that performs arithmetic operations like addition,

subtraction, multiplication, and division. You can add a user

interface using Java Swing or JavaFX for a more interactive

experience.

CO4

17 Project 2: Tic-Tac-Toe Game: Implement the classic Tic-

Tac-Toe game where two players take turns marking X or O

on a 3x3 grid. Allow players to play against each other.

CO4

18 Project 3: Quiz Application: Design a quiz application that

presents multiple-choice questions to users and keeps track

of their scores. Include features like a timer, question

randomization, and a scoring system.

CO4

19 Project 4: Hangman Game: Create a Hangman game where

players guess letters to uncover a hidden word. Include

features such as displaying the word's progress, tracking

incorrect guesses, and providing hints.

CO4

Department: Department of Computer Science and Engineering

Course Name:

Course Code L-T-P Credits

ENSP205

0-0-4 2

Type of Course: Probabilistic Modelling and Reasoning

Pre-requisite(s), if any: Basic knowledge of Statistics

Course Outcomes (COs)

 Help students understand the importance and implementation of various random sampling techniques

 Describe probability and various probability distributions such as normal distribution, beta, gamma,

students -t, and bivariate distributions

 Introduce the concepts of estimation techniques that cover both point and interval
estimation

 Teach the concepts of hypothesis testing, p-value, and Bayesian statistics

CO 1 Explain the data-gathering techniques

CO 2 Inspect the data using descriptive statistics

CO 3 Illustrate the probability and conditional probability concepts

CO 4
Distinguish between various probability distributions and analyze the data following

different probability distributions

CO5
Solve inferential statistics problems using point and interval estimation techniques. Infer

the statistical problems using hypothesis testing and p value

Brief Syllabus:

 Help students understand the importance and implementation of various random sampling techniques

 Describe probability and various probability distributions such as normal distribution, beta, gamma,

students -t, and bivariate distributions

 Introduce the concepts of estimation techniques that cover both point and interval
estimation

 Teach the concepts of hypothesis testing, p-value, and Bayesian statistics

UNIT WISE DETAILS

Unit Number: 1 Introduction to Statistics No. of hours: 8

Content Summary: Introduction to Statistics. Role of statistics in scientific methods, current

applications of statistics

Scientific data gathering: Sampling techniques, scientific studies, observational studies, data

management.

Displaying data on a single variable (graphical methods, measure of central tendency, measure of

spread), displaying the relationship between two or more variables, a measure of association between

two or more variables.

Unit Number: 2 Probability Theory No. of hours: 8

Content Summary: Sample space and events, probability, axioms of probability, independent events,

conditional probability, Bayes’ theorem.

Random Variables: Discrete and continuous random variables. Probability distribution of discrete

random variables, binomial distribution, Poisson distribution. Probability distribution of continuous

random variables, The uniform distribution, normal (Gaussian) distribution, exponential distribution,

gamma distribution, beta distribution, t-distribution, 𝜒" distribution. Expectations, variance, and

covariance. Probability Inequalities. Bivariate distributions.

Unit Number: 3 Point Estimations No. of hours: 8

Content Summary: Methods of finding estimators, method of moments, maximum likelihood

estimators, Bayes estimators. Methods of evaluating estimators, mean squared error, best-unbiased

estimator, sufficiency and unbiasedness

Interval Estimations: Confidence interval of means and proportions, Distribution free confidence

interval of percentiles

Unit Number: 4
Test of Statistical Hypothesis and

P-values
 No. of hours: 8

Content Summary: Tests about one mean, tests of equality of two means, tests about proportions, p-

values, likelihood ratio test, Bayesian tests

Bayesian Statistics: Bayesian inference of discrete random variable, Bayesian inference of binomial

proportion, comparing Bayesian and frequentist inferences of proportion, comparing Bayesian and

frequentist inferences of mean

Univariate Statistics using Python: Mean, Mode. Median, Variance, Standard Deviation, Normal

Distribution, t-distribution, interval estimation, Hypothesis Testing, Pearson correlation test, ANOVA F-

test

about intelligence, techniques required to solve AI problems, level of details required to model human

intelligence, successfully building an intelligent problem, history of AI

Self-Learning Components: mention 4-5 topics for students in bullet points

 Advanced topics on Statistics and probability from the reference books given

 Learn the concepts from https://learning.samatrix.io further

 Download different datasets from Github and practice the EDA, probability distributions

 Participate in Kaggle Competitions on Statistical data analysis

Please Note:

1)Students are supposed to learn the components on self-basis

2)Mention open-source tools/ new concepts/technologies that students will be required to learn and

present through presentations in class

3) At least 5-10 % syllabus will be asked in end term exams from self-learning components

 Reference Books: Achim Klenke, (2014), Probability Theory A Comprehensive Course Second Edition,

Springer, ISBN 978-1-4471-5360-3

 Christian Heumann, Michael Schomaker Shalabh (2016), Introduction to Statistics and Data Analysis with

Exercises, Solutions and Applications in R, Springer International Publishing, ISBN 978-3-319-46160-1

Douglas C. Montgomery, (2012), Applied Statistics and Probability for Engineers, 5th Edition, , Wiley

India, ISBN: 978-8-126-53719-8

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4
E

N
S

P
2

0
5

/

P
ro

b
a

b
il

is
ti

c
M

o
d

el
li

n
g

 a
n

d

R
ea

so
n

in
g

CO1 3   2   2   -   2   -   2   -   -   -   -   2   3 2 2 1

CO2 1   2   -   -   3   -   1   -   -   -   - - 2 3 2 3

CO3 -   -   -   -   3   -   2   1   -   3   -   2   2 3 1 1

CO4 -   -   -   -   3   -   2   -   -   3   -   -  2 3 2 3

CO5 -   -   -   -   3   -   2   -   -   3   -   2   2 3 2 1

Department:
Department of Computer Science and Engineering

Course Name:

Fundamentals of Artificial

Intelligence

Course Code L-T-P Credits

ENCA205 3-1-0 4

Type of Course: Major

Pre-requisite(s), if any: NA

COs

Statements

CO1
Understand will learn about intelligent agents, problem-solving, knowledge

representation, machine learning, and other core areas of AI

CO2

Express proficiency in developing algorithms and models to solve complex problem

and develop AI solutions that can automate tasks, improve efficiency, and make

informed decisions.

CO3
Determine methods analyze data, identify patterns and trends, and make data-driven

decisions.

CO4
Identify making decisions based on data and learning from patterns, which enhance

critical thinking and decision-making skills.

CO5
Articulate to abstract complex problems, identify essential features, and generalize

solutions across different scenarios.

UNIT WISE DETAILS

Unit Number: 1 Introduction No. of hours: 4

Definition of Intelligence, Knowledge, Artificial Intelligence; importance, real-time

applications, Turing test, the importance of Artificial Intelligence in today’s era, Difference

between Human Brain & Computer; Chinese Room Argument, Types of Knowledge,

Knowledge Pyramid, Merits and Demerits of Artificial Intelligence.

Unit Number: 2 Brute Force & Heuristic Search Algorithms No. of hours: 8

Characteristics of AI Problems, Problem Representation Techniques, Declarative and

Procedural Representation, Introduction to Brute Force Search: Breadth First Search & Depth

First Search; Introduction to Heuristic Search: Hill Climbing, A* Algorithm, Best First Search.

Unit Number: 3 Introduction to Machine Learning No. of hours: 8

An introduction to Machine Learning, Definition of Machine Learning, Learning,

Classification of Machine Learning, Supervised, Unsupervised, and Reinforcement Learning;

7 Types of Reasoning (With Definitions and Examples), Machine Learning Applications, Life

Cycle of Machine Learning, Introduction to Fuzzy Logic, Linear regression, and classification,

Decision trees, random forests.

Unit Number: 4
Fusion of AI with other technologies and case

studies
No. of hours: 8

Fusion of AI with IoT, Case Studies: Artificial Intelligence & Machine Learning, Definition:

Expert Systems, Neural Networks, Natural Language Processing, Expert System Life Cycle,

Futuristic trends in Artificial Intelligence & Machine Learning, Computer Vision

*Self-Learning Components:

1. Case Studies of Fuzzy Logic ("Fuzzy Logic with Engineering Applications" by

Timothy J. Ross)

2. Problems associated with Hill Climbing Algorithm ("Artificial Intelligence: A Modern

Approach" by Stuart Russell and Peter Norvig)

3. Monotonic Vs. Non-Monotonic Reasoning ("Artificial Intelligence: Foundations of

Computational Agents" by David L. Poole and Alan K. Mackworth)

4. Case studies of Fusion of AI with IoT ("Artificial Intelligence for the Internet of

Things" by Amita Kapoor)

5. Ethical Considerations in AI ("Ethics of Artificial Intelligence and Robotics" edited by

Vincent C. Müller and Nick Bostrom)

Online Certification Courses for Fundamentals of Artificial Intelligence (With Links):

1. Stanford & Deeplearning.AI “Machine Learning Specialization”,

https://www.coursera.org/specializations/machine-learning-introduction

2. “IBM AI Engineering Professional Certificate”,

https://www.coursera.org/professional-certificates/ai-engineer

3. Artificial Intelligence A-Z™ 2023: Build an AI with ChatGPT4,

https://www.udemy.com/course/artificial-intelligence-az/

4. Artificial Intelligence for Business, Solve Real World Business Problems with AI

Solutions, https://www.udemy.com/course/ai-for-business/

5. “Artificial Intelligence: an Overview”,

https://www.coursera.org/specializations/artificial-intelligence-overview

6. TensorFlow Developer Certificate in 2023: Zero to Mastery,

https://www.udemy.com/course/tensorflow-developer-certificate-machine-learning-zero-

to-mastery/

7. IBM “AI Foundations for Everyone Specialization”,

https://www.coursera.org/specializations/ai-foundations-for-everyone

8. Introduction to Generative AI, https://www.coursera.org/learn/introduction-to-

generative-ai

9. Artificial Intelligence: An Overview, https://www.coursera.org/learn/artificial-

intelligence-an-overview

NPTEL Lecture Links for Fundamentals of Artificial Intelligence (With Links):

1. An Introduction to Artificial Intelligence By Prof. Mausam, IIT Delhi,

https://onlinecourses.nptel.ac.in/noc22_cs56/preview

2. NPTEL Video Course : Artificial Intelligence (Prof. Deepak Khemani),

https://www.digimat.in/nptel/courses/video/106106126/L01.html

3. NPTEL Video Course NOC:An Introduction to Artificial Intelligence,

https://www.digimat.in/nptel/courses/video/106102220/L01.html

4. NPTEL Video Course : NOC:Artificial Intelligence: Knowledge Representation and

Reasoning, https://www.digimat.in/nptel/courses/video/106106140/L01.html

5. NPTEL Video Course : NOC: Introduction to Machine Learning, Prof. Sudeshna

Sarkar, https://www.digimat.in/nptel/courses/video/106105152/L01.html

K. R. Mangalam University, LMS Lecture Links for Fundamentals of Artificial

Intelligence (With Links):

https://www.coursera.org/specializations/machine-learning-introduction
https://www.coursera.org/professional-certificates/ai-engineer
https://www.udemy.com/course/ai-for-business/
https://www.coursera.org/specializations/artificial-intelligence-overview
https://www.udemy.com/course/tensorflow-developer-certificate-machine-learning-zero-to-mastery/
https://www.udemy.com/course/tensorflow-developer-certificate-machine-learning-zero-to-mastery/
https://www.coursera.org/specializations/ai-foundations-for-everyone
https://www.coursera.org/learn/introduction-to-generative-ai
https://www.coursera.org/learn/introduction-to-generative-ai
https://www.coursera.org/learn/artificial-intelligence-an-overview
https://www.coursera.org/learn/artificial-intelligence-an-overview
https://www.digimat.in/nptel/courses/video/106105152/L01.html

Fundamentals of Artificial Intelligence, by Dr. Amar Saraswat, K. R. Mangalam University,

https://lms.krmangalam.edu.in/course/view.php?id=1769

Reference Books of Fundamentals of Artificial Intelligence:

1. Artificial Intelligence, by Elaine Rich, Kevin Knight, Shivashankar B Nair, Mc graw

Hill Publications.

2. "Artificial Intelligence: A Modern Approach" by Stuart Russell and Peter Norvig

E-Books of Fundamentals of Artificial Intelligence (with Links):

1. Artificial Intelligence, A Morden Approach, Third Edition, Stuart Russell and Peter Norvig,

PRENTICE HALL SERIES IN ARTIFICIAL INTELLIGENCE,

https://people.engr.tamu.edu/guni/csce421/files/AI_Russell_Norvig.pdf

Program and Course Outcome Mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

E
N

C
A

2
0

5
/

F
u

n
d

a
m

e
n

ta
ls

o
f

A
rt

if
ic

ia
l

In
te

ll
ig

en
ce

CO1 3   2   2   -   2   -   2   -   -   -   -   2   3 2 2 1

CO2 1   2   -   -   3   -   1   -   -   -   - - 2 3 2 3

CO3 -   -   -   -   3   -   2   1   -   3   -   2   2 3 1 1

CO4 -   -   -   -   3   -   2   -   -   3   -   -  2 3 2 3

CO5 -   -   -   -   3   -   2   -   -   3   -   2   2 3 2 1

https://lms.krmangalam.edu.in/course/view.php?id=1769

Department:
Department of Computer Science and Engineering

Course Name:

Life Skills for

Professionals-I

Course Code L-T-P Credits

AEC011 3-0-0 3

Type of Course: AEC

Pre-requisite(s) Basic life skills

COs Statements

CO1 Perform calculations related to number systems, percentages and averages, quickly and

accurately.

CO2 Exhibit confidence in tackling multiple-choice questions, time-constrained tests and

competitive examinations.

CO3 Demonstrate active listening techniques, including attentive listening and reflection

CO4 Articulate and speak with confidence and express ideas clearly and coherently.

CO5 Improve confidence and display open and positive non-verbal communication.

Brief Syllabus:

Through this comprehensive course, the learners will develop a solid foundation in communication

skills, enabling them to express themselves confidently, listen actively, and build strong relationships

in personal and professional contexts.

UNIT WISE DETAILS

Unit Number: 1 Communication: An Introduction No. of hours: 6

Definition, Nature and Scope of Communication, Importance and Purpose of Communication, Process

of Communication, Types of Communication, Barriers to Communication, Essentials of Effective

Communication

Unit Number: 2 Non-Verbal Communication No. of hours: 6

Personal Appearance, Gestures, Postures, Facial Expression, Eye Contacts, Body Language (Kinesics)

Time language, Tips for Improving Non-Verbal Communication

Unit Number: 3 Basic number system No. of hours: 6

Divisibility, Unit digit, Last two digit, Remainder, Number of zero, Factor, LCM & HCF,

Simplification, Mixture, Average, Ratio, and Partnership.

Unit Number: 4 Number system No. of hours: 6

Factor, LCM & HCF, Simplification, Mixture, Average, Ratio, and Partnership.

Unit Number: 5 Time Management No. of hours: 6

Time management strategies, setting goals, organizing, and planning ahead, Making the most of your

time Dealing with distractions, Procrastination, and Avoiding distractions

*Self-Learning Components:

https://onlinecourses.nptel.ac.in/noc21_hs02/preview

Please Note:

1)Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end term exams from self-learning components

Reference Books:

1. Aggarwal, R. S. (2014). Quantitative aptitude (Revised edition).

2. Gladwell, M. (2021). Talking to strangers.

3. Scott, S. (2004). Fierce conversations.

Program and Course Outcome Mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

A
E

C
0

1
1

/
li

fe
 S

k
il

ls
 f

o
r

P
ro

fe
ss

io
n

a
ls

-I

CO1 3   2   2   -   2   -   2   -   -   -   -   2   3 2 2 1

CO2 1   2   -   -   3   -   1   -   -   -   - - 2 3 2 3

CO3 -   -   -   -   3   -   2   1   -   3   -   2   2 3 1 1

CO4 -   -   -   -   3   -   2   -   -   3   -   -  2 3 2 3

CO5 -   -   -   -   3   -   2   -   -   3   -   2   2 3 2 1

https://onlinecourses.nptel.ac.in/noc21_hs02/preview

Department: Department of Computer Science and Engineering

Course Name: Summer

Internship-II
Course Code L-T-P Credits

 0-0-0 2

Type of Course:
INT

Pre-requisite(s), if any:

The duration of the internship will be two weeks. It will be after the completion of 3rd Semester and

before the commencement of Semester 5th Semester.

The following options can be opted for by the students:

1. Offline internship in industry - The student is supposed to produce a joining letter and relieving letter

once the internship is over in case of an Offline internship in any industry.

2. Online internships – with organizations /institutions that are approved /supported/recommended by

the All-India Council of Technical Education for Internship (like SWAYAM, NPTEL, Internshala etc.)

Report Submission and Evaluation Guidelines:

• Student must prepare a detailed report and submit the report. A copy of the report can be kept in the

departments for record.

• Each student must be assigned a faculty as a mentor from the university and an Industry Expert as

External Guide or Industry Mentor.

• The presentation by student for Internship/ project should in the presence of all students is desirable.

• Student should produce successful completion certificate in case of summer internship in industry.

Course Outcomes:

At the end of the course, students will be able to:

1. Get exposure to the industrial environment, which cannot be simulated in the classroom and hence

creating competent professionals for the industry.

2. Get possible opportunities to learn, understand and sharpen the real time technical / managerial skills

required at the job(s).

3. Gain experience in writing technical reports / projects and presentation of it.

4. Learn and gain exposure to the engineer’s responsibilities and ethics.

5. Understand the social, economic, and administrative considerations that influence the working

environment of industrial organizations.

 EVEN SEMESTER (IV)

SNo Course

Code

Course Title Category L T P C

1 ENCA202 Fundamentals of Operating Systems Major 4 - - 4

2 ENCA204 Fundamentals of Database Management

Systems

Major 3 1 0 4

3 ENSP212 Foundation of Machine Learning Minor 4 0 0 4

4 ENCA252 Fundamentals of Operating System Lab Major - - 2 1

5 ENSP262 Foundation of Machine Learning Lab Minor 0 0 2 1

6 ENCS254 Fundamentals of Database Management

Systems Lab

Major 0 0 2 1

7 Open Elective -III Open

Elective

3 0 0 3

8 AEC012 Life Skills for Professionals-II AEC 3 0 0 3

9 VAC IV VAC 2 0 0 2

10 ENSI252 Minor project-I 0 0 0 2

TOTAL 19 1 6 25

Department: Department of Computer Science and Engineering

Course Name:

Fundamentals of

Operating Systems

Course Code L-T-P Credits

ENCA202 4-0-0 4

Type of Course: MAJOR

Pre-requisite(s), if any: Basics of programming

 Define Course Outcomes (CO)

COs Statements

CO1 To outline various concepts and features of Operating systems.

CO2 Compare various operating systems with respect to characteristics and features

CO3 Implement algorithm of CPU Scheduling, Memory Scheduling and disk scheduling.

CO4 Apply appropriate memory and file management schemes

CO5 Illustrate various disk scheduling algorithms.

Brief Syllabus:

Operating systems course is intended as a general introduced to the techniques used to

implement operating systems and related kinds of systems software. The topics covered will be

functions and structure of operating systems, process management (creation, synchronization,

and communication); processor scheduling; deadlock prevention, avoidance, and recovery;

main-memory management; virtual memory management (swapping, paging, segmentation and

page-replacement algorithms); control of disks and other input/output devices; file-system

structure and implementation; and protection and security.

UNIT WISE DETAILS

Unit Number: 1 Introduction to OS No. of hours: 6

Introduction: Concept of Operating Systems, Generations of Operating systems, Types of

Operating Systems, OS Services, System Calls, Layered System, Kernel, Types of Kernels

(Monolithic/Macro Kernel and Micro Kernel), Virtual Machine.

Unit Number: 2 Processes and Threads No. of hours: 12

Processes: Definition, Process Relationship, Different states of a Process, Process State

transitions, Process Control Block (PCB), Context switching.

Thread: Definition, Various states, Benefits of threads, Types of threads, Concept of

multithreads.

Process Scheduling: Basic Concept, Type of Scheduling (Preemptive Scheduling, Non-

preemptive Scheduling), Scheduling criteria: CPU utilization, Throughput, Turnaround Time,

Waiting Time, Response Time.

Scheduling algorithms: Pre-emptive and Non-preemptive.

Unit Number: 3 Verification and Validation No. of hours: 12

Memory Management: Basic concept, Logical and Physical address map, Memory allocation:

Contiguous Memory allocation – Fixed and variable partition–Internal and External

fragmentation and Compaction; Paging.

Virtual Memory: Basics of Virtual Memory – Hardware and control structures –

Locality of reference, Page fault, Working Set, Dirty page/Dirty bit – Demand paging, Page

Replacement algorithms: Optimal, First in First Out (FIFO), Second Chance (SC), Not recently

used (NRU) and Least Recently used (LRU).

File Management: Concept of File, Access methods, File types, File operation, Directory

structure, Allocation methods (contiguous, linked, indexed).

Unit Number: 4 Software Project Management No. of hours: 10

Process-Synchronization & Deadlocks: Inter-process Communication: Critical Section,

Race Conditions, Mutual Exclusion, Peterson’s Solution, The Producer\ Consumer Problem,

Semaphores, Event Counters, Message Passing, Classical IPC Problems: Reader’s & Writer

Problem, Dinning Philosopher Problem etc.

Definition of Deadlocks, Necessary and sufficient conditions for Deadlock, Deadlock

Prevention, Deadlock Avoidance: Banker’s algorithm, Deadlock detection and Recovery.

*Self-Learning Components:

1. Case study on UNIX and WINDOWS Operating System.

2. Practice of System calls

3. Students can refer the following book as well:

Operating Systems: Three Easy Pieces by Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-

Dusseau

https://pages.cs.wisc.edu/~remzi/OSTEP/

4. Students can refer the following courses as per the Open-Source University Curriculum

 "Operating system courses" on Udemy.

 " Introduction to Operating Systems Specialization" Coursera.

 “Introduction to Operating Systems” by Udacity.

Reference Books :

1. Silbersachatz and Galvin, “Operating System Concepts”, Pearson

2. Tannenbaum, “Operating Systems”, PHI, 4th Edition.

2. William Stallings, “Operating Systems Internals and Design Principles”, PHI

3. HallMadnick, J. Donovan, “Operating Systems”, Tata McGraw Hill.

4. W. Tomasi, “Electronic Communication Systems” Pearson Education, 5th

Edition

https://pages.cs.wisc.edu/~remzi/OSTEP/

Program and Course Outcome Mapping

Course

Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

 E
N

C
A

2
0

2
/

F
u

n
d

a
m

en
ta

ls
 o

f

O
p

er
a
ti

n
g

 S
y

st
em

s

s

CO1 3 - 2 - - - - - - - 2 1 3 2 1 1

CO2 3 - - - - - 1 - - - 3 1 2 2 1 1

CO3 - 3 3 - - - 1 - - - 2 1 3 3 2 1

CO4 - 3 3 2 - - - - 1 - - 1 2 2 2 2

CO5 1 2 2 - - - - - - - - - 2 1 1 1

Department: Department of Computer Science and Engineering

Course Name:

Fundamentals of Operating

Systems Lab

Course Code L-T-P Credits

ENCA252 0-0-2 1

Type of Course: MAJOR

Pre-requisite(s), if any: Basics of programming

Proposed Lab Experiments

Defined Course Outcomes

COs Statements

CO 1 Recall the concepts and principles of CPU scheduling algorithms used in operating

systems.

CO 2 Compare and contrast different CPU scheduling algorithms and their advantages and

disadvantages.

CO 3 Implement CPU scheduling algorithms, such as Round Robin and Priority, using Python

programming.

CO 4 Evaluate the performance of CPU scheduling algorithms by analyzing and interpreting

the generated Gantt charts and calculating average waiting time and turnaround time.

CO 5 Design Python programs to simulate various file allocation strategies and memory

management techniques, such as sequential, indexed, linked, and paging.

List of Programs

Ex No Experiment Title Mapped CO/COs

1 Write Python programs to simulate the following CPU

Scheduling algorithm:

 First-Come, First-Served (FCFS)

CO1

2 Write Python programs to simulate the following CPU

Scheduling algorithm:

Shortest Job First (SJF)

CO1

3 Write Python programs to simulate the following CPU

Scheduling algorithms:

Round Robin

CO1

4 Write Python programs to simulate the following CPU

Scheduling algorithms:

Priority

CO1

5 Given the list of processes, their CPU burst times, and

arrival times, write a Python program to display/print the

Gantt chart for Priority and Round Robin scheduling

CO4

algorithms. Compute and print the average waiting time and

average turnaround time for each scheduling policy.

6 Write a Python program to simulate the following file

allocation strategies like Sequential

CO5

7 Write a Python program to simulate the following file

allocation strategies like Indexed

CO5

8 Write a Python program to simulate the following file

allocation strategies like linked.

CO5

9 Write Python programs to simulate the following contiguous

memory allocation techniques:

a) Worst-fit

b) Best-fit

c) First-fit

CO5

10 Write Python programs using the I/O system calls of

UNIX/Linux operating system (open, read, write, close,

fcntl, seek, stat, opendir, readdir).

CO1

11 Write a Python program to simulate the MVT (Multiple

Variable Tasks) memory management technique.

CO5

12 Write a Python program to simulate the MFT (Multiple

Fixed Tasks) memory management technique.

CO5

13 Write a Python program to simulate the Banker's Algorithm

for Deadlock Avoidance and Prevention.

CO5

14 Write a Python program to implement the Producer-

Consumer problem using semaphores using UNIX/Linux

system calls.

CO3

15 Write Python programs to illustrate the following IPC

(Inter-Process Communication) mechanisms:

a) Pipes

CO3

16 Write Python programs to illustrate the following IPC

(Inter-Process Communication) mechanisms:

a) FIFOs (Named Pipes)

CO3

17 Program to implement process synchronization using

semaphores in Python.

CO4

18 Program to implement a basic Fo5ile allocation strategy like

sequential file allocation in Python.

CO5

19 Program to demonstrate the use of signals in Python for

process management.

CO1

20 Program to create and manipulate threads in Python. CO3

21 Program to implement memory management techniques

(e.g., paging, segmentation) in Python.

CO5

22 Program to simulate file system operations (e.g., open, read,

write, close) in Python.

CO1

23 Program to implement process synchronization using mutex

locks in Python.

CO4

24 Program to simulate the working of virtual memory in

Python.

CO5

25 Program to simulate disk file management operations (e.g.,

allocation, deallocation) in Python.

CO5

26 Program to implement file locking mechanisms (e.g.,

advisory, mandatory) in Python.

CO5

27 Write a Python program to simulate the following file

organization techniques

Two level directories

CO5

28 Write Python programs to simulate the paging in memory

management techniques

CO5

29 Write Python programs to simulate the segmentation in

memory management techniques

CO5

30 Write a Python program to simulate the following file

organization techniques

Single level directory

CO5

Department: Department of Computer Science and Engineering

Course Name:

Fundamentals of Database

Management Systems

Course Code L-T-P Credits

ENCA204 3-1-0 4

Type of Course: MAJOR

Pre-requisite(s), if any: Basics of programming

Define Course Outcomes (CO)

COs Statements

CO1 Analyze the key components and concepts of DBMS, including data independence,

architecture, schemas and various DBMS models.

CO2 Apply data modeling techniques using ER model and understanding the concepts of keys

CO3 Evaluate the principles and techniques of relational modeling and the fundamental

operations of relational algebra.

CO4 Design and implement effective database designs by analyzing functional dependencies and

normalization.

CO5 Explain transaction processing, concurrency control and database recovery protocols in

databases.

Brief Syllabus:

This course introduces the basic concept of database, Database modelling languages, E-R modelling,

Transaction Processing and Database security.

UNIT WISE DETAILS

Unit Number: 1 Introduction to database No. of hours: 8

Overview of DBMS, DBMS system vs file system, Data independence and abstraction level,

Architecture of DBMS, Schemas, Instances and various DBMS models.

Unit Number: 2 Data Modelling and Languages No. of hours: 10

Data Modelling: Data modeling using Entity relationship Model: ER Model Concepts,

notation of ER diagram, mapping constraints, Keys, concept of super key, candidate key,

primary key, generalization and specialization

Relational Modelling: Concepts, constraints, Language, Relational Database Design by ER

and EER mapping, Relational Algebra, Relational Calculus, relational Algebra and its

fundamental operations.

Mini project: Draw ER diagram to design a database to manage university course registration,

including student records, courses, instructors, prerequisites, and enrolment.

Unit Number: 3
Database design and Transaction

Processing
No. of hours: 8

Database design: Functional Dependencies, lossless decomposition and Normalization (1NF,

2NF, 3NF, BCNF, 4NF)

Transaction management: transaction concept, ACID properties, state of transaction,

serializability, checkpoints and deadlock handling.

Mini project: Design a database to manage a library's catalog, including books, authors,

genres, and borrower information. Normalize the database to eliminate data duplication and

maintain consistency.

Unit Number: 4 Introduction to SQL No. of hours: 12

Introduction to SQL: characteristics and advantages of SQL, SQL data types, SQL commands and

operators, Tables, views and indexes, Queries and sub-queries, aggregate function, insert, alter and

update operations

Mini project : Create Client_master with the following fields(ClientNO, Name, Address,

City, State, bal_due)

(a) Insert five records

(b) Find the names of clients whose bal_due> 5000 .

(c) Change the bal_due of ClientNO “ C123” to Rs. 5100

(d) Change the name of Client_master to Client12.

(e) Display the bal_due heading as “BALANCE”

*Self-Learning Components:

 PostgreSQL

 MongoDB

Note: Students will give presentations and submit projects based on self-learning components

for evaluation.

Reference Books:

1.“Database System Concepts”, 6th Edition by Abraham Silberschatz, Henry F. Korth, S.

Sudarshan, McGraw-Hill.

2. “Principles of Database and Knowledge – Base Systems”, Vol 1 by J.D. Ullman, Computer

Science Press.

3. https://github.com/ossu/computer-science#databases.(OSSU computer science curriculum)

Program and Course Outcome Mapping

Course

Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO

11

PO

12

PSO1 PSO2 PSO3 PS

O4

 E
N

C
A

2
0
4
/

F
u

n
d

a
m

en
ta

ls
 o

f

D
a
ta

b
a

se

M
a
n

a
g
em

en
t

S
y
st

em
s

CO1 3 - - 3 - - - - - 2 - 1 2 - 1 1
CO2 - 2 2 3 2 - - - - - - - 2 2 2 -
CO3 2 2 1 3 - - - - - - - - 1 2 1 -
CO4 3 2 3 2 - - - - - - - - 1 2 2 -
CO5 - - - 3 - 2 2 - 2 - - - 1 1 2 1

https://github.com/ossu/computer-science#databases

Department: Department of Computer Science and Engineering

Course Name:

Fundamentals of Database

Management Systems Lab

Course Code L-T-P Credits

ENCS254 0-0-2 1

Type of Course: MAJOR

Pre-requisite(s), if any: Basics of programming

Defined Course Outcomes

COs Statements

CO 1 Define and apply mapping constraints to transform an ER model into a relational schema

CO 2 Demonstrate an understanding of keys (super key, candidate key, primary key) and their

roles in database design

CO 3 Perform data manipulation operations such as insertion, deletion, and updating using SQL

commands

CO 4 Create and manage database objects like tables, views, and indexes using SQL statements

Ex.

No

Experiment Title Mapped

CO/COs

1 Consider following databases and draw ER diagram and convert entities

and relationships to relation table for a given scenario:

COLLEGE DATABASE: STUDENT (USN, SName, Address, Phone,

Gender) SEMSEC (SSID, Sem, Sec) CLASS (USN, SSID) SUBJECT

(Subcode, Title, Sem, Credits) IAMARKS (USN, Subcode, SSID,

Test1, Test2, Test3, FinalIA)

CO1, CO2

2 Consider following databases and draw ER diagram and convert entities

and relationships to relation table for a given scenario:

COMPANY DATABASE: EMPLOYEE (SSN, Name, Address, Sex,

Salary, SuperSSN, DNo) DEPARTMENT (DNo, DName, MgrSSN,

MgrStartDate) DLOCATION (DNo,DLoc) PROJECT (PNo, PName,

PLocation, DNo) WORKS_ON (SSN, PNo, Hours)

CO1, CO2

3 Consider the below Database:

Movies (title, director, making_year, rating), actors (actor, acting_year),

acts(actor, title), directors (director, director_year)

Write relation algebra queries for given relations:
1. Find movies made after 1997

2. Find movies made by Hanson after 1997

3. Find all movies and their ratings

4. Find all actors and directors

5. Find Coen’s movies with McDormand

CO3, CO4

4 Database Schema for a customer-sale scenario
Customer(Cust id : integer, cust_name: string)

Item(item_id: integer, item_name: string, price: integer)

Sale(bill_no: integer, bill_data: date, cust_id: integer, item_id: integer,

qty_sold: integer)

For the above schema, perform the following—

i) Create the tables with the appropriate integrity constraints.

ii) Insert around 10 records in each of the tables.

iii) List all the bills for the current date with the customer names and item

numbers.

CO3, CO4

iv) List the total Bill details with the quantity sold, price of the item and

the final amount.

v) List the details of the customer who have bought a product which has

a price>200.

vi) Give a count of how many products have been bought by each

customer

vii) Give a list of products bought by a customer having cust_id as 5.

viii) List the item details which are sold as of today.

ix) Create a view which lists out the bill_no, bill_date, cust_id, item_id,

price, qty_sold, amount.

x) Create a view which lists the daily sales date wise for the last one week

5 Database Schema for a Student Library scenario
Student(Stud_no : integer, Stud_name: string)

Membership(Mem_no: integer, Stud_no: integer)

Book(book_no: integer, book_name:string, author: string)

Iss_rec(iss_no:integer, iss_date: date, Mem_no: integer, book_no: integer)

For the above schema, perform the following—

i) Create the tables with the appropriate integrity constraints

ii) Insert around 10 records in each of the tables

iii) List all the student names with their membership numbers

iv) List all the issues for the current date with student and Book names

v) List the details of students who borrowed book whose author is

CJDATE

vi) Give a count of how many books have been bought by each

student

vii) Give a list of books taken by student with stud_no as 5

viii) List the book details which are issued as of today

ix) Create a view which lists out the iss_no, iss _date, stud_name,

book name

x) Create a view which lists the daily issues-date wise for the last one

week

CO3, CO4

6 Database Schema for a Employee-pay scenario
employee(emp_id : integer, emp_name: string)

department(dept_id: integer, dept_name:string)

paydetails(emp_id : integer, dept_id: integer, basic: integer, deductions:

integer, additions: integer, DOJ: date)

payroll(emp_id : integer, pay_date: date)

For the above schema, perform the following—

i) Create the tables with the appropriate integrity constraints

ii) Insert around 10 records in each of the tables

iii) List the employee details department wise

iv) List all the employee names who joined after particular date

v) List the details of employees whose basic salary is between

10,000 and 20,000

vi) Give a count of how many employees are working in each

department

vii) Give a names of the employees whose netsalary>10,000

viii) List the details for an employee_id=5

ix) Create a view which lists out the emp_name, department, basic,

deductions, netsalary

x) Create a view which lists the emp_name and his netsalary

CO3, CO4

7 Database Schema for a Video Library scenario
Customer(cust_no: integer,cust_name: string)

Membership(Mem_no: integer, cust_no: integer)

Cassette(cass_no:integer, cass_name:string, Language: String)

Iss_rec(iss_no: integer, iss_date: date, mem_no: integer, cass_no: integer)

For the above schema, perform the following—

i) Create the tables with the appropriate integrity constraints

CO3, CO4

ii) Insert around 10 records in each of the tables

iii) List all the customer names with their membership numbers

iv) List all the issues for the current date with the customer names and

cassette names

v) List the details of the customer who has borrowed the cassette whose

title is “ The Legend”

vi) Give a count of how many cassettes have been borrowed by each

customer

vii) Give a list of book which has been taken by the student with mem_no

as 5

viii) List the cassettes issues for today

ix) Create a view which lists outs the iss_no, iss_date, cust_name,

cass_name

x) Create a view which lists issues-date wise for the last one week

8 Database Schema for a student-Lab scenario
Student(stud_no: integer, stud_name: string, class: string)

Class(class: string, descrip: string)

Lab(mach_no: integer, Lab_no: integer, description: String)

Allotment(Stud_no: Integer, mach_no: integer, dayof week: string)

For the above schema, perform the following—

i) Create the tables with the appropriate integrity constraints

ii) Insert around 10 records in each of the tables

iii) List all the machine allotments with the student names, lab and

machine numbers.

iv) List the total number of lab allotments day wise

v) Give a count of how many machines have been allocated to the ‘CSIT’

class

vi) Give a machine allotment details of the stud_no 5 with his personal

and class details

vii) Count for how many machines have been allocated in Lab_no 1 for

the day of the week as “Monday”

viii) How many students class wise have allocated machines in the

labs

ix) Create a view which lists out the stud_no, stud_name, mach_no,

lab_no, dayofweek

x) Create a view which lists the machine allotment details for

“Thursday”.

CO3, CO4

9 Consider the following table:

 Table: CLASS

 Id Name

1 Bravo

2 Alex

4 Cheng

Give the output of the following SQL script:

 > INSERT INTO class VALUES (5,’Rahul’);

 > COMMIT;

 > UPDATE class SET name = ‘Abhijeet’ WHERE id= ‘5’;

 > SAVEPOINT A;

 > INSERT INTO class VALUES (6, ‘Chris’);

 > SAVEPOINT B;

 > INSERT INTO class VALUES (7, ‘Bravo’);

 > SAVEPOINT C

 > SELECT * FROM class;

 > ROLLBACK TO B;

 > SELECT * FROM class;

 > ROLLBACK TO A;

CO3, CO4

10 Consider the following two tables: SHOP and ACCESSORIES

 Table: SHOP
CO3, CO4

ID ShopName Area

S01 ABC Computronics CP

S02 All Infotech Media GK II

S03 Tech Shoppe CP

S04 Geek Tenco Soft Nehru Place

S05 Hitech Tech Store Nehru Place

Table: ACCESSORIES

No Name Price Id

A01 Motherboard 12000 S01

A02 Hard Disk 5000 S01

A03 Keyboard 500 S02

A04 Mouse 300 S01

A05 Motherboard 13000 S02

A06 Keyboard 400 S03

A07 LCD 6000 S04

T08 LCD 5500 S05

T09 Mouse 350 S05

T10 Hard Disk 450 S03

i. Perform Cartesian product or Cross join of both tables.

ii. To display the Name and Price of all the Accessories in ascending

order of their price.

iii. To display ID and ShopName of all shops located in Nehru Place.

iv. To display minimum and maximum price of all accessories.

v. To display Name, Price of all accessories and their respective

ShopName where they are available.

11 In continuation with experiment no. 10, find the output of the following

SQL queries based on above mentioned tables:

i. SELECT DISCTINCT NAME FROM ACCESSORIES WHERE

PRICE >= 5000;

ii. SELECT AREA, COUNT(*) FROM SHOP GROUP BY AREA;

iii. SELECT COUNT(DISTINCT AREA) FROM SHOP;

iv. SELECT NAME, PRICE*0.05 DISCOUNT FROM ACCESSORIES

WHERE ID IN (‘S02’, ‘S03’);

CO3, CO4

12 Consider the following two tables: PRODUCT and CLIENT.

 Table: Product

P_ID ProdName Manufacturer Price ExpiryDate

TP01 Talcom Powder LAK 40 2011-06-26

FW05 Face Wash ABC 45 2010-12-01

BS01 Bath Soap ABC 55 2010-09-10

SH06 Shampoo XYZ 120 2012-04-09

FW12 Face Wash XYZ 95 2010-08-15

Note:

 P_ID is the primary key.

Table: Client

C_ID ClientName City P_ID

1 Cosmetic Shop Delhi FW05

6 Total Health Mumbai BS01

12 Live Life Delhi SH06

CO3, CO4

15 Pretty One Delhi FW05

16 Dreams Bengaluru TP01

14 Expressions Delhi NULL

Note:

 C_ID is the primary key.

 P_ID is the foreign key referencing P_ID of Client Table.

i. To display the ClientName and City of all Mumbai and Delhi based

clients in Client table.

ii. Increase the price of all the products in Product Table by 10%.

iii. To display the ProdName, Manufacturer, ExpiryDate of all the

products that expired on or before ‘2010-12-31’.

iv. To display C_ID, ClientName, City of all the clients including the

ones that have not purchased a product and their corresponding

ProdName sold.

v. Display the distinct Manufacturer from Product table.

vi. Display the ClientName, C_ID who belong to a city starts with ‘M’

13 Consider the following schema for a Library Database:

BOOK(Book_id, Title, Publisher_Name, Pub_Year)

BOOK_AUTHORS(Book_id, Author_Name) PUBLISHER(Name,

Address, Phone) BOOK_COPIES(Book_id, Programme_id, No-

of_Copies) BOOK_LENDING(Book_id, Programme_id, Card_No,

Date_Out, Due_Date) LIBRARY_PROGRAMME(Programme_id,

Programme_Name, Address)

Write SQL queries to

1. Retrieve details of all books in the library – id, title, name of publisher,

authors, number of copies in each Programme, etc.

2. Get the particulars of borrowers who have borrowed more than 3

books, but from Jan 2017 to Jun 2017.

3. Delete a book in BOOK table. Update the contents of other tables to

reflect this data manipulation operation.

4. Partition the BOOK table based on year of publication. Demonstrate

its working with a simple query.

5. Create a view of all books and its number of copies that are currently

available in the Library

CO3, CO4

14 Consider the following schema for Order Database:

SALESMAN(Salesman_id, Name, City, Commission)

CUSTOMER(Customer_id, Cust_Name, City, Grade, Salesman_id)

ORDERS(Ord_No, Purchase_Amt, Ord_Date, Customer_id,

Salesman_id)

Write SQL queries to

1. Count the customers with grades above Bangalore’s average.

2. Find the name and numbers of all salesman who had more than one

customer.

3. List all the salesman and indicate those who have and do not have

customers in their cities (Use UNION operation.)

4. Create a view that finds the salesman who has the customer with the

highest order of a day.

5. Demonstrate the DELETE operation by removing salesman with id

1000. All his orders must also be deleted.

CO3, CO4

15 Consider the schema for Movie Database: ACTOR(Act_id, Act_Name,

Act_Gender) DIRECTOR(Dir_id, Dir_Name, Dir_Phone)

CO3, CO4

MOVIES(Mov_id, Mov_Title, Mov_Year, Mov_Lang, Dir_id)

MOVIE_CAST(Act_id, Mov_id, Role) RATING(Mov_id, Rev_Stars)

 Write SQL queries to

1. List the titles of all movies directed by ‘Hitchcock’.

2. Find the movie names where one or more actors acted in two or more

movies.

3. List all actors who acted in a movie before 2000 and in a movie after

2015 (use JOIN operation).

4. Find the title of movies and number of stars for each movie that has

at least one rating and find the highest number of stars that movie

received. Sort the result by movie title.

5. Update rating of all movies directed by ‘Steven Spielberg’ to 5.

16 Consider the schema for College Database: STUDENT(USN, SName,

Address, Phone, Gender) SEMSEC(SSID, Sem, Sec) CLASS(USN,

SSID) COURSE(Subcode, Title, Sem, Credits) IAMARKS(USN,

Subcode, SSID, Test1, Test2, Test3, FinalIA)

Write SQL queries to

1. List all the student details studying in fourth semester ‘C’ section.

2. Compute the total number of male and female students in each

semester and in each section.

3. Create a view of Test1 marks of student USN ‘1BI15CS101’ in all

Courses.

4. Calculate the FinalIA (average of best two test marks) and update the

corresponding table for all students.

5. Categorize students based on the following criterion: If FinalIA = 17

to 20 then CAT = ‘Outstanding’ If FinalIA = 12 to 16 then CAT =

‘Average’ If FinalIA< 12 then CAT = ‘Weak’ Give these details only

for 8th semester A, B, and C section students.

CO3, CO4

17 Consider the schema for Company Database: EMPLOYEE(SSN, Name,

Address, Sex, Salary, SuperSSN, DNo) DEPARTMENT(DNo, DName,

MgrSSN, MgrStartDate) DLOCATION(DNo,DLoc) PROJECT(PNo,

PName, PLocation, DNo) WORKS_ON(SSN, PNo, Hours)

Write SQL queries to

1. Make a list of all project numbers for projects that involve an

employee whose last name is ‘Scott’, either as a worker or as a manager

of the department that controls the project.

2. Show the resulting salaries if every employee working on the ‘IoT’

project is given a 10 percent raise.

3. Find the sum of the salaries of all employees of the ‘Accounts’

department, as well as the maximum salary, the minimum salary, and

the average salary in this department.

4. Retrieve the name of each employee who works on all the projects

controlled by department number 5 (use NOT EXISTS operator).

5. For each department that has more than five employees, retrieve the

department number and the number of its employees who are making

more than Rs. 6,00,000.

CO3, CO4

Department: Department of Computer Science and Engineering

Course Name:

Foundation of Machine

Learning

Course Code L-T-P Credits

ENSP212 4-0-0 4

Type of Course: Minor

Pre-requisite(s), if any: Basics of programming

Define Course Outcomes (CO)

COs Statements

CO1
Explain the use of Machine Learning Models in business and understand machine learning

models can be used to solve business problems.

CO2
Compare machine learning algorithms such as supervised, unsupervised, and reinforcement

learning models.

CO3
Identify the performance of different machine learning models and compare them to

optimize the results.

CO4 Make use continuous and discrete data set to fit regression and classification models.

Brief Syllabus:

Help student understand what machine learning is. How business can use machine learning in

different domains to gain competitive advantage. Student is able to differentiate between different

learning algorithms. To understand different data science processes, tools and techniques. Gain a

fundamental understanding of the concepts and techniques that underpin machine learning

algorithms

UNIT WISE DETAILS

Unit Number: 1 Introduction to Machine Learning No. of hours: 10

Learning systems, real world applications of machine learning, why machine learning, variable

types and terminology, function approximation,

Types of machine learning: Supervised learning, unsupervised learning, Reinforcement learning

Unit Number: 2
Important concepts of machine

learning
No. of hours: 10

Parametric vs non-parametric models, the trade-off between prediction accuracy and model

interpretability, the curse of dimensionality, measuring the quality of fit, bias-variance trade off,

overfitting, model selection, no free lunch theorem.

Unit Number: 3 Linear Regression No. of hours: 10

Linear regression, estimating the coefficients, accessing the accuracy of coefficient estimates,

accessing the accuracy of the model, multiple linear regression, qualitative predictors.

Unit Number: 4 Classification No. of hours: 10

Logistic regression, estimating regression coefficients, making predictions, multiple logistic

regressions, linear discriminant analysis, bayes’ theorem of classification, LDA for p=1, LDA for

p>1, quadratic discriminant analysis.

*Self-Learning Components:

1)Students are supposed to learn the components on self-basis

2)Mention open-source tools/ new concepts/technologies that students will be required to learn and

present through presentations in class

3) At least 5-10 % syllabus will be asked in end term exams from self-learning components

Reference Books:

1. Machine Learning by Tom M. Mitchell - McGraw Hill Education; First edition.

2. Pattern Recognition and Machine Learning (Information Science and Statistics) by

Christopher M. Bishop - Springer; 1st ed. 2006. Corr. 2nd printing 2011 edition.

The Elements of Statistical Learning: Data Mining, Inference, and Prediction by Trevor Hastie,

Robert Tibshirani, Jerome Friedman - Springer; 2nd ed. 2009, Corr. 9th printing 2017 edition.

Program and Course Outcome Mapping

Course

Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO

11

PO

12

PSO1 PSO2 PSO3 PS

O4

E
N

S
P

2
1
2
/

F
o
u

n
d

a
ti

o
n

 o
f

M
a
ch

in
e

L
ea

rn
in

g
 s

CO1 2 3 1 1 1 1 1 1 2 3 2 2
CO2 2 3 2 1 1 1 2 1 3 3 3 2
CO3 2 2 1 2 1 1 1 2 2 3 2
CO4 2 1 2 2 1 1 1 2 3 2 3
CO5 2 3 1 1 1 1 1 1 2 3 2 2

Department: Department of Computer Science and Engineering

Course Name:

Foundation of Machine

Learning Lab

Course Code L-T-P Credits

ENSP262 0-0-2 1

Type of Course: Minor

Pre-requisite(s), if any: Basics of programming

Proposed Lab Experiments

Defined Course Outcomes

COs Statements

CO 1 Explain the use of Machine Learning Models in business and understand machine

learning models can be used to solve business problems.

CO 2 Compare machine learning algorithms such as supervised, unsupervised, and

reinforcement learning models.

CO 3 Identify the performance of different machine learning models and compare them to

optimize the results.

CO 4 Make use continuous and discrete data set to fit regression and classification models.

List of Programs

Ex No Experiment Title Mapped CO/COs

1 Prediction using simple linear regression CO1

2 Prediction using multiple linear regression CO1

3 Classification using Logistics regression CO1

4 Classification using linear discriminant analysis CO1

5 Classification using support vector machine. CO2

6 Classification using Guassian Naïve Bayes CO2

7 Classification using decision Tree CO2

8 Classification using Random Forest. CO1

9 Classification using K nearest neighbour. CO4

10 Write a program to Retrieve Data for a machine Learning

project.

CO3

11 Write a program to Conduct Exploratory Data Analysis

using Python

CO3

12 Write a program to Clean the Data using Python CO4

13 Write a program for Data Modeling using Python CO4

14 Write a program to analyze and solve Null Value problem. CO2

15 Write a program to analyze and solve zero values CO2

16 Write a program to analyze the categorical values CO2

17 Write a program for graphical representation of data. CO1

18 Write a program for logistic regression using statsmodel. CO3

19 Write a program to implement multiple logistic regression. CO4

20 Write a program to scale the data and implement linear

regression using sklearn.

CO3

21 Write a program to implement multiple linear regression. CO2

 ODD SEMESTER (V)

SNo Course Code Course Title Category L T P C

1 ENCA301 Design and Analysis of Algorithms Major 3 1 0 4

2 ENCA303 Theory of Automata Major 3 1 0 4

3 ENSP302 Introduction to Natural Language

Processing

Minor 4 0 0 4

4 ENSP309 Big Data Analysis with Scala and Spark Minor 4 - - 4

5 SEC040 Data Science - Tools and Techniques Lab SEC 0 0 4 2

7 AEC013 Life Skills for Professionals-III AEC 3 0 0 3

8 ENCA351 Design & Analysis of Algorithms Lab Major 0 0 2 1

9 ENSP352 Natural Language Processing Lab Minor 0 0 2 1

10 ENSP359 Big Data Analysis with Scala and Spark

Lab

Minor - - 2 1

11 Summer Internship /Project INT 0 0 0 2

TOTAL 17 2 10 26

Department Department of Computer Science and Engineering

Course Name:

Analysis and Design of

Algorithms

Course Code L-T-P Credits

ENCA301 3-1-0 4

Type of Course: Major

Pre-requisite(s), if any: - Data Structure

COs Statements

CO1 Understand fundamental algorithmic concepts and how to analyze Complexities.

CO2 Analyze and evaluate algorithm performance.

CO3 Design efficient algorithms in terms of space and time.

CO4 Apply algorithmic problem-solving strategies.

CO5 Develop algorithm implementation skills.

Brief Syllabus:

The analysis and design of algorithm course introduce students to the design of computer algorithms, as

well as analysis of sophisticated algorithms. Students will learn how to analyse the asymptotic

performance of algorithms as well as provides familiarity with major algorithms and data structures. This

course introduces basic methods for the design and analysis of efficient algorithms emphasizing methods

useful in practice. Different algorithms for a given computational task are presented and their relative

merits evaluated based on performance measures. The following important computational problems will

be discussed: sorting, searching, elements of dynamic programming and greedy algorithms, advanced

data structures, graph algorithms (shortest path, spanning trees, tree traversals), string matching,

elements of computational geometry, NP completeness.

UNIT WISE DETAILS

Unit Number: 1 Introduction to Algorithms No. of hours: 8

Characteristics of algorithm. Analysis of algorithm: Asymptotic analysis of complexity bounds – best,

average and worst-case behaviour, Performance measurements of Algorithm, Time and Time and space

trade- offs, Analysis of recursive algorithms through recurrence relations: Substitution method,

Recursion tree method and Masters’ theorem.

Unit Number: 2 Fundamental Algorithmic Strategies No. of hours: 4

Brute -Force, Greedy, Dynamic Programming, Branch-and-Bound and Backtracking methodologies for

the design of algorithms; Illustrations of these techniques for Problem-Solving, Bin Packing, Knap Sack.

Heaps and priority queues, Hash tables and hash functions. String matching

Unit Number: 3 Graph and Tree Algorithms No. of hours: 8

Traversal algorithms: Depth First Search (DFS) and Breadth First Search (BFS); Shortest path

algorithms, Minimum Spanning Tree, Topological sorting, Network Flow Algorithm. Graph Colouring

algorithms.

Unit Number: 4 Tractable and Intractable Problems No. of hours: 4

Computability of Algorithms, Computability classes – P, NP, NP complete and NP-hard. Cook’s

theorem, Standard NP-complete problems and Reduction techniques.

Self-Learning Components

Container loading problem, stable marriage problem, Coin Change problem

Reference Books
1. Introduction to Algorithms, 4TH Edition, Thomas H Cormen, Charles E Lieserson, Ronald L Rivest and

Clifford Stein, MIT Press/McGraw-Hill.

2. Fundamentals of Algorithms – E. Horowitz et al.

Program and Course Outcome Mapping

Course
Code and
Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO
10

PO
11

PO
12

PSO1 PSO2 PSO3 PS
O4

 E
N

C
A

3
0

1
/

D

e
si

g
n

 a
n

d

A
n

a
ly

si
s

o
f

A
lg

o
ri

th
m

s

CO1 3 3 - - - - - - - - - 2 3 3 - -

CO2 - - - 3 2 - - - - - - 1 - 3 - 3

CO3 - - 3 - - - - - - - - 3 3 2 - -

CO4 - - - - 2 - - - 2 - - - - 3 3 -

CO5 - - - 3 - - - - - 2 - - - 2 3 -

Defined Course Outcomes

COs Statements

CO 1 Analyze the time and space complexities of algorithms and evaluate their performance

CO 2 Apply algorithmic problem-solving strategies to solve complex computational problems

CO 3 Design and develop innovative algorithms for solving complex computational problems.

CO 4 Generate algorithmic solutions that consider trade-offs between time complexity, space

complexity, and problem constraints.

Ex. No Experiment Title Mapped CO/COs

1 Apply quick sort algorithm. CO1

2 Design an algorithm to find the maximum and minimum

elements in an unsorted array.

CO1

3 Implement the Largest Common Subsequence. CO1

4 Find the Minimum Cost Spanning Tree of a given undirected

graph using Kruskal's algorithm.

CO1

5 Find the Minimum Cost Spanning Tree of a given undirected

graph using Prim’s algorithm.

CO2

6 To Implement Optimal Binary Search Tree. CO2

7 To Implement Strassen’s matrix multiplication Algorithm CO2

8 Design an algorithm to find the maximum subarray sum in an

array.

CO2

9 From a given vertex in a weighted connected graph, find shortest

paths to other vertices using Dijkstra's algorithm.

CO2

10 Implement 0/1 Knapsack Problem using Dynamic algorithm

concepts.

CO2

11 To implement Bellman Ford’s Algorithm. CO2

12 To implement Depth First Search and Breadth First Search

Algorithm.

CO2

13 To implement Naïve String-matching Algorithm. CO3

14 Implement N Queen's problem using Back Tracking. CO3

15 Design an algorithm to check if a given graph is acyclic (a

DAG).

CO3

16 Obtain the Topological ordering of vertices in a given digraph. CO3

Department: Department of Computer Science and Engineering

Course Name:

Analysis and Design of

Algorithms Lab

Course Code L-T-P Credits

ENCA351

0-0-2 1

Type of Course: Major

Pre-requisite(s), if any: -

17 Design an algorithm to find the nth Fibonacci number using

dynamic programming.

CO3

18 Implement the brute-force algorithm to solve the Subset Sum

Problem.

CO4

Department: Department of Computer Science and Engineering

Course Name: Theory of

Automata

Course Code L-T-P Credits

ENCA303 3-1-0 4

Type of Course: Major

Pre-requisite(s), if any:

COs Statements

CO1 To solve the problems related to regular expression, regular grammar, and Finite Automata

CO2 To write a formal notation for strings, languages and machines

CO3
To identify the phases of compilers for a programming language and construct the parsing

table for a given syntax

CO4
To discover syntax directed translation rules for a given context free grammar by

examining S-attributed and L-attributed grammars

CO5 To construct grammars and machines for a context free and context sensitive languages

Brief Syllabus:

This course provides a formal connection between algorithmic problem solving and the theory of

languages and automata and develop them into a mathematical view towards algorithmic design and in

general computation itself. The course should in addition clarify the practical view towards the

applications of these ideas in the engineering part of computer science.

Unit Number: 1 Introduction to Finite automata No. of hours: 12

Finite automata: Review of Automata, its types and regular expressions, Equivalence of NFA, DFA

and €-NFA, Conversion of automata and regular expression, Applications of Finite Automata to lexical

analysis

Unit Number: 2 PDA and Parser No. of hours: 10

PDA and Parser: Parse Trees, Ambiguity in grammars and languages, Push down automata, Context

Free grammars, Top down and Bottom-up parsing. Closure Properties of CFL.

Unit Number: 3 Chomsky hierarchy and Turing Machine No. of hours: 08

Chomsky hierarchy and Turing Machine: Chomsky hierarchy of languages and recognizers, Context

Sensitive features like type checking, Turing Machine as language acceptors and its design.

Unit Number: 4 Code generation and optimization No. of hours: 10

Code generation and optimization: Syntax-directed translation, S-attributed and L-attributed

grammars, Intermediate code generation, type conversions, and equivalence of type expression, Code

generation, and optimization.

Text Books

1. J.E. Hopcroft, R. Motwani and J.D. Ullman, “Introduction to Automata Theory, Languages and

Computations”, second Edition, Pearson Education.

Reference Books/Materials

1. H.R. Lewis and C.H. Papadimitriou, “Elements of the theory of Computation”, Second Edition,

Pearson Education.

2. Thomas A. Sudkamp,” An Introduction to the Theory of Computer Science, Languages and

Machines”, Third Edition, Pearson Education.

3. Raymond Greenlaw an H.James Hoover, “Fundamentals of Theory of Computation, Principles and

Practice”, Morgan Kaufmann Publishers.

4. MichealSipser, “Introduction of the Theory and Computation”, Thomson Brokecole.

5. J. Martin, “Introduction to Languages and the Theory of Computation” Third Edition, Tata Mc Graw

Hill.

Program and Course Outcome Mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO1

0

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

 E
N

C
A

3
0

1
/

D
es

ig
n

 a
n

d

A
n

a
ly

si
s

o
f

A
lg

o
ri

th
m

s

CO1 3 3 - - - - - - - - - 2 3 1 2 1

CO2 2 2 - 3 - - 3 - - - - 1 3 2 2 2

CO3 2 3 3 3 - - 3 3 3 - 3 3 3 2 2

CO4 3 3 3 3 3 1 - - 3 - - 2 3 2 3

CO5 1 - - 2 - - - - - - - - 3 3 2 3

Department:
Department of Computer Science and Engineering

Course Name:

NATURAL

LANGUAGE

PROCESSING

Course Code L-T-P Credits

ENCA303

4-0-0 4

Type of Course:

Major

Pre-requisite(s)- Strong programming skills, particularly in Python.

COs Statements

CO1 Understand the fundamentals of Natural Language Processing (NLP).

CO2 Analyse and represent text data using various techniques.

CO3 Implement text classification and information extraction techniques

CO4 Apply NLP techniques to analyse social media data

CO5 Develop practical solutions using NLP for real-world problems

Brief Syllabus:

The ultimate objective of NLP is to read, decipher, understand, and make sense of the human languages

in a manner that is valuable.

It helps resolve ambiguity in language and adds useful numeric structure to the data for many

downstream applications, such as speech recognition or text analytics.

UNIT WISE DETAILS

Unit Number: 1 Introduction to NLP No. of hours: 10

Natural Language Processing in real world, what is language, Approached to NLP,

Build NLP model: Eights Steps for building NLP Model, Web Scrapping

Unit Number: 2 Text Representation No. of hours: 10

Basic Vectorization, One-Hot Encoding, Bag of Words, Bag of N Grams, TF-IDF, Pre-trained Word

Embedding, Custom Word Embeddings, Vector Representations via averaging, Doc2Vec Model.

Text Classification: Application of Text Classification, Steps for building text classification system,

Text classification using Naïve Bayes Classifier, Logistic Regression, and Support Vector Machine.

Unit Number: 3 Information Extraction No. of hours: 10

Applications of Information Extraction, Processes for Information Extraction. Key phrase Extraction,

Named Entity Recognition, Disambiguation, and linking of named entity

Chatbot: Real-life applications of chatbot, Chatbot Taxonomy, Dialog Systems, Process of building a

dialog, Components of Dialog Systems.

Unit Number: 4 NLP for social media No. of hours: 10

Application of NLP in social media, challenges with social media, Natural Language Processing for

Social Data, Understanding Twitter Sentiments, Identifying memes and Fake News

NLP for E-Commerce: E-commerce catalog, Search in E-Commerce, How to build an e-commerce

catalog, Review and Sentiment Analysis.

*SELF-LEARNING COMPONENTS:

https://onlinecourses.nptel.ac.in/noc23_cs45/preview

Please Note:

1)Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end-term exams from self-learning components.

Reference Books: Natural Language Processing with Python by Steven Bird, Ewan Klein, and Edward

Loper

Foundations of Statistical Natural Language Processing by Christopher Manning and Hinrich Schütze

Program and Course Outcome Mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

E
N

C
A

3
0

3
/

/N
A

T
U

R
A

L

L
A

N
G

U
A

G
E

P
R

O
C

E
S

S
IN

G
 CO1 3 - 2 - 2 - - - - - - 2 2 - - -

CO2 3 3 2 2 2 - - - - - - 3 - 3 - -

CO3 3 - -- - 3 - 2 - - - - 3 3 - - -

CO4 - - 3 - 1 - - - - 2 2 - - 2 -

CO5 3 2 - 2 2 - - - - - - 3 - - - 3

https://onlinecourses.nptel.ac.in/noc23_cs45/preview

Department: Department of Computer Science and Engineering

Course Name:

Big Data Analytics with

Spark + Scala

Course Code
L-T-

P
Credits

ENSP309 4 - - 4

Type of Course: Minor

Pre-requisite(s), if any: NA

COs

Statements

CO1 Understand/Gain a comprehensive understanding of Apache Spark and its ecosystem,

including Spark Core, Spark SQL, Spark Streaming, and Spark MLlib. Understand the

concepts and features of distributed computing and in-memory processing offered by Spark.

CO2 Express Clearly express the objectives, requirements, and challenges of big data analysis to

stakeholders. Communicate the advantages and potential impact of utilizing Apache Spark

and Scala for data analysis, emphasizing the scalability, performance, and versatility of the

Spark framework.

CO3 Determine and Assess the suitability of Apache Spark and Scala for the specific big data

analysis task. Consider factors such as data volume, complexity, processing needs, and

available computing resources to determine the appropriate Spark components and

techniques to employ.

CO4 Identify relevant datasets and variables to analyze within the big data using Apache Spark.

Apply Spark's data manipulation, querying, and transformation capabilities to preprocess

and clean the data, ensuring data quality and consistency.

CO5 Articulate Clearly articulate the insights, findings, and outcomes derived from the big data

analysis using Apache Spark and Scala. Present the results in a meaningful and actionable

manner.

Brief Syllabus:

This syllabus covers the core concepts and techniques of Apache Spark and Scala in big data analytics. By

the end of the course, you will have a solid foundation in using Spark and Scala to manipulate, analyze, and

gain insights from large-scale datasets, enabling you to tackle real-world big data challenges.

UNIT WISE DETAILS

Unit Number: 1 Introduction to Apache Spark No. of hours: 4

Apache Spark and Installation: Introduction to Apache Spark, Features of Apache Spark, Apache Spark Stack,

Introduction to RDDs, RDD’s Transformation, what is good and bad in Map Reduce, Why to use Apache

Spark.

Unit Number: 2 Spark: A Hadoop Replacement No. of hours: 8

Java, Scala or Python? Scala, Packages, Data Types, Classes, Calling Functions, Operations, Control

Structures.

Unit Number: 3
Resilient Distributed Datasets (RDD) and SQL Data

Frames
No. of hours: 8

Introduction to RDD, RDD Operations, Creating RDDs, Transformations, map, flat Map, filter, union,

intersection, subtract, distinct, sample, Actions, working with key/value pair RDD, Data Shuffling, Spark

SQL, SQL Tables and Views, unmanaged and managed tables, create SQL database and tables, create view,

reading tables into Data Frame, Data Frame Reader, Data Frame Writer, Parquet, JSON, reading JSON file

into Data Frame, reading CSV file, reading Avro, ORC, Image file,

Unit Number: 4 Spark Streaming No. of hours: 8

Evolution of Apache Spark Stream Processing Engine, Micro-batch stream processing, D Streams, philosophy

of structured streaming, programming model, Stream Data Source and sink, structured streaming application,

streaming Data Frame Operations, joining two streaming Data Frames, working with socket Data Source,

Rate Data Source, File Data Source, Kafka Data Source, Custom Data Source, Working with Data Sinks,

Kafka Data Sinks, Foreach Data Sinks, Console Data Sinks, Memory Data Sinks, Output modes and Triggers.

*Self-Learning Components: mention 4-5 topics for students in bullet points

 Big Data Analytics with Apache Spark by Data Camp https://www.datacamp.com/tutorial/apache-

spark-tutorial-machine-learning

 Big Data Analysis with Scala and Spark by Coursera

 Apache Spark with Scala" by Udemy https://www.udemy.com/course/apache-spark-programming-in-

scala/

 https://intellipaat.com/apache-spark-scala-training

 Apache Spark. EdX. https://www.edx.org/learn/apache-spark

Please Note:

1)Students are supposed to learn the components on self-basis

2)Mention open-source tools/ new concepts/technologies that students will be required to learn and

present through presentations in class

3) At least 5-10 % syllabus will be asked in end-term exams from self-learning components

Reference Books:

 Tom White “Hadoop: The Definitive Guide” Third Edit on, O‟reily Media, 2012.

 Gerard Maas and Francois Garillot, “Stream Processing with Apache Spark: Mastering Structured

Streaming and Spark Streaming”, O’Reilly, 2019.

 “Spark: The Definitive Guide” by Bill Chambers and Matei Zaharia.

Program and Course Outcome Mapping

https://www.datacamp.com/tutorial/apache-spark-tutorial-machine-learning
https://www.datacamp.com/tutorial/apache-spark-tutorial-machine-learning
https://www.udemy.com/course/apache-spark-programming-in-scala/
https://www.udemy.com/course/apache-spark-programming-in-scala/
https://intellipaat.com/apache-spark-scala-training

Course

Code

and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4
E

N
S

P
3
0
9
/

B
ig

D
a
ta

A
n

a
ly

ti
cs

w
it

h
 S

p
a
rk

+
 S

ca
la

 CO1 3 2 2 - - - 3 2 3 1 2 1 2 - - -

CO2 2 2 3 1 - 1 3 2 3 2 1 1 - 3 - -

CO3 2 2 2 1 - 1 2 3 1 1 2 1 3 - - -

CO4 3 3 2 2 - - 2 2 2 2 1 1 - - 2 -

CO5 2 2 2 1 - - 3 2 2 1 1 1 - - - 3

Department: Department of Computer Science and Engineering

Course Name:

Big Data Analysis with

Scala and Spark Lab

Course Code L-T-P Credits

ENSP359

0-0-2 1

Type of Course: Minor

Pre-requisite(s), if any: Strong programming skills, particularly in Python.

Defined Course Outcomes

COs Statements

CO1
Understand the concepts and features of distributed computing and in-memory

processing offered by Spark.

CO2
Clearly express the objectives, requirements, and challenges of big data analysis to

stakeholders.

CO3
Determine and Assess the suitability of Apache Spark and Scala for the specific big

data analysis task..

CO4
Identify relevant datasets and variables to analyze within the big data using Apache

Spark.

CO5
Articulate Clearly articulate the insights, findings, and outcomes derived from the big

data analysis using Apache Spark and Scala.

Ex. No Experiment Title Mapped

CO/COs

1 Installing and configuring Apache Spark

2 Installing and configuring the Scala IDE

3 Installing and configuring JDK

4 Word Count: Perform a word count on a large text dataset using

Spark and Scala.

5 Log Analysis: Analyze server logs to extract useful information

such as error rates, response times, and traffic patterns using

Spark and Scala.

6 Create Spark RDD using parallelize with spark Context.

Parallelize () method and using Spark

shell

7 Write a scripts in Spark to Read all text files from a directory

into a single RDD

8 Write a spark program to load a CSV file into Spark RDD using

a Scala

9 Write a Spark Streaming program for adding 1 to the stream of

integers in a reliable, fault tolerant manner, and then visualize

them.

10 Web Scraping: Scrape data from websites using Spark and

Scala, and perform analysis on the extracted data.

11 Time Series Analysis: Analyze time series data using Spark and

Scala to identify patterns and trends.

12 Anomaly Detection: Detect anomalies in large-scale datasets

using Spark MLlib and Scala.

13 Network Traffic Analysis: Analyze network traffic data to detect

anomalies and patterns using Spark and Scala.

14 Develop a streaming application by- Connecting to a Stream,

Preparing the Data in the Stream, Performing Operations on

Streaming Dataset, creating a Query, Starting the Stream

Processing and Exploring the data.

15 Create a Structured streaming job by Initializing Spark,

acquiring streaming data from sources, declaring the operations

we want to apply to the streaming data and outputting the

resulting data

using Sinks.

16 Create a small but complete Internet of Things (IoT)-inspired

streaming program.

17 Define the schema in Structured Streaming to handle the data at

different levels.

18 Develop any Spark Streaming application and do the following :

a) Create a Spark Streaming Context,

b) Define one or several DStreams from data sources or other

DStreams

c) Define one or more output operations to materialize the

results of these

19 Movie Recommendation System: Build a movie

recommendation system using collaborative filtering with Spark

MLlib and Scala.

20 E-commerce Recommendation System: Build a recommendation

system for an e-commerce platform using collaborative filtering

with Spark MLlib and Scala.

Department: Department of Computer Science and Engineering

Course Name:

Data Science - Tools and

Techniques Lab

Course Code
L-T-

P
Credits

SEC040

0-0-4 2

Type of Course:
SEC

Pre-requisite(s), if any: General understanding of Scala 2. Experience with Java (preferred), Python,

or another object­ oriented language 3. General understanding of machine learning

COs By the end of this lab, the learners will be able to

CO 1 Decision-centred Visualization begins with understanding the purpose, data, and

context

CO 2 Use common graphs like Bar chats, tree maps, line charts, radars, bubble charts, and

heatmaps.

CO 3 Design and implement data models on their own using techniques.

CO 4 Analyse and Select visualization using accuracy techniques for data shape and flow

Brief Syllabus: Learn the foundations of the language for developers and data scientists interested in

using Scala for data analysis. Tackle data analysis problems involving Big Data, Scala and Spark.

Get a solid understanding of the fundamentals of the language, the tooling, and the development

process.

Develop a good appreciation of more advanced features.

Unit Number: 1 No. of hours: 8

Scala Language: Getting to know Scala programming language, Scala and Java, statically typed

language, Apache Spark and Scala, Scala Performance Benefits, Installing Scala, Using Scala

REPL/Shell, getting help from Scala shell, Hello World, Paste mode, retrieving history, auto-complete

feature, exiting from Scala REPL

Unit Number: 2
No. of hours:

8

Variables, Data Types, Conditional Statements: Immutability of variables, define mutable and

immutable variables, mutability and type safety, Specifying types for variables, Scala Identifier rules,

naming conventions, Scala data types, Boolean types, string type, multiline strings, string operations,

string concatenation, string interpolation, length of string, splitting string, extracting part of string,

index of character of strings, the ANY type, type casting, Boolean expressions, conditional statement

in Scala, nested IF/ELSE statement, pattern matching.

Unit Number: 3
No. of hours:

8

Code Blocks, Functions, Collections: Code Blocks in Scala, Why use functions in Scala,

understanding functions in Scala, define and invoke a function, functions with multiple parameters,

positional parameters, functions with no argument, single-line function, passing function as an

argument, an anonymous function, Collections in Scala, Understanding List, list size, convert list to

string, iterating over list, map function and collection, foreach, reduce operation, list equality, create

set, indexing map, manipulating maps, understanding tuples, indexing tuples, mutable collections,

nested collections

Unit Number: 4 No. of hours: 8

Loops, Packages, Classes and Exceptional Handling: For loop, While loop, Breaking Loop

iteration, classes and objects in Scala, Create classes and objects, singleton objects, case classes,

equality checks, classes and packages, avoid name space collusion, importing package, fundamental

of exception handling, type inferences and exception handling, try, catch, finally, Scala built tool

(SBT), Compile Scala applications

Self-Learning Components: mention 4-5 topics for students in bullet points

 Advanced topics on Scala from the reference books given

 Learn the concepts from https://learning.samatrix.io further

 Download different dataset from Github and practice the Scala

 Participate in Kaggle Competitions on Scala

 Reference Books: Programming in Scala: A comprehensive Step-by-Step Scala
Programming Guide by Martin Odersky, Lex Spoon, Bill Venners

 Scala for the Impatient by Cay Hortsmann
 Scala in Depth by Joshua D Suereth

Program and Course Outcome Mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

S
E

C
0

4
0

/
D

a
ta

 S
ci

en
ce

 -

T
o

o
ls

 a
n

d
 T

ec
h

n
iq

u
es

 L
a

b

CO1

3 2 2 - - - 3 2 3 1 2 1 2 - - -

CO2

2 2 3 1 - 1 3 2 3 2 1 1 - 3 - -

CO3

2 2 2 1 - 1 2 3 1 1 2 1 3 - - -

CO4

3 3 2 2 - - 2 2 2 2 1 1 - - 2 -

CO5

2 2 2 1 - - 3 2 2 1 1 1 - - - 3

Department: Department of Computer Science and Engineering

Course Name:

NATURAL

LANGUAGE

PROCESSING LAB

Course Code L-T-P Credits

ENSP352 0-0-2 1

Type of Course: Minor

Pre-requisite(s), if any: Strong programming skills, particularly in Python.

Defined Course Outcomes

COs

CO 1
Understand the fundamental concepts and techniques of web scraping to extract data

from websites efficiently and ethically.

CO 2
Acquire proficiency in using developer tools to inspect and analyze website elements,

facilitating data extraction and understanding the underlying structure of web pages.

CO 3
Implement mechanisms to request permission for web scraping, ensuring compliance

with legal and ethical guidelines related to data access and usage.

CO 4
Develop skills in inspecting specific HTML elements, such as the H1 element and table

element, for targeted data extraction and analysis.

List of Experiments

Ex. No. Experiment Title Mapped COs

1 Write a program to scrap a website CO1, CO3

2 Write a program to inspect a website using dev tools CO2

3 Write a program to request permission to scrap a website CO3

4 Write a program to inspect H1 element of a website CO2, CO4

5 Write a program to inspect table element of a website CO2, CO4

6 Write a program to create a column list CO5

7 Write a program to clean a column list CO5

8 Write a program for word tokenization CO5

9 Write a program to implement Reg Ex for word tokenization CO5

10 Write a program to implement stop words CO5

11 Write a program to implement LSTM CO5

Department: Department of Computer Science and Engineering

Course Name: Summer

Internship-II
Course Code L-T-P Credits

 0-0-0 2

Type of Course:
INT

Pre-requisite(s), if any:

The duration of the internship will be two weeks. It will be after the completion of 3rd Semester and

before the commencement of Semester 5th Semester.

The following options can be opted for by the students:

1. Offline internship in industry - The student is supposed to produce a joining letter and relieving letter

once the internship is over in case of an Offline internship in any industry.

2. Online internships – with organizations /institutions that are approved /supported/recommended by the

All-India Council of Technical Education for Internship (like SWAYAM, NPTEL, Internshala etc.)

Report Submission and Evaluation Guidelines:

• Student must prepare a detailed report and submit the report. A copy of the report can be kept in the

departments for record.

• Each student must be assigned a faculty as a mentor from the university and an Industry Expert as

External Guide or Industry Mentor.

• The presentation by student for Internship/ project should in the presence of all students is desirable.

• Student should produce successful completion certificate in case of summer internship in industry.

Course Outcomes:

At the end of the course, students will be able to:

1. Get exposure to the industrial environment, which cannot be simulated in the classroom and hence

creating competent professionals for the industry.

2. Get possible opportunities to learn, understand and sharpen the real-time technical / managerial skills

required at the job(s).

3. Gain experience in writing technical reports / projects and presentation of them.

4. Learn and gain exposure to the engineer’s responsibilities and ethics.

5. Understand the social, economic, and administrative considerations that influence the working

environment of industrial organizations.

EVEN SEMESTER (VI)

Sr. No Course

Code

Course Title Category L T P C

1 Department Elective I Minor 4 - - 4

2 ENCA302 Introduction to Computer Organization & Architecture Major 3 1 - 4

3 ENCA304 Introduction to Computer Networks Major 4 - - 4

4 ENCA306 Basics of Neural Networks and Deep Learning Major 4 - - 4

5 Department Elective I Lab Minor - - 2 1

6 ENCA352 Computer Networks Lab Major - - 2 1

7 ENCA354 Neural Networks and Deep Learning Lab Major - - 2 1

8 SEC036 Competitive Coding SEC - - 4 2

9 ENSI352 Minor Project-II Proj 2

TOTAL 15 1 10 23

Department: Department of Computer Science and Engineering

Course Name:

Introduction to Computer

Organization &

Architecture

Course Code L-T-P Credits

ENCA302 3-1-0 4

Type of Course: Major

Pre-requisite(s), if any: Concepts of Digital Electronics

Course Outcomes (CO)

COs Statements

CO1 Understand the basics of instruction sets and their impact on processor design

CO2 Demonstrate an understanding of the design of the functional units of a digital

computer system

CO3 Evaluate cost performance and design trade-offs in designing and constructing a

computer processor including memory.

CO4 Design a pipeline for consistent execution of instructions with minimum hazards

CO5 Manipulate representations of numbers stored in digital computers using I/O

devices and store them into memory

Brief Syllabus:

Computer Organization & Architecture (COA) covers topics in computer architecture and

organization focusing on multicore, graphics-processor unit (GPU), and heterogeneous SOC

multiprocessor architectures and their implementation issues (architect's perspective). The

objective of the course is to provide in-depth coverage of current and emerging trends in

computer organization and architecture focusing on performance and the hardware/software

interface. The course emphasis is on analysing fundamental issues in architecture design and

their impact on application performance.

UNIT WISE DETAILS

Unit Number: 1 Instruction
 No. of

hours: 10

Role of abstraction, basic functional units of a computer, A note on Moore’s law, Notion of

IPC, and performance. Data representation and basic operations.

Unit Number: 2
Instruction Set Architecture (RISC-

V)

 No. of

hours: 10

CPU registers, instruction format and encoding, addressing modes, instruction set, instruction

types, instruction decoding and execution, basic instruction cycle, Reduced Instruction Set

Computer (RISC), Complex Instruction Set Computer (CISC), RISC-V instructions.

Unit Number: 3 The Processor
 No. of

hours: 10

Revisiting clocking methodology, Amdahl’s law, Building a data path and control, single

cycle processor, multi-cycle processor, instruction pipelining.

Unit Number: 4
Memory hierarchy, Storage and

I/O
No. of hours: 10

SRAM/DRAM, locality of reference, Caching: different indexing mechanisms, Trade-offs

related to block size, associativity, and cache size, concept of optimization, Average memory

access time.

Introduction to magnetic disks (notion of tracks, sectors), flash memory. I/O mapped, and

memory mapped I/O. I/O data transfer techniques: programmed I/O, Interrupt-driven I/O, and

DMA.

*Self-Learning Components:

1. BSim Documentation

References:

1. https://www.nand2tetris.org/

2. https://www.coursera.org/learn/computer-organization-design

3. https://www.geeksforgeeks.org/computer-organization-and-architecture-tutorials/

4. https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-

computer-system-architecture-fall-2005/

Please Note:

At least 5-10 % syllabus will be asked in end term exams from self-learning components

Text Book:

1. “Computer Organization and Design: The Hardware/Software Interface”, David A.

Patterson and John L. Hennessy, 5th Edition, Elsevier.

Reference Books:

1. “Computer Organization & Architecture”, Smruti Ranjan Sarangi, McGraw Hill

2. “Computer System Architecture”, Mano M. Morris, Pearson.

3. “Computer Organization and Embedded Systems”, 6th Edition by Carl Hamacher,

McGraHill Higher Education

4. “Computer Architecture and Organization”, 3rd Edition by John P. Hayes,

WCB/McGraw-Hill

5. “Computer Organization and Architecture: Designing for Performance”, 10th Edition

by William Stallings, Pearson Education.

Online References:

 https://learning.edx.org/course/course-v1:MITx+6.004.2x+3T2015/block-

v1:MITx+6.004.2x+3T2015+type@sequential+block@c3s1/block-

v1:MITx+6.004.2x+3T2015+type@vertical+block@c3s1v1

 RIPES: https://freesoft.dev/program/108505982

 GEM5: https://www.gem5.org/documentation/learning_gem5/introduction/

https://www.nand2tetris.org/
https://www.coursera.org/learn/computer-organization-design
https://www.geeksforgeeks.org/computer-organization-and-architecture-tutorials/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-823-computer-system-architecture-fall-2005/

 CACTI: https://github.com/HewlettPackard/cacti

 PIN: https://www.intel.com/content/www/us/en/developer/articles/tool/pin-a-binary-

instrumentation-tooldownloads.html

 TEJAS: https://www.cse.iitd.ac.in/~srsarangi/archbooksoft.html

XILINX(VHDL/Verilog tools): https://www.xilinx.com/support/university/students.html

Program and Course Outcome Mapping

Course Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

 E
N

C
A

3
0

2
/

In
tr

o
d

u
ct

io
n

 t
o

C
o

m
p

u
te

r

O
rg

a
n

iz
a

ti
o

n
 &

A
rc

h
it

ec
tu

re

O
rg

a
n

iz
a

ti
o

n
 &

A
rc

h
it

ec
tu

re

CO1 3 - - - - - - - - - - - 2 3

CO2 - 3 2 - - - - - - - - - 2 2 2

CO3 - - - 3 - - - - - - 3 2

CO4 - - 3 - - - - - - - - 3

CO5 2 - - - - - - - - - - - 2 2

Department: Department of Computer Science and Engineering

Course Name:

Introduction to Computer

Networks

Course Code L-T-P Credits

ENCA304 4-0-0 4

Type of Course: Major

Pre-requisite(s), if any:

Define Course Outcomes (CO)

COs Statements

CO1 Understand the fundamental concepts and principles of computer networks.

CO2 Demonstrate knowledge of network hardware and software components.

CO3 Develop skills in network administration and management.

CO4 Choose appropriate protocol for desired communication service.

Brief Syllabus:

This course provides a comprehensive study of computer networks, covering fundamental

concepts, protocols, and technologies. It emphasizes hands-on learning and explores open-source

tools commonly used in the field of computer networking. Through practical assignments and

projects, students will gain a solid understanding of network design, implementation, security, and

management.

UNIT WISE DETAILS

Unit Number: 1 Evolution of Computer Networking
 No. of

hours: 6

Data communication Components: Representation of data and its flow Networks, Various

Connection Topology, Protocols and Standards, OSI model, Access networks, physical media,

Forwarding, routing; packet switching; circuit switching; a network of network, packet delay and

loss, end-end throughput.

Unit Number: 2 Data Link Layer Design Issues
 No. of

hours: 12

Data Link Layer and Medium Access Sub Layer: Error Detection and Error Correction -

Fundamentals, Block coding, Hamming Distance, CRC; Flow Control and Error control protocols

- Stop and Wait, Go back – N ARQ, Selective Repeat ARQ, Sliding Window, Piggybacking,

Random Access, Multiple access protocols -Pure ALOHA, Slotted ALOHA,

CSMA/CD,CDMA/CA.

Unit Number: 3
Introduction to Network Layer and

Transport Services

 No. of

hours: 12

Network Layer: Switching, Logical addressing – IPV4, IPV6; Address mapping – ARP, RARP,

BOOTP and DHCP–Delivery, Forwarding and Unicast Routing protocols. Transport Layer:

Process to Process Communication, User Datagram Protocol (UDP), Transmission Control

Protocol (TCP), SCTP Congestion Control; Quality of Service, QoS improving techniques:

Leaky Bucket and Token Bucket algorithm.

Unit Number: 4 Principles of Network Applications No. of hours: 12

Application Layer: Domain Name Space (DNS), DDNS, TELNET, EMAIL, File Transfer Protocol

(FTP), WWW, HTTP, SNMP, Bluetooth, Firewalls, Basic concepts of Cryptography.

*Self-Learning Components:

https://gaia.cs.umass.edu/kurose_ross/videos/1/

Cisco Networking Academy: network fundamentals, routing and switching, and network security.

They provide free learning materials and hands-on practice: https://www.netacad.com/

Open-Source Networking Tools and Technologies

 Open-source network monitoring tools (e.g., Nagios, Zabbix)

 Open-source network management tools (e.g., OpenNMS)

 Open-source network security tools (e.g., Snort, Suricata)

Text Book:

1. Computer Networks (Fifth Edition) – Andrew S. Tanenbaum (Prentice Hall of India)

2. Data communication and Networking (Fourth Edition)- Behrouz A Forouzan (Tata

Mcgraw Hill)

Reference Books:

3. Computer Networking A Top-Down Approach (Fifth Edition)-James F. Kurose-Keith W.

Ross (Pearson)

Computer Networks – Protocols, Standards and Interfaces (Second Edition) – UylessBlack

(Prentice Hall of India Pvt. Ltd.)

Program and Course Outcome Mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10

PO11

PO12

PSO1 PSO2 PSO3 PSO

4

E
N

C
A

3
0

4
/

In
tr

o
d

u
ct

io
n

 t
o

C
o

m
p

u
te

r

N
et

w
o

rk
s

CO1 2 2 - - - - - - - - - - 2 - - -

CO2 - 2 2 - - - - - - - - - - - - -

CO3 - - - 3 - - - - - - - - - - 2 -

CO4 - - - 3 - - - - - - - - - - - -

CO5 - - - - - - - - - - - - - - - -

https://gaia.cs.umass.edu/kurose_ross/videos/1/
https://www.netacad.com/

Department: Department of Computer Science and Engineering

Course Name:

Computer Networks Lab
Course Code L-T-P Credits

ENCA352 0-0-2 1

Type of Course: Major

Pre-requisite(s), if any:

Defined Course Outcomes

COs

CO 1 To gain hands-on experience working with network hardware, software, and tools.

CO 2 Network Configuration and Troubleshooting.

CO 3 Network Design and Implementation.

CO 4 To measure and evaluate network performance using tools and techniques.

Ex. No Experiment Title Mapped

CO/COs

1 Create a simple network with multiple PCs, switches, and routers

.

2 Assign IP addresses to devices and configure basic connectivity.

3 Test connectivity between PCs using ping and trace routes.

4 Configure VLANs on switches and assign ports to specific VLANs.

5 Enable inter-VLAN routing using a router or Layer 3 switch.

6 Test connectivity between PCs in different VLANs.

7 Set up a network with multiple routers.

8 Configure static routes on routers to enable communication between

networks.

9 Verify routing tables and test connectivity between networks.

10 Set up a network with a private IP address space.

11 Configure NAT on a router to enable translation between private and

public IP addresses.

12 Test connectivity between devices on the private network and the

Internet.

13 Create a wireless network using access points and wireless clients.

14 Simulate network issues such as connectivity problems, routing errors,

or misconfigurations.

15 Design and implement a network traffic monitoring.

16 Setting up small computer networks and Hands on networking

commands: Set up a small wired and wireless network of 2 to 4

computers using Hub/Switch/Access point.

17 Write a program for error detection and correction for 7/8 bits ASCII

codes using Hamming Codes.

18 Write a program for error detection and correction for 7/8 bits ASCII

codes using CRC.

19 Write a program to simulate Go back N and Selective Repeat Modes of

Sliding Window Protocol in peer-to-peer mode. Further extend it to real

implementation of Flow Control over TCP protocol.

20 Design and deploy TCP based Multithreaded HTTP client server for

accessing student activity data in the institute.

21 Design and deploy TCP based Multithreaded FTP client server to share

institute level notices.

22 Design and deploy TCP based Multithreaded Chat client server for your

class.

23 Design and deploy UDP based Multithreaded Chat client server for

your class.

24 Examining real-world network deployments.

25 Case studies of network failures and their resolutions.

Department: Department of Computer Science and Engineering

Course Name:

Basics of Neural Networks

and Deep Learning

Course Code L-T-P Credits

ENCA306 4-0-0 4

Type of Course: Major

Pre-requisite(s), if any:

Define Course Outcomes (CO)

COs Statements

CO1 Understand the basic concepts of neural network and Biological Neural Network

CO2 Express proficiency in the handling of the architecture of Neural Network

CO3 Determine methods to create and manipulate Deep Neural Network

CO4 Identify commonly used operations involved in designing Deep Neural Network

CO5
Articulate Neural Networks, activation functions, Drop out, overfitting, and their use in

programs.

Brief Syllabus:

The course begins with key concepts of neural networks, and feed-forward neural networks. The

student gets an opportunity to learn the programming languages (TensorFlow) to design deep

learning models. The student learns the concepts behind deep learning algorithms and their use

cases.

UNIT WISE DETAILS

Unit Number: 1 The Neural Network No. of hours: 10

Data collection for Neural Network neural networks, information flow in the Human Brain,

Architecture of the Human brain Understanding the differences in biological Neural Networks

and ANN. Training a network: loss functions, activation functions.

Unit Number: 2 Feedforward neural network No. of hours: 12

Linear Models Neural network concept and its application areas Training a Neural network,

how to determine hidden layers, recurrent neural, multi-layer neural network, Risk minimization,

regularization, model selection, and practical optimization.

Unit Number: 3 Deep Learning No. of hours: 10

Feed Forward network, bias-variance in neural networks, Overfitting, dropouts, Gradient decent

algorithm, Convolutional Neural Network, Recurrent Neural Network, RBF

Challenges in designing the best Neural Network ---Self-learning

Unit Number: 4
Probabilistic Neural Network

and Research
No. of hours: 10

Hopfield Net, Boltzmann machine, RBMs, Encoders and Auto encoders, Object recognition,

computer vision, and pattern recognition.

Research areas in Probabilistic Neural Networks

*Self-Learning Components:

Py Torch.

Reference Books:

1. Golub, G, H. and Van Loan, C, F, Matrix Computations, JHU Press,2013.

2. Satish Kumar, Neural Networks: A Classroom Approach, Tata McGraw-Hill Education,

2004.

Text Books

1 Good fellow, I., Bengio, Y, and Courville, A., Deep Learning, MIT Press, 2016.

Program and Course Outcome Mapping

Course

Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

E
N

C
A

3
0

6
/

B
a

si
cs

o

f
N

eu
ra

l

N
et

w
o

rk
s

a
n

d
 D

ee
p

 L
ea

rn
in

g

CO1 2 – – – – 1 1 1 – – – 1 1 – – –

CO2 2 2 - – - – – – – 2 1 – 2 2 3 –

CO3 3 3 3 2 3 – – – – – 1 2 3 3 – –

CO4 2 2 2 – 2 – – – – – – – 2 2 2 2

CO5 2 2 – 2 2 – – – – 2 2 1 2 2 2 2

Department: Department of Computer Science and Engineering

Course Name:

Neural Networks and Deep

Learning Lab

Course Code L-T-P Credits

ENCA354 0-0-2 1

Type of Course: Major

Pre-requisite(s), if any:

Proposed Lab Experiments

Defined Course Outcomes

COs Statements

CO 1
Acquire a practical understanding of neural networks and deep learning algorithms

through hands-on lab experiments.

CO 2
Develop proficiency in implementing feedforward neural networks and

understanding their underlying principles.

CO 3
Demonstrate the ability to create and manipulate deep neural networks for solving

complex real-world problems.

CO 4
Analyze and evaluate the performance of neural network models using appropriate

evaluation criteria.

Ex. No Experiment Title Mapped CO/COs

1 Familiarize students with the lab environment, software, and

tools.

CO1

2 Compare the information flow in a simple biological neural

network (such as a single neuron) with a corresponding ANN

architecture. Analyze how information is processed and

propagated through each system and identify similarities and

differences.

CO1

3 Implement a basic neural network using a library/framework of

choice.

CO2

4 Implement a program to read a dataset. CO2

5 Train and test the neural network using a simple dataset to classify

inputs.

CO2

6 Explore different activation functions and their effects on network

performance.

CO1

7 Implementation of delta rule. CO2

8 Implementation of the simple feed-forward network. CO2

9 Explore different pre-trained models. CO1

10 Analyze a pre-trained Neural Network CO3

11 Common issues and errors encountered during deep learning

experiments,

CO3

12 Experiment with different regularization techniques (e.g.,

regularization, dropout).

CO3

13 Troubleshooting strategies and debugging techniques for deep

learning experiments.

CO3

14 Analyze how to design confusion metrics for a model CO3

15 Investigate the impact of epoch while training a model in a neural

network

CO3

16 Analyse and compare the performance of different loss functions

for any pre-trained model

CO3

17 Implement a sequence-to-sequence model. CO3

18 Investigate the impact of network architecture on information

flow and learning capabilities.

CO4

19 Project related to the application of machine learning in

healthcare.

CO4

20 Project related to the application of machine learning in business

analysis.

CO4

Department: Department of Computer Science and Engineering

Course Name:

Competitive Coding
Course Code L-T-P Credits

SEC036 0-0-4 2

Type of Course: SEC

Pre-requisite(s), if any:

Course Outcomes

CO1 Proficiency in Algorithms and Data Structures: Demonstrate proficiency in

implementing and analyzing various algorithms and data structures commonly used in

competitive programming.

CO2 Efficient Problem Solving: Develop the ability to analyze problem statements, design

efficient algorithms, and write optimized code to solve competitive programming

problems within time and memory constraints.

CO3 Algorithmic Thinking: Cultivate algorithmic thinking and problem-solving skills by

identifying patterns, applying appropriate algorithms, and selecting optimal data

structures for a given problem.

CO4 Code Optimization and Complexity Analysis: Apply strategies to optimize code and

improve time and space complexity of solutions, considering factors such as algorithm

selection, data structure usage, and efficient coding techniques.

CO5 Competitive Programming Skills: Gain familiarity with different online competitive

programming platforms, participate in coding competitions, and develop strong

problem-solving and critical thinking skills in a competitive programming

environment.

Brief Syllabus:

Introduction to Competitive Coding, Data Structures and Algorithms, Time and Space

Complexity Analysis, Problem Solving Techniques, Advanced Data Structures, Coding

Paradigms, Online Judges and Contest Platforms, Tips and Tricks for Competitive Coding,

Mock Contests and Practice Sessions, Self-Learning Components

Table of Contents

S.N Experiment Index COs

1

Introduction to Competitive Coding

 Overview of competitive coding and its importance in the field of

computer science.

 Understanding the significance of problem-solving skills and

algorithmic thinking in competitive coding.

CO1

2

Data Structures and Algorithms

 Review of fundamental data structures: arrays, linked lists, stacks,

queues, trees, graphs, and hash tables.

 Study of essential algorithms: searching, sorting, recursion, dynamic

programming, greedy algorithms, and graph algorithms.

CO1

3

Time and Space Complexity Analysis

 Understanding time and space complexity of algorithms.

 Analysis of algorithm efficiency and choosing the most optimal

solutions.

CO2

4

Problem Solving Techniques

 Introduction to problem-solving techniques like brute force, divide

and conquer, backtracking, and more.

 Practice in applying different techniques to solve a variety of

programming problems.

CO3

5

Advanced Data Structures

 Study of advanced data structures: heaps, priority queues, segment

trees, trie, and advanced graph structures.

 Understanding the use of these data structures in solving complex

programming problems.

CO4

6

Coding Paradigms

 Introduction to different coding paradigms: procedural programming,

object-oriented programming, and functional programming.

 Understanding the benefits and drawbacks of each paradigm in

competitive coding.

CO5

7

Online Judges and Contest Platforms

 Familiarization with popular online judge platforms like Codeforces,

Topcoder, and LeetCode.

 Practice solving problems from online contests and participating in

coding competitions.

List of suggested links to coding platforms

 Codeforces: https://codeforces.com/

 Topcoder: https://www.topcoder.com/

 AtCoder: https://atcoder.jp/

 LeetCode: https://leetcode.com/

 HackerRank: https://www.hackerrank.com/

 CodeChef: https://www.codechef.com/

 HackerEarth: https://www.hackerearth.com/

 Project Euler: https://projecteuler.net/

 UVa Online Judge: https://onlinejudge.org/

 SPOJ (Sphere Online Judge): https://www.spoj.com/

 Google Code Jam:

https://codingcompetitions.withgoogle.com/codejam

 Kick Start by Google:

https://codingcompetitions.withgoogle.com/kickstart

 ACM ICPC Live Archive: https://icpcarchive.ecs.baylor.edu/

 A2 Online Judge: https://a2oj.com/

 CodeSignal: https://codesignal.com/

CO5

8

Tips and Tricks for Competitive Coding

 Learning effective coding techniques, shortcut methods, and best

practices for competitive coding.

 Developing strategies to optimize code, manage time, and improve

problem-solving speed.

CO5

https://codeforces.com/
https://www.topcoder.com/
https://atcoder.jp/
https://leetcode.com/
https://www.hackerrank.com/
https://www.codechef.com/
https://www.hackerearth.com/
https://projecteuler.net/
https://onlinejudge.org/
https://www.spoj.com/
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/kickstart
https://icpcarchive.ecs.baylor.edu/
https://a2oj.com/
https://codesignal.com/

9

Mock Contests and Practice Sessions

 Conducting mock contests and practice sessions to simulate real

coding competitions.

 Solving a wide range of problems to enhance coding skills and

adaptability to different problem types.

CO5

10

Self-Learning Component:

List of Suggested Competitive programming Courses:

 Competitive Programmer's Core Skills" by Coursera: This course

covers fundamental algorithms and data structures used in competitive

programming. Link: https://www.coursera.org/learn/competitive-

programming-core-skills

 "Algorithms and Data Structures" by MIT OpenCourseWare: This

course teaches essential algorithms and data structures for competitive

programming. Link: https://ocw.mit.edu/courses/electrical-

engineering-and-computer-science/6-006-introduction-to-algorithms-

fall-2011/

 "Data Structures and Algorithms" by GeeksforGeeks: This course

covers various data structures and algorithms commonly used in

competitive programming. Link:

https://practice.geeksforgeeks.org/courses/dsa-self-paced

 "Introduction to Competitive Programming" by NPTEL: This course

introduces the basics of competitive programming and covers

algorithms and problem-solving techniques. Link:

https://onlinecourses.nptel.ac.in/noc21_cs07/

 "Competitive Programming" by HackerRank: This course provides in-

depth coverage of algorithms and data structures with hands-on coding

exercises. Link: https://www.hackerrank.com/domains/tutorials/10-

days-of-statistics

 "Advanced Data Structures and Algorithms" by Udemy: This course

dives deeper into advanced data structures and algorithms for

competitive programming. Link:

https://www.udemy.com/course/advanced-data-structures-and-

algorithms-in-java/

 "Mastering Data Structures and Algorithms using C and C++" by

Udemy: This course covers data structures and algorithms with a focus

on problem-solving for coding interviews and competitive

programming. Link:

https://www.udemy.com/course/datastructurescncpp/

 "Competitive Programming" by Coding Ninjas: This course provides

comprehensive training in competitive programming, covering

algorithms, data structures, and problem-solving techniques. Link:

https://www.codingninjas.com/courses/online-competitive-

programming-course

 "Algorithmic Toolbox" by Coursera: This course from the University

of California San Diego covers algorithmic techniques and data

structures for competitive programming. Link:

https://www.coursera.org/learn/algorithmic-toolbox

 "Competitive Programming - From Beginner to Expert" by Udemy:

This course offers a complete guide to competitive programming,

starting from the basics and progressing to advanced topics. Link:

CO5

https://www.coursera.org/learn/competitive-programming-core-skills
https://www.coursera.org/learn/competitive-programming-core-skills
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/
https://practice.geeksforgeeks.org/courses/dsa-self-paced
https://onlinecourses.nptel.ac.in/noc21_cs07/
https://www.hackerrank.com/domains/tutorials/10-days-of-statistics
https://www.hackerrank.com/domains/tutorials/10-days-of-statistics
https://www.udemy.com/course/advanced-data-structures-and-algorithms-in-java/
https://www.udemy.com/course/advanced-data-structures-and-algorithms-in-java/
https://www.udemy.com/course/datastructurescncpp/
https://www.codingninjas.com/courses/online-competitive-programming-course
https://www.codingninjas.com/courses/online-competitive-programming-course
https://www.coursera.org/learn/algorithmic-toolbox

https://www.udemy.com/course/competitive-programming-from-

beginner-to-expert/

 Competitive Programming Essentials, Master Algorithms 2022

(Udemy)

https://www.udemy.com/course/competitive-programming-

algorithms-coding-minutes/

 The Bible of Competitive Programming & Coding Interviews

*All students must complete one online course from the suggested programs

List of popular Competitive Programming Competitions:

1. ACM International Collegiate Programming Contest (ICPC): This is one of the most

prestigious programming competitions for college students. Teams compete in solving

a set of challenging algorithmic problems within a time limit. Website

2. Google Code Jam: Organized by Google, this annual coding competition challenges

participants to solve algorithmic problems. It consists of multiple online rounds leading

to a final onsite competition. Website

3. Facebook Hacker Cup: This annual coding competition by Facebook features multiple

online rounds and an onsite final round. Participants solve algorithmic problems for a

chance to win prizes. Website

4. Topcoder Open: Topcoder hosts this annual programming competition featuring

algorithmic and design challenges. Participants compete for cash prizes and a chance

to be recognized by industry experts. Website

5. International Olympiad in Informatics (IOI): IOI is an annual international

programming competition for high school students. Participants solve algorithmic

problems in a contest format. Website

6. AtCoder Grand Contest: AtCoder hosts this regular contest series featuring algorithmic

programming challenges. Participants can compete individually or as a team. Website

7. Codeforces: Codeforces is a popular competitive programming platform that hosts

regular contests. Participants compete in solving algorithmic problems and earn ratings

based on their performance. Website

8. LeetCode Weekly Contests: LeetCode organizes weekly contests where participants

can solve algorithmic problems and compete for rankings. Website

9. HackerRank Contests: HackerRank hosts various contests and challenges covering a

wide range of programming topics. Participants can compete individually or as part of

a team. Website

10. Kaggle Competitions: Kaggle is a platform for data science competitions, where

participants solve real-world problems using machine learning and data analysis

techniques. Website

*All students must participate in some competitions

Suggested Books

1. "Competitive Programming 3" by Steven Halim and Felix Halim: This book is a

comprehensive guide to competitive programming, covering algorithms, data

https://www.udemy.com/course/competitive-programming-from-beginner-to-expert/
https://www.udemy.com/course/competitive-programming-from-beginner-to-expert/
https://www.udemy.com/course/competitive-programming-algorithms-coding-minutes/
https://www.udemy.com/course/competitive-programming-algorithms-coding-minutes/
https://icpc.global/
https://codingcompetitions.withgoogle.com/codejam
https://www.facebook.com/codingcompetitions/hacker-cup/
https://www.topcoder.com/community/topcoder-open/
https://ioinformatics.org/
https://atcoder.jp/contests/agc
https://codeforces.com/
https://leetcode.com/contest/
https://www.hackerrank.com/contests
https://www.kaggle.com/competitions

structures, problem-solving techniques, and contest strategies. It includes numerous

examples, explanations, and practice problems. Book Link

2. "Algorithms" by Robert Sedgewick and Kevin Wayne: This book provides a thorough

introduction to algorithms, including sorting, searching, graph algorithms, and dynamic

programming. It includes detailed explanations, visualizations, and implementation

examples. Book Link

3. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest, and Clifford Stein: Known as "CLRS," this book is a classic reference for

algorithms. It covers a wide range of algorithms, data structures, and algorithm design

techniques. Book Link

4. "Programming Challenges" by Steven S. Skiena and Miguel A. Revilla: This book

presents a collection of programming problems from various competitions and online

judges. It provides problem-solving techniques, algorithmic approaches, and example

solutions. Book Link

5. "The Art of Computer Programming" by Donald E. Knuth: This multi-volume series is

considered a classic in computer science. It covers various algorithms, data structures,

and mathematical techniques in great detail. Book Link

6. "Cracking the Coding Interview" by Gayle Laakmann McDowell: Although not

specifically focused on competitive programming, this book is a popular resource for

coding interview preparation. It covers essential data structures, algorithms, and

problem-solving techniques. Book Link

7. "Programming Pearls" by Jon Bentley: This book presents a collection of programming

challenges and discusses techniques for solving them efficiently. It emphasizes

problem-solving skills and algorithmic thinking. Book Link

Web References

 https://www.geeksforgeeks.org/competitive-programming-a-complete-guide/

 https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-

amazon-microsoft-adobe/

 https://www.udemy.com/course/competitive-programming

 https://github.com/smv1999/CompetitiveProgrammingQuestionBank

 https://github.com/parikshit223933/Coding-Ninjas-Competitive-Programming

 https://www.hackerearth.com/getstarted-competitive-programming/

https://www.csestack.org/competitive-coding-questions/

List of Suggested Experiments in Lab Sessions

Questions on Arrays

1. Maximum Subarray Sum: Given an array of integers, find the contiguous subarray with

the largest sum.

2. Two Sum: Given an array of integers and a target value, find two numbers in the array

that add up to the target.

3. Rotate Array: Rotate an array of n elements to the right by k steps.

4. Merge Intervals: Given a collection of intervals, merge overlapping intervals.

5. Majority Element: Find the majority element in an array. The majority element appears

more than n/2 times, where n is the size of the array.

https://cpbook.net/
https://algs4.cs.princeton.edu/home/
https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://www.springer.com/gp/book/9780387001630
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www.crackingthecodinginterview.com/
https://www.pearson.com/us/higher-education/program/Bentley-Programming-Pearls-2nd-Edition/PGM24741.html
https://www.geeksforgeeks.org/competitive-programming-a-complete-guide/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://www.udemy.com/course/competitive-programming
https://github.com/smv1999/CompetitiveProgrammingQuestionBank
https://github.com/parikshit223933/Coding-Ninjas-Competitive-Programming
https://www.hackerearth.com/getstarted-competitive-programming/
https://www.csestack.org/competitive-coding-questions/

6. Trapping Rain Water: Given an array representing the heights of bars, calculate the

amount of water that can be trapped between the bars.

7. Next Permutation: Implement the next permutation algorithm to find the

lexicographically next greater permutation of an array of integers.

8. Subarray with Given Sum: Given an unsorted array of non-negative integers and a

target sum, find a subarray that adds up to the target sum.

9. Product of Array Except Self: Given an array of n integers, return an array output such

that each element at index i of the output array is the product of all the elements in the

original array except the one at i.

10. Minimum Size Subarray Sum: Given an array of positive integers and a target sum, find

the minimum length of a contiguous subarray whose sum is greater than or equal to the

target sum.

Questions on Recursion

1. Factorial: Write a recursive function to calculate the factorial of a given number.

2. Fibonacci Series: Write a recursive function to generate the nth term of the Fibonacci

series.

3. Power of a Number: Write a recursive function to calculate the power of a given

number.

4. Sum of Digits: Write a recursive function to find the sum of digits of a given number.

5. Palindrome Check: Write a recursive function to check whether a given string is a

palindrome or not.

6. Tower of Hanoi: Solve the Tower of Hanoi problem using recursion.

7. Binary Search: Implement a recursive binary search algorithm to find an element in a

sorted array.

8. Permutations: Write a recursive function to generate all permutations of a given string.

9. Subset Sum: Given an array of integers and a target sum, write a recursive function to

check if there exists a subset that sums up to the target.

10. Combination Sum: Given an array of integers and a target sum, write a recursive

function to find all possible combinations that sum up to the target.

Questions on Stacks & Queues:

1. Balanced Parentheses: Given a string of parentheses, write a function to determine if

the parentheses are balanced using a stack.

2. Reverse a String: Write a function to reverse a string using a stack.

3. Evaluate Postfix Expression: Given a postfix expression, write a function to evaluate it

using a stack.

4. Next Greater Element: Given an array, find the next greater element for each element

in the array using a stack.

5. Largest Rectangle in Histogram: Given a histogram represented by an array of bar

heights, find the largest rectangle that can be formed in the histogram using a stack.

6. Implement Stack using Queues: Implement a stack data structure using queues.

7. Implement Queue using Stacks: Implement a queue data structure using stacks.

8. Sliding Window Maximum: Given an array and an integer k, find the maximum

element in each sliding window of size k using a queue.

9. Print Binary Tree in Level Order: Given a binary tree, print its elements in level order

using a queue.

10. Implement Recent Counter: Design a data structure that counts the number of recent

requests within a certain time range using a queue.

Questions on Linked Lists

1. Reverse a Linked List: Write a function to reverse a singly linked list.

2. Detect Cycle in a Linked List: Write a function to detect if a linked list contains a cycle.

3. Find the Middle of a Linked List: Write a function to find the middle node of a linked

list.

4. Merge Two Sorted Lists: Given two sorted linked lists, write a function to merge them

into a single sorted linked list.

5. Remove Nth Node from End of List: Given a linked list, remove the nth node from the

end of the list and return its head.

6. Intersection of Two Linked Lists: Given two linked lists, write a function to find the

intersection point if it exists.

7. Palindrome Linked List: Given a singly linked list, determine if it is a palindrome.

8. Remove Duplicates from Sorted List: Given a sorted linked list, remove duplicates from

it.

9. Add Two Numbers as Linked Lists: Given two linked lists representing two numbers,

write a function to add them and return the resulting linked list.

10. Flatten a Multilevel Linked List: Given a linked list with a special structure, flatten it

into a single-level linked list.

Questions on Trees

1. Binary Tree Traversals: Implement different tree traversal algorithms such as in-order,

pre-order, and post-order traversal.

2. Maximum Depth of Binary Tree: Find the maximum depth or height of a binary tree.

3. Validate Binary Search Tree: Given a binary tree, check if it is a valid binary search

tree.

4. Lowest Common Ancestor of Two Nodes: Find the lowest common ancestor of two

nodes in a binary tree.

5. Diameter of Binary Tree: Find the diameter of a binary tree, which is the longest path

between any two nodes.

6. Binary Tree Level Order Traversal: Traverse a binary tree in level order and return the

nodes in each level.

7. Symmetric Tree: Check if a binary tree is symmetric, meaning it is a mirror image of

itself.

8. Serialize and Deserialize Binary Tree: Design algorithms to serialize and deserialize a

binary tree.

9. Count Complete Tree Nodes: Count the number of nodes in a complete binary tree.

10. Construct Binary Tree from Preorder and Inorder Traversal: Given the preorder and

inorder traversal of a binary tree, construct the tree.

Questions on Graphs

 Shortest path: Find the shortest path between two vertices in a graph. This can be solved

using Dijkstra's algorithm or Bellman-Ford's algorithm.

 Maximum flow: Find the maximum flow from one vertex to another in a graph. This

can be solved using the Ford-Fulkerson algorithm or the Dinic algorithm.

 Minimum spanning tree: Find the minimum spanning tree of a graph. This can be

solved using Prim's algorithm or Kruskal's algorithm.

 Topological sorting: Find a topological ordering of a graph. This can be solved using

Kahn's algorithm.

 Strongly connected components: Find the strongly connected components of a graph.

This can be solved using Tarjan's algorithm.

 Bipartite matching: Find a maximum bipartite matching in a graph. This can be solved

using the Hungarian algorithm.

 Traveling salesman problem: Find the shortest tour that visits all the vertices in a graph.

This is an NP-hard problem, but there are approximation algorithms that can be used to

find a good solution.

Time & Space Complexity

1. Time Complexity Analysis: Analyze the time complexity of a given algorithm or piece

of code.

2. Space Complexity Analysis: Analyze the space complexity of a given algorithm or

piece of code.

3. Big O Notation: Given a function or algorithm, determine its big O notation in terms of

time or space complexity.

4. Best/Worst/Average Case Complexity: Analyze the best, worst, and average-case time

or space complexity of an algorithm.

5. Sorting Algorithms: Implement and analyze the time complexity of various sorting

algorithms such as Bubble Sort, Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

6. Searching Algorithms: Implement and analyze the time complexity of various

searching algorithms such as Linear Search, Binary Search, and Hashing.

7. Dynamic Programming: Solve dynamic programming problems and analyze their time

and space complexity.

8. Recursion vs. Iteration: Compare and analyze the time and space complexity of

recursive and iterative solutions for a given problem.

9. Complexity Trade-offs: Analyze and compare the time and space complexity trade-offs

of different algorithms for the same problem.

10. Space-Optimized Data Structures: Implement and analyze space-optimized data

structures such as Bit Arrays, Bloom Filters, or Space-Efficient Hash Tables.

Questions on Divide & Conquer Strategy

1. Binary Search: Implement a recursive binary search algorithm to find an element in a

sorted array.

2. Merge Sort: Implement the Merge Sort algorithm to sort an array of integers.

3. Quick Sort: Implement the Quick Sort algorithm to sort an array of integers.

4. Count Inversions: Given an array of integers, find the number of inversions present

using the Divide and Conquer approach.

5. Closest Pair of Points: Given a set of points in a 2D plane, find the pair of points with

the smallest distance between them using the Divide and Conquer technique.

6. Maximum Subarray Sum: Given an array of integers, find the maximum sum of a

subarray using the Divide and Conquer approach.

7. Matrix Multiplication: Implement a Divide and Conquer algorithm to multiply two

matrices efficiently.

8. Finding Majority Element: Given an array of integers, find the majority element

(appearing more than n/2 times) using the Divide and Conquer technique.

9. Finding Kth Smallest Element: Given an array of integers, find the kth smallest element

using the Divide and Conquer approach.

10. Closest Pair Sum: Given two sorted arrays and a target value, find the pair of elements

(one from each array) with the closest sum to the target using the Divide and Conquer

technique.

Questions on Dynamic Programming

1. Fibonacci Series: Implement the Fibonacci series using dynamic programming to

efficiently calculate the nth term.

2. Longest Common Subsequence: Given two strings, find the length of the longest

common subsequence using dynamic programming.

3. Knapsack Problem: Given a set of items with weights and values, determine the

maximum value that can be obtained by selecting a subset of items within a weight limit

using dynamic programming.

4. Coin Change Problem: Given a set of coin denominations and a target value, find the

minimum number of coins needed to make the target value using dynamic

programming.

5. Rod Cutting Problem: Given a rod of a certain length and a price list for different rod

lengths, find the maximum value that can be obtained by cutting and selling the rod

using dynamic programming.

6. Edit Distance: Given two strings, find the minimum number of operations (insertion,

deletion, and substitution) required to convert one string into another using dynamic

programming.

7. Maximum Subarray Sum: Given an array of integers, find the maximum sum of a

subarray using dynamic programming.

8. Longest Increasing Subsequence: Given an array of integers, find the length of the

longest increasing subsequence using dynamic programming.

9. Matrix Chain Multiplication: Given a sequence of matrices, find the minimum number

of scalar multiplications needed to multiply them using dynamic programming.

10. Subset Sum Problem: Given a set of integers and a target sum, determine if there exists

a subset that sums up to the target using dynamic programming.

Questions on Greedy Programming

1. Fractional Knapsack Problem: Given a set of items with weights and values, determine

the maximum value that can be obtained by selecting fractions of items within a weight

limit using a greedy algorithm.

2. Activity Selection Problem: Given a set of activities with start and finish times, select

the maximum number of activities that can be performed without overlapping using a

greedy algorithm.

3. Minimum Spanning Tree: Given a weighted graph, find the minimum spanning tree

using Kruskal's or Prim's algorithm, which are both based on greedy approaches.

4. Huffman Coding: Given a set of characters and their frequencies, construct a binary

code that minimizes the total encoded length using a greedy algorithm.

5. Coin Change Problem: Given a set of coin denominations and a target value, find the

minimum number of coins needed to make the target value using a greedy algorithm.

6. Job Scheduling Problem: Given a set of jobs with their deadlines and profits, schedule

the jobs to maximize the total profit using a greedy algorithm.

7. Interval Scheduling Problem: Given a set of intervals, select the maximum number of

non-overlapping intervals using a greedy algorithm.

8. Dijkstra's Algorithm: Given a weighted graph, find the shortest path from a source

vertex to all other vertices using Dijkstra's algorithm, which is based on a greedy

approach.

9. Egyptian Fraction: Given a fraction, represent it as a sum of unique unit fractions using

a greedy algorithm.

10. Car Fueling Problem: Given the total distance to be covered, the capacity of the fuel

tank, and a list of distances between fuel stations, determine the minimum number of

refueling needed to reach the destination using a greedy algorithm.

Questions on String Matching

1. Naive String Matching: Implement the naive string-matching algorithm to find all

occurrences of a pattern in a text.

2. Knuth-Morris-Pratt (KMP) Algorithm: Implement the KMP algorithm to efficiently

find all occurrences of a pattern in a text.

3. Rabin-Karp Algorithm: Implement the Rabin-Karp algorithm to efficiently find all

occurrences of a pattern in a text using hashing.

4. Longest Common Substring: Given two strings, find the longest common substring

using dynamic programming or other efficient algorithms.

5. Longest Common Prefix: Given an array of strings, find the longest common prefix

using a suitable algorithm.

6. Regular Expression Matching: Implement a regular expression matching algorithm to

determine if a string matches a given pattern.

7. Anagrams: Given a list of strings, find all pairs of strings that are anagrams of each

other.

8. Palindromic Substrings: Given a string, find all palindromic substrings using a suitable

algorithm.

9. Boyer-Moore Algorithm: Implement the Boyer-Moore algorithm to efficiently find all

occurrences of a pattern in a text.

10. Subsequence Matching: Given two strings, determine if one string is a subsequence of

the other.

Questions on Advanced Data Structures

1. Trie: Implement a Trie data structure and solve problems such as word search,

autocomplete, or finding the longest common prefix.

2. Segment Tree: Implement a Segment Tree data structure and solve problems such as

range sum queries, range minimum/maximum queries, or range updates.

3. Fenwick Tree (Binary Indexed Tree): Implement a Fenwick Tree data structure and

solve problems such as prefix sum queries or range updates.

4. Disjoint Set Union (DSU) / Union-Find: Implement a DSU data structure and solve

problems such as connected components, cycle detection, or Kruskal's algorithm for

finding the minimum spanning tree.

5. Treap: Implement a Treap (a balanced binary search tree with randomized priorities)

and solve problems such as maintaining the median of a dynamic set of numbers or

solving range queries on a set of intervals.

6. Suffix Array: Implement a Suffix Array data structure and solve problems such as

finding the longest common substring, finding the lexicographically smallest substring,

or pattern matching.

7. LCA (Lowest Common Ancestor): Implement an LCA data structure and solve

problems such as finding the lowest common ancestor of two nodes in a tree or solving

distance-related queries on a tree.

8. K-D Tree: Implement a K-D Tree data structure and solve problems such as nearest

neighbor search or range search in a multi-dimensional space.

9. AVL Tree or Red-Black Tree: Implement a balanced binary search tree (either AVL

Tree or Red-Black Tree) and solve problems such as maintaining a sorted dynamic set

or solving range queries.

10. B+ Tree: Implement a B+ Tree data structure and solve problems such as indexing or

range queries on a large dataset.

References to Interview Questions

 https://www.simplilearn.com/coding-interview-questions-article

 https://www.csestack.org/competitive-coding-questions/

 https://www.geeksforgeeks.org/a-competitive-programmers-interview/

 https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-

amazon-microsoft-adobe/

 https://unstop.com/blog/competitive-coding-questions-with-solutions

 https://unstop.com/blog/competitive-coding-questions-with-solutions

https://www.simplilearn.com/coding-interview-questions-article
https://www.csestack.org/competitive-coding-questions/
https://www.geeksforgeeks.org/a-competitive-programmers-interview/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://unstop.com/blog/competitive-coding-questions-with-solutions
https://unstop.com/blog/competitive-coding-questions-with-solutions

Department Department of Computer Science and Engineering

Course Name- Competitive

Programming Lab

Course Code L-T-P Credits

SEC036 0-0-4 2

Type of Course Skill Enhancement Course (SEC)

Pre-requisite(s), if any: None

Brief Syllabus:

Introduction to Competitive Coding, Data Structures, and Algorithms, Time and Space Complexity

Analysis, Problem Solving Techniques, Advanced Data Structures, Coding Paradigms, Online Judges

and Contest Platforms, Tips and Tricks for Competitive Coding, Mock Contests and Practice Sessions,

Self-Learning Components

CO1 Proficiency in Algorithms and Data Structures: Demonstrate proficiency in implementing

and analyzing various algorithms and data structures commonly used in competitive

programming.

CO2 Efficient Problem Solving: Develop the ability to analyze problem statements, design

efficient algorithms, and write optimized code to solve competitive programming

problems within time and memory constraints.

CO3 Algorithmic Thinking: Cultivate algorithmic thinking and problem-solving skills by

identifying patterns, applying appropriate algorithms, and selecting optimal data

structures for a given problem.

CO4 Code Optimization and Complexity Analysis: Apply strategies to optimize code and

improve time and space complexity of solutions, considering factors such as algorithm

selection, data structure usage, and efficient coding techniques.

CO5 Competitive Programming Skills: Gain familiarity with different online competitive

programming platforms, participate in coding competitions, and develop strong problem-

solving and critical thinking skills in a competitive programming environment.

S.N Experiment Index COs

1

Introduction to Competitive Coding

 Overview of competitive coding and its importance in the field of

computer science.

 Understanding the significance of problem-solving skills and

algorithmic thinking in competitive coding.

CO1

2

Data Structures and Algorithms

 Review of fundamental data structures: arrays, linked lists, stacks,

queues, trees, graphs, and hash tables.

 Study of essential algorithms: searching, sorting, recursion, dynamic

programming, greedy algorithms, and graph algorithms.

CO1

 Time and Space Complexity Analysis

3
 Understanding the time and space complexity of algorithms.

 Analysis of algorithm efficiency and choosing the most optimal

solutions.

CO2

4

Problem Solving Techniques

 Introduction to problem-solving techniques like brute force, divide and

conquer, backtracking, and more.

 Practice in applying different techniques to solve a variety of

programming problems.

CO3

5

Advanced-Data Structures

 Study of advanced data structures: heaps, priority queues, segment trees,

trie, and advanced graph structures.

 Understanding the use of these data structures in solving complex

programming problems.

CO4

6

Coding Paradigms

 Introduction to different coding paradigms: procedural programming,

object-oriented programming, and functional programming.

 Understanding the benefits and drawbacks of each paradigm in

competitive coding.

CO5

7

Online Judges and Contest Platforms

 Familiarization with popular online judge platforms like Codeforces,

Topcoder, and LeetCode.

 Practice solving problems from online contests and participating in

coding competitions.

List of suggested links to coding platforms

 Codeforces: https://codeforces.com/

 Topcoder: https://www.topcoder.com/

 AtCoder: https://atcoder.jp/

 LeetCode: https://leetcode.com/

 HackerRank: https://www.hackerrank.com/

 CodeChef: https://www.codechef.com/

 HackerEarth: https://www.hackerearth.com/

 Project Euler: https://projecteuler.net/

 UVa Online Judge: https://onlinejudge.org/

 SPOJ (Sphere Online Judge): https://www.spoj.com/

 Google Code Jam: https://codingcompetitions.withgoogle.com/codejam

 Kick Start by Google:

https://codingcompetitions.withgoogle.com/kickstart

 ACM ICPC Live Archive: https://icpcarchive.ecs.baylor.edu/

 A2 Online Judge: https://a2oj.com/

 CodeSignal: https://codesignal.com/

CO5

8

Tips and Tricks for Competitive Coding

 Learning effective coding techniques, shortcut methods, and best

practices for competitive coding.

 Developing strategies to optimize code, manage time, and improve

problem-solving speed.

CO5

 Mock Contests and Practice Sessions CO5

https://codeforces.com/
https://www.topcoder.com/
https://atcoder.jp/
https://leetcode.com/
https://www.hackerrank.com/
https://www.codechef.com/
https://www.hackerearth.com/
https://projecteuler.net/
https://onlinejudge.org/
https://www.spoj.com/
https://codingcompetitions.withgoogle.com/codejam
https://codingcompetitions.withgoogle.com/kickstart
https://icpcarchive.ecs.baylor.edu/
https://a2oj.com/
https://codesignal.com/

9
 Conduct mock contests and practice sessions to simulate real coding

competitions.

 Solving a wide range of problems to enhance coding skills and

adaptability to different problem types.

10

Self-Learning Component:

List of Suggested Competitive Programming Courses:

 Competitive Programmer's Core Skills" by Coursera: This course covers

fundamental algorithms and data structures used in competitive

programming. Link: https://www.coursera.org/learn/competitive-

programming-core-skills

 "Algorithms and Data Structures" by MIT OpenCourseWare: This course

teaches essential algorithms and data structures for competitive

programming. Link: https://ocw.mit.edu/courses/electrical-engineering-

and-computer-science/6-006-introduction-to-algorithms-fall-2011/

 "Data Structures and Algorithms" by GeeksforGeeks: This course covers

various data structures and algorithms commonly used in competitive

programming. Link: https://practice.geeksforgeeks.org/courses/dsa-self-

paced

 "Introduction to Competitive Programming" by NPTEL: This course

introduces the basics of competitive programming and covers algorithms

and problem-solving techniques. Link:

https://onlinecourses.nptel.ac.in/noc21_cs07/

 "Competitive Programming" by HackerRank: This course provides in-

depth coverage of algorithms and data structures with hands-on coding

exercises. Link: https://www.hackerrank.com/domains/tutorials/10-days-

of-statistics

 "Advanced Data Structures and Algorithms" by Udemy: This course

dives deeper into advanced data structures and algorithms for competitive

programming. Link: https://www.udemy.com/course/advanced-data-

structures-and-algorithms-in-java/

 "Mastering Data Structures and Algorithms using C and C++" by Udemy:

This course covers data structures and algorithms with a focus on

problem-solving for coding interviews and competitive programming.

Link: https://www.udemy.com/course/datastructurescncpp/

 "Competitive Programming" by Coding Ninjas: This course provides

comprehensive training in competitive programming, covering

algorithms, data structures, and problem-solving techniques. Link:

https://www.codingninjas.com/courses/online-competitive-

programming-course

 "Algorithmic Toolbox" by Coursera: This course from the University of

California San Diego covers algorithmic techniques and data structures

for competitive programming. Link:

https://www.coursera.org/learn/algorithmic-toolbox

 "Competitive Programming - From Beginner to Expert" by Udemy: This

course offers a complete guide to competitive programming, starting from

the basics and progressing to advanced topics. Link:

https://www.udemy.com/course/competitive-programming-from-

beginner-to-expert/

 Competitive Programming Essentials, Master Algorithms 2022

(Udemy)

CO5

https://www.coursera.org/learn/competitive-programming-core-skills
https://www.coursera.org/learn/competitive-programming-core-skills
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/
https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-006-introduction-to-algorithms-fall-2011/
https://practice.geeksforgeeks.org/courses/dsa-self-paced
https://practice.geeksforgeeks.org/courses/dsa-self-paced
https://onlinecourses.nptel.ac.in/noc21_cs07/
https://www.hackerrank.com/domains/tutorials/10-days-of-statistics
https://www.hackerrank.com/domains/tutorials/10-days-of-statistics
https://www.udemy.com/course/advanced-data-structures-and-algorithms-in-java/
https://www.udemy.com/course/advanced-data-structures-and-algorithms-in-java/
https://www.udemy.com/course/datastructurescncpp/
https://www.codingninjas.com/courses/online-competitive-programming-course
https://www.codingninjas.com/courses/online-competitive-programming-course
https://www.coursera.org/learn/algorithmic-toolbox
https://www.udemy.com/course/competitive-programming-from-beginner-to-expert/
https://www.udemy.com/course/competitive-programming-from-beginner-to-expert/

https://www.udemy.com/course/competitive-programming-algorithms-

coding-minutes/

 The Bible of Competitive Programming & Coding Interviews

*All students must complete one online course from the suggested programs

List of popular Competitive Programming Competitions:

11. ACM International Collegiate Programming Contest (ICPC): This is one of the most prestigious

programming competitions for college students. Teams compete in solving a set of challenging

algorithmic problems within a time limit. Website

12. Google Code Jam: Organized by Google, this annual coding competition challenges participants

to solve algorithmic problems. It consists of multiple online rounds leading to a final onsite

competition. Website

13. Facebook Hacker Cup: This annual coding competition by Facebook features multiple online

rounds and an onsite final round. Participants solve algorithmic problems for a chance to win

prizes. Website

14. Topcoder Open: Topcoder hosts this annual programming competition featuring algorithmic and

design challenges. Participants compete for cash prizes and a chance to be recognized by industry

experts. Website

15. International Olympiad in Informatics (IOI): IOI is an annual international programming

competition for high school students. Participants solve algorithmic problems in a contest format.

Website

16. AtCoder Grand Contest: AtCoder hosts this regular contest series featuring algorithmic

programming challenges. Participants can compete individually or as a team. Website

17. Codeforces: Codeforces is a popular competitive programming platform that hosts regular

contests. Participants compete in solving algorithmic problems and earn ratings based on their

performance. Website

18. LeetCode Weekly Contests: LeetCode organizes weekly contests where participants can solve

algorithmic problems and compete for rankings. Website

19. HackerRank Contests: HackerRank hosts various contests and challenges covering a wide range

of programming topics. Participants can compete individually or as part of a team. Website

20. Kaggle Competitions: Kaggle is a platform for data science competitions, where participants

solve real-world problems using machine learning and data analysis techniques. Website

*All students must participate in some competitions

Suggested Books

8. "Competitive Programming 3" by Steven Halim and Felix Halim: This book is a comprehensive

guide to competitive programming, covering algorithms, data structures, problem-solving

techniques, and contest strategies. It includes numerous examples, explanations, and practice

problems. Book Link

9. "Algorithms" by Robert Sedgewick and Kevin Wayne: This book provides a thorough

introduction to algorithms, including sorting, searching, graph algorithms, and dynamic

programming. It includes detailed explanations, visualizations, and implementation examples.

Book Link

https://www.udemy.com/course/competitive-programming-algorithms-coding-minutes/
https://www.udemy.com/course/competitive-programming-algorithms-coding-minutes/
https://icpc.global/
https://codingcompetitions.withgoogle.com/codejam
https://www.facebook.com/codingcompetitions/hacker-cup/
https://www.topcoder.com/community/topcoder-open/
https://ioinformatics.org/
https://atcoder.jp/contests/agc
https://codeforces.com/
https://leetcode.com/contest/
https://www.hackerrank.com/contests
https://www.kaggle.com/competitions
https://cpbook.net/
https://algs4.cs.princeton.edu/home/

10. "Introduction to Algorithms" by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and

Clifford Stein: Known as "CLRS," this book is a classic reference for algorithms. It covers a wide

range of algorithms, data structures, and algorithm design techniques. Book Link

11. "Programming Challenges" by Steven S. Skiena and Miguel A. Revilla: This book presents a

collection of programming problems from various competitions and online judges. It provides

problem-solving techniques, algorithmic approaches, and example solutions. Book Link

12. "The Art of Computer Programming" by Donald E. Knuth: This multi-volume series is considered

a classic in computer science. It covers various algorithms, data structures, and mathematical

techniques in great detail. Book Link

13. "Cracking the Coding Interview" by Gayle Laakmann McDowell: Although not specifically

focused on competitive programming, this book is a popular resource for coding interview

preparation. It covers essential data structures, algorithms, and problem-solving techniques. Book

Link

14. "Programming Pearls" by Jon Bentley: This book presents a collection of programming

challenges and discusses techniques for solving them efficiently. It emphasizes problem-solving

skills and algorithmic thinking. Book Link

Web References

 https://www.geeksforgeeks.org/competitive-programming-a-complete-guide/

 https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-

microsoft-adobe/

 https://www.udemy.com/course/competitive-programming

 https://github.com/smv1999/CompetitiveProgrammingQuestionBank

 https://github.com/parikshit223933/Coding-Ninjas-Competitive-Programming

 https://www.hackerearth.com/getstarted-competitive-programming/

 https://www.csestack.org/competitive-coding-questions/

List of Suggested Experiments in Lab Sessions

Questions on Arrays

11. Maximum Subarray Sum: Given an array of integers, find the contiguous subarray with the largest

sum.

12. Two Sum: Given an array of integers and a target value, find two numbers in the array that add

up to the target.

13. Rotate Array: Rotate an array of n elements to the right by k steps.

14. Merge Intervals: Given a collection of intervals, merge overlapping intervals.

15. Majority Element: Find the majority element in an array. The majority element appears more than

n/2 times, where n is the size of the array.

16. Trapping Rain Water: Given an array representing the heights of bars, calculate the amount of

water that can be trapped between the bars.

17. Next Permutation: Implement the next permutation algorithm to find the lexicographically next

greater permutation of an array of integers.

18. Subarray with Given Sum: Given an unsorted array of non-negative integers and a target sum,

find a subarray that adds up to the target sum.

19. Product of Array Except Self: Given an array of n integers, return an array output such that each

element at index i of the output array is the product of all the elements in the original array except

the one at i.

https://mitpress.mit.edu/books/introduction-algorithms-third-edition
https://www.springer.com/gp/book/9780387001630
https://www-cs-faculty.stanford.edu/~knuth/taocp.html
http://www.crackingthecodinginterview.com/
http://www.crackingthecodinginterview.com/
https://www.pearson.com/us/higher-education/program/Bentley-Programming-Pearls-2nd-Edition/PGM24741.html
https://www.geeksforgeeks.org/competitive-programming-a-complete-guide/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://www.udemy.com/course/competitive-programming
https://github.com/smv1999/CompetitiveProgrammingQuestionBank
https://github.com/parikshit223933/Coding-Ninjas-Competitive-Programming
https://www.hackerearth.com/getstarted-competitive-programming/
https://www.csestack.org/competitive-coding-questions/

20. Minimum Size Subarray Sum: Given an array of positive integers and a target sum, find the

minimum length of a contiguous subarray whose sum is greater than or equal to the target sum.

Questions on Recursion

11. Factorial: Write a recursive function to calculate the factorial of a given number.

12. Fibonacci Series: Write a recursive function to generate the nth term of the Fibonacci series.

13. Power of a Number: Write a recursive function to calculate the power of a given number.

14. Sum of Digits: Write a recursive function to find the sum of digits of a given number.

15. Palindrome Check: Write a recursive function to check whether a given string is a palindrome or

not.

16. Tower of Hanoi: Solve the Tower of Hanoi problem using recursion.

17. Binary Search: Implement a recursive binary search algorithm to find an element in a sorted array.

18. Permutations: Write a recursive function to generate all permutations of a given string.

19. Subset Sum: Given an array of integers and a target sum, write a recursive function to check if

there exists a subset that sums up to the target.

20. Combination Sum: Given an array of integers and a target sum, write a recursive function to find

all possible combinations that sum up to the target.

Questions on Stacks & Queues:

11. Balanced Parentheses: Given a string of parentheses, write a function to determine if the

parentheses are balanced using a stack.

12. Reverse a String: Write a function to reverse a string using a stack.

13. Evaluate Postfix Expression: Given a postfix expression, write a function to evaluate it using a

stack.

14. Next Greater Element: Given an array, find the next greater element for each element in the array

using a stack.

15. Largest Rectangle in Histogram: Given a histogram represented by an array of bar heights, find

the largest rectangle that can be formed in the histogram using a stack.

16. Implement Stack using Queues: Implement a stack data structure using queues.

17. Implement Queue using Stacks: Implement a queue data structure using stacks.

18. Sliding Window Maximum: Given an array and an integer k, find the maximum element in each

sliding window of size k using a queue.

19. Print Binary Tree in Level Order: Given a binary tree, print its elements in level order using a

queue.

20. Implement Recent Counter: Design a data structure that counts the number of recent requests

within a certain time range using a queue.

Questions on Linked Lists

11. Reverse a Linked List: Write a function to reverse a singly linked list.

12. Detect Cycle in a Linked List: Write a function to detect if a linked list contains a cycle.

13. Find the Middle of a Linked List: Write a function to find the middle node of a linked list.

14. Merge Two Sorted Lists: Given two sorted linked lists, write a function to merge them into a

single sorted linked list.

15. Remove Nth Node from End of List: Given a linked list, remove the nth node from the end of the

list and return its head.

16. Intersection of Two Linked Lists: Given two linked lists, write a function to find the intersection

point if it exists.

17. Palindrome Linked List: Given a singly linked list, determine if it is a palindrome.

18. Remove Duplicates from Sorted List: Given a sorted linked list, remove duplicates from it.

19. Add Two Numbers as Linked Lists: Given two linked lists representing two numbers, write a

function to add them and return the resulting linked list.

20. Flatten a Multilevel Linked List: Given a linked list with a special structure, flatten it into a single-

level linked list.

Questions on Trees

11. Binary Tree Traversals: Implement different tree traversal algorithms such as in-order, pre-order,

and post-order traversal.

12. Maximum Depth of Binary Tree: Find the maximum depth or height of a binary tree.

13. Validate Binary Search Tree: Given a binary tree, check if it is a valid binary search tree.

14. Lowest Common Ancestor of Two Nodes: Find the lowest common ancestor of two nodes in a

binary tree.

15. Diameter of Binary Tree: Find the diameter of a binary tree, which is the longest path between

any two nodes.

16. Binary Tree Level Order Traversal: Traverse a binary tree in level order and return the nodes in

each level.

17. Symmetric Tree: Check if a binary tree is symmetric, meaning it is a mirror image of itself.

18. Serialize and Deserialize Binary Tree: Design algorithms to serialize and deserialize a binary tree.

19. Count Complete Tree Nodes: Count the number of nodes in a complete binary tree.

20. Construct Binary Tree from Preorder and Inorder Traversal: Given the preorder and inorder

traversal of a binary tree, construct the tree.

Questions on Graphs

 Shortest path: Find the shortest path between two vertices in a graph. This can be solved using

Dijkstra's algorithm or Bellman-Ford's algorithm.

 Maximum flow: Find the maximum flow from one vertex to another in a graph. This can be solved

using the Ford-Fulkerson algorithm or the Dinic algorithm.

 Minimum spanning tree: Find the minimum spanning tree of a graph. This can be solved using

Prim's algorithm or Kruskal's algorithm.

 Topological sorting: Find a topological ordering of a graph. This can be solved using Kahn's

algorithm.

 Strongly connected components: Find the strongly connected components of a graph. This can be

solved using Tarjan's algorithm.

 Bipartite matching: Find a maximum bipartite matching in a graph. This can be solved using the

Hungarian algorithm.

 Traveling salesman problem: Find the shortest tour that visits all the vertices in a graph. This is

an NP-hard problem, but there are approximation algorithms that can be used to find a good

solution.

Time & Space Complexity

11. Time Complexity Analysis: Analyze the time complexity of a given algorithm or piece of code.

12. Space Complexity Analysis: Analyze the space complexity of a given algorithm or piece of code.

13. Big O Notation: Given a function or algorithm, determine its big O notation in terms of time or

space complexity.

14. Best/Worst/Average Case Complexity: Analyze the best, worst, and average-case time or space

complexity of an algorithm.

15. Sorting Algorithms: Implement and analyze the time complexity of various sorting algorithms

such as Bubble Sort, Insertion Sort, Merge Sort, Quick Sort, and Heap Sort.

16. Searching Algorithms: Implement and analyze the time complexity of various searching

algorithms such as Linear Search, Binary Search, and Hashing.

17. Dynamic Programming: Solve dynamic programming problems and analyze their time and space

complexity.

18. Recursion vs. Iteration: Compare and analyze the time and space complexity of recursive and

iterative solutions for a given problem.

19. Complexity Trade-offs: Analyze and compare the time and space complexity trade-offs of

different algorithms for the same problem.

20. Space-Optimized Data Structures: Implement and analyze space-optimized data structures such

as Bit Arrays, Bloom Filters, or Space-Efficient Hash Tables.

Questions on Divide & Conquer Strategy

11. Binary Search: Implement a recursive binary search algorithm to find an element in a sorted array.

12. Merge Sort: Implement the Merge Sort algorithm to sort an array of integers.

13. Quick Sort: Implement the Quick Sort algorithm to sort an array of integers.

14. Count Inversions: Given an array of integers, find the number of inversions present using the

Divide and Conquer approach.

15. Closest Pair of Points: Given a set of points in a 2D plane, find the pair of points with the smallest

distance between them using the Divide and Conquer technique.

16. Maximum Subarray Sum: Given an array of integers, find the maximum sum of a subarray using

the Divide and Conquer approach.

17. Matrix Multiplication: Implement a Divide and Conquer algorithm to multiply two matrices

efficiently.

18. Finding Majority Element: Given an array of integers, find the majority element (appearing more

than n/2 times) using the Divide and Conquer technique.

19. Finding Kth Smallest Element: Given an array of integers, find the kth smallest element using the

Divide and Conquer approach.

20. Closest Pair Sum: Given two sorted arrays and a target value, find the pair of elements (one from

each array) with the closest sum to the target using the Divide and Conquer technique.

Questions on Dynamic Programming

11. Fibonacci Series: Implement the Fibonacci series using dynamic programming to efficiently

calculate the nth term.

12. Longest Common Subsequence: Given two strings, find the length of the longest common

subsequence using dynamic programming.

13. Knapsack Problem: Given a set of items with weights and values, determine the maximum value

that can be obtained by selecting a subset of items within a weight limit using dynamic

programming.

14. Coin Change Problem: Given a set of coin denominations and a target value, find the minimum

number of coins needed to make the target value using dynamic programming.

15. Rod Cutting Problem: Given a rod of a certain length and a price list for different rod lengths,

find the maximum value that can be obtained by cutting and selling the rod using dynamic

programming.

16. Edit Distance: Given two strings, find the minimum number of operations (insertion, deletion,

and substitution) required to convert one string into another using dynamic programming.

17. Maximum Subarray Sum: Given an array of integers, find the maximum sum of a subarray using

dynamic programming.

18. Longest Increasing Subsequence: Given an array of integers, find the length of the longest

increasing subsequence using dynamic programming.

19. Matrix Chain Multiplication: Given a sequence of matrices, find the minimum number of scalar

multiplications needed to multiply them using dynamic programming.

20. Subset Sum Problem: Given a set of integers and a target sum, determine if there exists a subset

that sums up to the target using dynamic programming.

Questions on Greedy Programming

11. Fractional Knapsack Problem: Given a set of items with weights and values, determine the

maximum value that can be obtained by selecting fractions of items within a weight limit using a

greedy algorithm.

12. Activity Selection Problem: Given a set of activities with start and finish times, select the

maximum number of activities that can be performed without overlapping using a greedy

algorithm.

13. Minimum Spanning Tree: Given a weighted graph, find the minimum spanning tree using

Kruskal's or Prim's algorithm, which are both based on greedy approaches.

14. Huffman Coding: Given a set of characters and their frequencies, construct a binary code that

minimizes the total encoded length using a greedy algorithm.

15. Coin Change Problem: Given a set of coin denominations and a target value, find the minimum

number of coins needed to make the target value using a greedy algorithm.

16. Job Scheduling Problem: Given a set of jobs with their deadlines and profits, schedule the jobs to

maximize the total profit using a greedy algorithm.

17. Interval Scheduling Problem: Given a set of intervals, select the maximum number of non-

overlapping intervals using a greedy algorithm.

18. Dijkstra's Algorithm: Given a weighted graph, find the shortest path from a source vertex to all

other vertices using Dijkstra's algorithm, which is based on a greedy approach.

19. Egyptian Fraction: Given a fraction, represent it as a sum of unique unit fractions using a greedy

algorithm.

20. Car Fueling Problem: Given the total distance to be covered, the capacity of the fuel tank, and a

list of distances between fuel stations, determine the minimum number of refueling needed to

reach the destination using a greedy algorithm.

Questions on String Matching

11. Naive String Matching: Implement the naive string-matching algorithm to find all occurrences of

a pattern in a text.

12. Knuth-Morris-Pratt (KMP) Algorithm: Implement the KMP algorithm to efficiently find all

occurrences of a pattern in a text.

13. Rabin-Karp Algorithm: Implement the Rabin-Karp algorithm to efficiently find all occurrences

of a pattern in a text using hashing.

14. Longest Common Substring: Given two strings, find the longest common substring using

dynamic programming or other efficient algorithms.

15. Longest Common Prefix: Given an array of strings, find the longest common prefix using a

suitable algorithm.

16. Regular Expression Matching: Implement a regular expression matching algorithm to determine

if a string matches a given pattern.

17. Anagrams: Given a list of strings, find all pairs of strings that are anagrams of each other.

18. Palindromic Substrings: Given a string, find all palindromic substrings using a suitable algorithm.

19. Boyer-Moore Algorithm: Implement the Boyer-Moore algorithm to efficiently find all

occurrences of a pattern in a text.

20. Subsequence Matching: Given two strings, determine if one string is a subsequence of the other.

Questions on Advanced Data Structures

11. Trie: Implement a Trie data structure and solve problems such as word search, autocomplete, or

finding the longest common prefix.

12. Segment Tree: Implement a Segment Tree data structure and solve problems such as range sum

queries, range minimum/maximum queries, or range updates.

13. Fenwick Tree (Binary Indexed Tree): Implement a Fenwick Tree data structure and solve

problems such as prefix sum queries or range updates.

14. Disjoint Set Union (DSU) / Union-Find: Implement a DSU data structure and solve problems

such as connected components, cycle detection, or Kruskal's algorithm for finding the minimum

spanning tree.

15. Treap: Implement a Treap (a balanced binary search tree with randomized priorities) and solve

problems such as maintaining the median of a dynamic set of numbers or solving range queries

on a set of intervals.

16. Suffix Array: Implement a Suffix Array data structure and solve problems such as finding the

longest common substring, finding the lexicographically smallest substring, or pattern matching.

17. LCA (Lowest Common Ancestor): Implement an LCA data structure and solve problems such as

finding the lowest common ancestor of two nodes in a tree or solving distance-related queries on

a tree.

18. K-D Tree: Implement a K-D Tree data structure and solve problems such as nearest neighbor

search or range search in a multi-dimensional space.

19. AVL Tree or Red-Black Tree: Implement a balanced binary search tree (either AVL Tree or Red-

Black Tree) and solve problems such as maintaining a sorted dynamic set or solving range queries.

20. B+ Tree: Implement a B+ Tree data structure and solve problems such as indexing or range

queries on a large dataset.

References to Interview Questions

 https://www.simplilearn.com/coding-interview-questions-article

https://www.simplilearn.com/coding-interview-questions-article

 https://www.csestack.org/competitive-coding-questions/

 https://www.geeksforgeeks.org/a-competitive-programmers-interview/

 https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-

microsoft-adobe/

 https://unstop.com/blog/competitive-coding-questions-with-solutions

 https://unstop.com/blog/competitive-coding-questions-with-solutions

https://www.csestack.org/competitive-coding-questions/
https://www.geeksforgeeks.org/a-competitive-programmers-interview/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://www.geeksforgeeks.org/must-do-coding-questions-for-companies-like-amazon-microsoft-adobe/
https://unstop.com/blog/competitive-coding-questions-with-solutions
https://unstop.com/blog/competitive-coding-questions-with-solutions

Department: Department of Computer Science and Engineering

Course Name: Minor

Project-II

Course Code L-T-P Credits

ENSI352 --- 2

Type of Course: Project

Pre-requisite(s), if any: NA

 Students expected to develop a basic project that demonstrates the application of learnings from

studied subjects.

 Students are required to submit a hard copy of project file as per the template. File needs to be

submitted in spiral bind.

 Project will be evaluated on the scale of 100 with following evaluation criteria.

o Project idea & features (10)

o Literature review (10)

o Tools & Techniques employed (10)

o Methodology (10)

o Presentation of Results and their usefulness (20)

o Implementation and its understandability (10)

o Meetings & comments by guide (20)

o Research paper (10)

File format for Minor project

1. Abstract Page No.

2. Introduction (description of broad topic)

3. Motivation

4. Literature Review

5. Gap Analysis

6. Problem Statement

7. Objectives

8. Tools/platform used

9. Methodology

10. Experimental Setup

11. Evaluation Metrics

12. Results and Discussion

13. Conclusion & Future Work

14. References

15.

Annexure I: Responsibility Chart

16. Annexure II:

Screenshots of all the MS-Team Meetings with links (online)/

handwritten comments(offline) from guide

17. Annexure III

Complete implementation code

18. Annexure IV

Research Paper (Published/Submitted)

Department Elective - II (Cloud Computing)

(i) Minor ENSP401 Computational Services in The Cloud 4 - 1 4

Minor ENSP451 Computational Services in The Cloud

Lab

- - 2 1

(ii) Minor ENSP403 Microsoft Azure Cloud Fundamentals 4 - 1 4

Minor ENSP453 Microsoft Azure Cloud Fundamentals

Lab

- - 2 1

(iii) Minor ENSP405 Storage and Databases on Cloud 4 - 1 4

Minor ENSP455 Storage and Databases on Cloud Lab - - 2 1

(iv) Minor ENSP407 Application Development and DevOps

on Cloud

4 - 1 4

Minor ENSP457 Application Development and DevOps

on Cloud Lab

- - 2 1

Department: Department of Computer Science and Engineering

Course Name:

Image Processing & Computer

Vision

Course Code L-T-P Credits

ENSP304 4-0-0 4

Type of Course: Minor (Department Elective I)

Pre-requisite(s), if any: (1) Linear Algebra and (2) programming in Python

COs Statements

CO1 Understand the fundamental concepts and techniques of image processing.

CO2 Apply image enhancement techniques for improving image quality.

CO3 Analyze the impact of different image enhancement techniques on image quality and

visual perception.

CO4 Evaluate the strengths and limitations of computer vision techniques in various

applications

CO5 Develop innovative image fusion techniques for combining multiple images to enhance

visual perception

Brief Syllabus:

The syllabus for the subject "Image Processing and Computer Vision using Python" covers the

following topics: introduction to image processing and computer vision, Python programming basics

for image processing, image acquisition and manipulation using Python libraries, image enhancement

techniques, image filtering and convolution, feature extraction, and object detection, image

segmentation and boundary detection, image registration and alignment, camera calibration and 3D

reconstruction, deep learning for image classification and object recognition, and applications of

computer vision in fields like robotics, healthcare, and autonomous systems. The syllabus emphasizes

hands-on programming exercises and projects to develop practical skills in implementing image

processing and computer vision algorithms using Python.

UNIT WISE DETAILS

Unit Number: 1
Introduction to Basic Concepts of Image

Formation
No. of hours: 10

Fundamentals and Applications of image processing, Image processing system components, Image

sensing and acquisition, Sampling and quantization, Neighbors of pixel adjacency connectivity,

regions and boundaries, Distance measures.

 Image Enhancement: Frequency and Spatial Domain, Contrast Stretching, Histogram Equalization,

Low pass and High pass filtering.

Unit Number: 2 Image Restoration and coloring No. of hours: 10

Model of The Image Degradation Restoration Process, Noise Models, Restoration in the presence of

Noise Only Spatial Filtering, Periodic Noise Reduction by Frequency Domain Filtering, Linear

Position Invariant Degradations, Estimation of Degradation Function, Inverse filtering, Wiener

filtering, Constrained Least Square Filtering, Geometric Mean Filter, Geometric Transformations.

Colour Image Processing, Image Segmentation, Texture Descriptors, Colour Features,

Edges/Boundaries, Object Boundary and Shape Representations, Interest or Corner Point Detectors,

Speeded up Robust Features, and Saliency.

Unit Number: 3 Image Compression and Segmentation No. of hours: 10

Data Redundancies, Image Compression models, Elements of Information Theory, Lossless and Lossy

compression, Huffman Coding, Shanon-Fano Coding, Arithmetic Coding, Golomb Coding, LZW

Coding, Run Length Coding, Lossless predictive Coding, Bit Plane Coding, Image compression

standards.

Image Segmentation and Morphological Image Processing: Discontinuity-based segmentation,

similarity-based segmentation, Edge linking and boundary detection, Threshold, Region-based

Segmentation Introduction to Morphology, Dilation, Erosion, Some basic Morphological Algorithms

Object

Unit Number: 4
Object Representation and Computer Vision

Techniques
No. of hours: 10

Representation and Description and Computer Vision Techniques: Introduction to Morphology, Some

Basic Morphological Algorithms, Representation, Boundary Descriptors, Regional Descriptors, Chain

Code, and Structural Methods. Review of Computer Vision applications; Artificial Neural Networks

for Pattern Classification, Convolutional Neural Networks, Machine Learning Algorithms and their

Applications in Image Segmentation, Motion Estimation and Object Tracking, Gesture Recognition,

Face and Facial Expression Recognition, Image Fusion

*Self-Learning Components:

Please Note:

1. Concepts of Huffman coding, arithmetic coding, and other compression algorithms.

2. Presenting an overview of image compression standards (e.g., JPEG, JPEG2000) and

their performance characteristics.

3. Presentation on a specific computer vision application (e.g., gesture recognition, facial

expression recognition) and the underlying algorithms used.

 Note:

1)Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end term exams from self-learning components.

Reference Books:

1. Gonzalez Rafael C. and Woods Richard E., Digital Image Processing, New Delhi: Prentice–

Hall of India.

2. M.K. Bhuyan , “ Computer Vision and Image Processing: Fundamentals and

Applications”, CRC Press, USA, ISBN 9780815370840 - CAT# K338147

3. MOOCs course by Prof. M. K. Bhuyan, “Computer Vision and Image Processing –

Fundamentals and Applications”https://onlinecourses.nptel.ac.in/noc21_ee23/course

Program and course outcome mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

 E
N

S
P

3
0

4
/I

m
a

g
e

P
ro

ce
ss

in
g

&

C
o

m
p

u
te

r
V

is
io

n

CO1 3 1 - - 1 -

- - 1 1 - 2 3 1 - -

CO2 1 1 3 - 2 -

- - 1 - - 2 2 3 - -

CO3 1 2 1 3 2 - - - 1 - - 2 2 2 1 1

CO4 - 2 3 - 3 - - - 1 - - 2 2 3 2 2

CO5 - - 3 1 1 1 - - 2 1 1 2 2 3 2 2

COs

Statements

CO 1 Apply image processing techniques using Python libraries.

CO 2 Analyze and evaluate the effectiveness of different image enhancement algorithms

CO 3 Implement image restoration algorithms and evaluate their performance in the presence

of noise.

CO 4 Develop image compression algorithms and analyze their impact on image quality.

CO 5 Formulate computer vision techniques such as object detection and tracking, gesture

recognition, and facial expression recognition using Python.

Ex. No Experiment Title Mapped

CO/COs

1 Image acquisition and display using the Open CV library CO 1

2 Image enhancement techniques: contrast stretching, histogram

equalization

CO 2

3 Low-pass and high-pass filtering for image smoothing and

sharpening

CO 2

4 Image degradation and restoration: modeling degradation process,

noise reduction

CO 3

5 Inverse filtering and Wiener filtering for image restoration CO 3

6 Geometric mean filter for image denoising CO 3

7 Geometric transformations: translation, rotation, scaling CO 1

8 Color image processing: color space conversion, histogram-based

operations

CO 2

9 Image segmentation using thresholding techniques CO 1

10 Texture analysis and feature extraction CO 2

11 Edge detection and boundary extraction CO 2

12 Interest point detection using Harris corner detector CO 2

13 Speeded up robust features (SURF) for feature extraction CO 2

14 Saliency detection in images CO 2

15 Lossless and lossy image compression using Huffman coding CO 4

16 Shanon-Fano coding and arithmetic coding for image compression CO 4

17 Golomb coding and LZW coding for data compression CO 4

18 Run-length coding for image compression CO 4

19 Lossless predictive coding for image compression CO 4

20 Bit plane coding for image compression CO 4

21 Image segmentation based on discontinuity and similarity CO 1

22 Edge linking and boundary detection in images CO 1

23 Morphological operations: dilation and erosion CO 1

24 Object representation and description using morphological

algorithms

CO 1

25 Introduction to computer vision applications CO 1

Department: Department of Computer Science and Engineering

Course Name:

Image Processing & Computer Vision Lab

Course Code L-T-P Credits

ENSP354 0-0-2 1

Type of Course: Minor (Department Elective I)

Pre-requisite(s), if any: (1) Linear Algebra and (2) programming in python

26 Pattern classification using artificial neural networks CO 5

27 Convolutional neural networks for image classification CO 5

28 Machine learning algorithms for image segmentation CO 5

29 Motion estimation and object tracking CO 5

30 Gesture recognition and face/facial expression recognition CO 5

Detailed syllabus

Session 1: Image acquisition and display using the OpenCV library

 Session: Introduction to image acquisition and display using OpenCV library

 Exercise: Write a Python code to capture and display images using OpenCV

 Project: Build a simple application to capture images from a webcam and display them

in real-time

Session 2: Image enhancement techniques: contrast stretching, histogram equalization

 Session: Introduction to image enhancement techniques

 Exercise: Implement contrast stretching and histogram equalization algorithms in

Python

 Project: Apply image enhancement techniques on a set of images and compare the results

Session 3: Low-pass and high-pass filtering for image smoothing and sharpening

 Session: Understanding low-pass and high-pass filters for image processing

 Exercise: Implement low-pass and high-pass filters in Python for image smoothing and

sharpening

 Project: Apply filters on a set of images and analyze the effects of smoothing and

sharpening

Session 4: Image degradation and restoration: modeling degradation process, noise

reduction

 Session: Introduction to image degradation and restoration

 Exercise: Model image degradation process and implement noise reduction techniques

 Project: Restore a set of degraded images using various restoration methods

Session 5: Inverse filtering and Wiener filtering for image restoration

 Session: Understanding inverse filtering and Wiener filtering for image restoration

 Exercise: Implement inverse filtering and Wiener filtering algorithms in Python

 Project: Apply restoration techniques on a set of images and evaluate the performance

Session 6: Geometric mean filter for image denoising

 Session: Introduction to geometric mean filter for image denoising

 Exercise: Implement geometric mean filter in Python for denoising images

 Project: Apply the filter on noisy images and compare the results with other denoising

techniques

Session 7: Geometric transformations: translation, rotation, scaling

 Session: Introduction to geometric transformations in image processing

 Exercise: Implement translation, rotation, and scaling operations on images using

OpenCV

 Project: Apply geometric transformations on a set of images and analyze the

transformations' effects

Session 8: Color image processing: color space conversion, histogram-based operations

 Session: Understanding color image processing techniques

 Exercise: Perform color space conversion and histogram-based operations on images

 Project: Apply color image processing techniques on a set of images and analyze the

results

Session 9: Image segmentation using thresholding techniques

 Session: Introduction to image segmentation using thresholding techniques

 Exercise: Implement thresholding algorithms for image segmentation in Python

 Project: Segment images using various thresholding methods and evaluate the

segmentation results

Session 10: Texture analysis and feature extraction

 Session: Understanding texture analysis and feature extraction methods

 Exercise: Extract texture features from images using texture analysis algorithms

 Project: Apply texture analysis and feature extraction techniques on images and analyze

the extracted features

Session 11: Edge detection and boundary extraction

 Session: Introduction to edge detection and boundary extraction

 Exercise: Implement edge detection algorithms in Python

 Project: Detect edges and extract boundaries from a set of images using different edge

detection methods

Session 12: Interest point detection using Harris corner detector

 Session: Understanding interest point detection using Harris corner detector

 Exercise: Implement Harris corner detection algorithm in Python

 Project: Detect interest points in images and analyze their properties using the Harris

corner detector

Session 13: Speeded up robust features (SURF) for feature extraction

 Session: Introduction to SURF (Speeded Up Robust Features) algorithm

 Exercise: Implement SURF algorithm for feature extraction in Python
 Project: Extract features from images using SURF and evaluate their robustness and speed

Session 14: Saliency detection in images

 Session: Understanding saliency detection in images

 Exercise: Implement saliency detection algorithm in Python

 Project: Detect salient regions in images and analyze their significance using the implemented

algorithm

Session 15: Lossless and lossy image compression using Huffman coding

 Session: Introduction to image compression using Huffman coding

 Exercise: Implement Huffman coding for lossless image compression in Python

 Project: Compress a set of images using Huffman coding and evaluate the compression ratio and

quality

Session 16: Shanon-Fano coding and arithmetic coding for image compression

 Session: Understanding Shanon-Fano coding and arithmetic coding for image compression

 Exercise: Implement Shanon-Fano coding and arithmetic coding algorithms in Python

 Project: Compare the performance of Shanon-Fano coding and arithmetic coding for image

compression

Session 17: Golomb coding and LZW coding for data compression

 Session: Introduction to Golomb coding and LZW (Lempel-Ziv-Welch) coding for data

compression

 Exercise: Implement Golomb coding and LZW coding algorithms in Python

 Project: Apply Golomb coding and LZW coding on data and analyze the compression efficiency

Session 18: Run-length coding for image compression

 Session: Understanding run-length coding for image compression

 Exercise: Implement run-length coding algorithm in Python

 Project: Compress images using run-length coding and analyze the compression performance

Session 19: Lossless predictive coding for image compression

 Session: Introduction to lossless predictive coding for image compression

 Exercise: Implement lossless predictive coding algorithm in Python

 Project: Apply predictive coding on images and evaluate the compression results

Session 20: Bit plane coding for image compression

 Session: Understanding bit plane coding for image compression

 Exercise: Implement bit plane coding algorithm in Python

 Project: Apply bit plane coding on images and analyze the compression efficiency

Session 21: Image segmentation based on discontinuity and similarity

 Session: Introduction to image segmentation based on discontinuity and similarity

 Exercise: Implement image segmentation algorithms using discontinuity and similarity measures

 Project: Segment images based on different segmentation criteria and evaluate the results

Session 22: Edge linking and boundary detection in images

 Session: Understanding edge linking and boundary detection in images

 Exercise: Implement edge linking algorithms for boundary detection in Python

 Project: Detect and link edges to extract boundaries from images using various edge linking

methods

Session 23: Morphological operations: dilation and erosion

 Session: Introduction to morphological operations in image processing

 Exercise: Implement dilation and erosion operations using morphological algorithms

 Project: Apply morphological operations on images to analyze their effects on different objects

Session 24: Object representation and description using morphological algorithms

 Session: Understanding object representation and description using morphological algorithms

 Exercise: Implement object representation and description techniques using morphological

operations

 Project: Represent and describe objects in images using morphological algorithms and analyze

the results

Session 25: Introduction to computer vision applications

 Session: Overview of computer vision applications and use cases

 Exercise: Explore different computer vision applications and their functionalities

 Project: Choose a specific computer vision application, implement it, and demonstrate its

capabilities

Session 26: Pattern classification using artificial neural networks

 Session: Introduction to pattern classification using artificial neural networks

 Exercise: Implement an artificial neural network for pattern classification in Python

 Project: Train a neural network model to classify patterns and evaluate its performance

Session 27: Convolutional neural networks for image classification

 Session: Understanding convolutional neural networks (CNNs) for image classification

 Exercise: Implement a CNN architecture in Python for image classification

 Project: Train a CNN model on a dataset for image classification and evaluate its accuracy

Session 28: Machine learning algorithms for image segmentation

 Session: Introduction to machine learning algorithms for image segmentation

 Exercise: Implement machine learning algorithms for image segmentation in Python

 Project: Apply machine learning techniques for image segmentation and analyze the

segmentation results

Session 29: Motion estimation and object tracking

 Session: Understanding motion estimation and object tracking techniques

 Exercise: Implement motion estimation and object tracking algorithms in Python

 Project: Track objects in video sequences using motion estimation and analyze the

tracking performance

Session 30: Gesture recognition and face/facial expression recognition

 Session: Introduction to gesture recognition and face/facial expression recognition

 Exercise: Implement gesture recognition and face/facial expression recognition

algorithms in Python

 Project: Develop a system that can recognize gestures and facial expressions from video

input

Department: Department of Computer Science and Engineering

Course Name:

Introduction to Generative AI

Course Code L-T-P Credits

ENSP306

4-0-0 4

Type of Course: Minor (Department Elective I)

Pre-requisite(s), if any:

Brief Syllabus:

This course introduces students to the fundamental concepts and techniques of Generative Artificial

Intelligence (AI). Generative AI is an emerging field that focuses on developing algorithms and

models capable of generating new content, such as images, music, and text. The course will cover the

theoretical foundations of generative models and provide hands-on experience with open-source tools

for creating and exploring generative AI applications.

COs Statements

CO1 Understand the foundational concepts of Generative AI

CO2 Apply probability distributions and random variables in generative models

CO3 Employ various generative models, such as VAEs, GANs, and flow-based models, to

generate new data samples in different domains.

CO4 Implement and Analyze generative models

CO5 Evaluate emerging trends and future directions in the field of Generative AI

CO6 Develop sequence generation models using recurrent neural networks (RNNs) and LSTM

UNIT WISE DETAILS

Unit Number: 1 Foundations of Generative AI No. of hours: 10

Introduction to Generative AI: Definition, working and applications of generative AI, Historical

overview and recent advancements, Ethical considerations and societal impact.

Probability and Statistics for Generative AI: Probability distributions and random variables,

Maximum likelihood estimation, Bayesian inference and generative models.

Fundamentals of Deep Learning: Neural networks and their architectures, Backpropagation and

optimization algorithms, Transfer learning and pre-trained models.

Unit Number: 2 Generative Models No. of hours: 10

Overview of generative models: Gaussian Mixture Models, Hidden Markov Models; Representation

learning and latent variables; Autoencoders: Basics of autoencoders and their applications, Encoder

and decoder architectures, Reconstruction loss and latent space representation; Variational

autoencoders (VAEs): Introduction to VAEs, reparameterization;

Unit Number: 3
Generative Adversarial Networks and Flow-based

Models
No. of hours: 10

 Generative Adversarial Networks (GANs): Introduction, Architecture of GANs, Training GANs and

understanding the loss functions; Autoregressive Models (including information-theoretic

foundations)

Flow-based generative models and their advantages, Normalizing flows and invertible transformations,

Training and sampling from flow-based models, Evaluation of Generative Models: Metrics for

evaluating generative models (log-likelihood, Inception Score)

Unit Number: 4 Applications and Future Directions No. of hours: 10

Real-World Applications of Generative AI: Image synthesis and editing, Data augmentation and

data generation, Generative AI in healthcare, gaming, and art; Ethical Considerations and

Challenges: Bias and fairness in generative models, Deepfakes and misinformation, Responsible AI

practices; Emerging Trends and Future Directions: Reinforcement learning and generative models,

Meta-learning and few-shot generation, Open AI's DALL-E.

*Self-Learning Components:

 Students are encouraged to explore and familiarize themselves with the tools of Python

programming language for machine learning (NumPy, Pandas, PyTorch)

 Experiment with popular open-source tools: TensorFlow and Keras

 Presentation on current research areas like: style transfer, multimodal generation, and

unsupervised learning.

 Open source tools for image: CycleGAN for image translation, StyleGAN and StyleGAN2 for

high-quality image synthesis, OpenAI's CLIP for cross-model understanding

 Course on “Introduction to Generative AI” with Google Cloud

Please Note:

1) Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end term exams from self-learning components.

Reference Books:

1. Generative Deep Learning, by David Foster, 2nd Edition, O'Reilly Media, Inc.

2. Deep Learning by Ian Goodfellow, Yoshua Bengio and Aaron Courville , The MIT Press

3. PATTERN RECOGNITION AND MACHINE LEARNING by Christopher M. Bishop

4. Natural Language Processing with Python" by Steven Bird, Ewan Klein, and Edward Loper

Reference Links:

 Deep Learning Specialization on Coursera (includes a course on generative

models):https://www.coursera.org/specializations/deep-learning

 TensorFlow Tutorials on Generative Models:

https://www.tensorflow.org/tutorials/generative

 OpenAI's Generative Models page: https://openai.com/research/generative-models/

https://www.coursera.org/specializations/deep-learning
https://www.tensorflow.org/tutorials/generative
https://openai.com/research/generative-models/

Program and course outcome mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

 E
N

S
P

3
0

6
/

In
tr

o
d

u
ct

io
n

 t
o

G
en

er
a

ti
v

e
A

I

CO1 3 1 - - 1 -

- - 1 1 - 2 3 - - -

CO2 1 1 3 - 2 -

- - 1 - - 2 3 3 - -

CO3 1 2 1 3 2 - - - 1 - - 2 3 3 3 -

CO4 - 2 3 - 3 - - - 1 - - 2 - 3 - -

CO5 - - 3 1 1 1 - - 2 1 1 2 3 3 - -

Department: Department of Computer Science and Engineering

Course Name:

Introduction to

Generative AI Lab

Course Code L-T-P Credits

ENSP356

0-0-2 1

Type of Course: Minor (Department Elective II)

Pre-requisite(s), if any: NA

COs Statements

CO 1 Utilize Python programming to generate random samples from various probability

distributions

CO 2 Apply knowledge of generative AI models and frameworks

CO 3 Develop proficiency in building and training feedforward neural networks and deep

learning frameworks

CO 4 Implement basic autoencoder models and train them on datasets

CO5 Evaluate the performance metrics of trained models, such as accuracy and loss

Ex. No Experiment Title Mapped

CO/COs

1 Generate random samples from various probability distributions

(e.g., normal distribution, uniform distribution) using Python

CO1

2 Implement maximum likelihood estimation (MLE) for a given

dataset and estimate the parameters of a selected probability

distribution.

CO1

3 Explore and experiment with existing generative AI models and

frameworks (e.g., TensorFlow, PyTorch).

CO2

4 Implement a basic generative AI model (e.g., a simple image

generator) using a chosen framework.

CO2

5 Implement a feedforward neural network using a deep learning

framework (e.g., TensorFlow, PyTorch).

CO3

6 Train the neural network on a benchmark dataset (e.g., MNIST,

CIFAR-10) using backpropagation and a chosen optimization

algorithm (e.g., stochastic gradient descent).

CO3

7 Evaluate the trained model's performance metrics (e.g., accuracy,

loss) on a separate validation set.

CO5

8 Compare and analyze the performance of the trained model with

and without transfer learning.

CO5

9 Train an autoencoder on a dataset of images. CO4

10 Encode a set of images using the trained encoder and visualize

their corresponding latent space representations

CO4

11 Build an encoder and a decoder architecture for a VAE using a

deep learning framework.

CO4

12 Train the VAE on a dataset of images (e.g., MNIST, CIFAR-10)

using a chosen loss function

CO4

13 Implement a basic autoencoder model and train it on a dataset. CO4

14 Implement an autoregressive model, such as PixelCNN or

PixelRNN, using a deep learning framework.

CO3

15 Implement a GAN architecture using a deep learning framework. CO3

16 Train the GAN on a dataset of images (e.g., MNIST, CIFAR-10)

and monitor the generator and discriminator losses.

CO5

17 Analyze the loss functions used in GAN training (e.g., adversarial

loss, feature matching loss)

CO5

18 Train an RNN-based model to generate sequences (e.g., text or

music)

CO3

19 Train the RNN on a dataset of sequences (e.g., text corpus, MIDI

data) using backpropagation through time (BPTT)

CO3

20 Implement a flow-based generative model using a deep learning

framework

CO3

21 Fine-tune a pre-trained deep learning model on a new task or

dataset.

CO3

22 Implement the Tacotron model using a deep learning framework. CO3

23 Implement the CycleGAN model using a deep learning

framework.

CO3

24 Implement the evaluation metrics using appropriate libraries or

frameworks.

CO5

25 Evaluate the performance of different generative models using the

implemented metrics.

CO5

Department Elective - III (Full Stack Development)

(i) Minor ENSP409 Mobile Application Development using iOS 4 - - 4

Minor ENSP459 Mobile Application Development using iOS

Lab

- - 2 1

(ii) Minor ENSP411 DevOps & Automation 4 - - 4

Minor ENSP461 DevOps & Automation Lab - - 2 1

(iii) Minor ENSP413 .Net FRAMEWORK 4 - - 4

Minor ENSP463 .Net FRAMEWORK Lab - - 2 1

(iv) Minor ENSP415 New Age Programming languages 4 0 0 4

Minor ENSP465 New Age Programming languages Lab 0 0 2 1

Department: Department of Computer Science and Engineering

Course Name:

Mobile Application

Development using iOS

Course Code L-T-P
Credit

s

ENSP409 4-0-0 4

Type of Course: Minor (Department Elective III)

Pre-requisite(s), if any: Basics of Android

COs Statements

CO1 Create iPhone apps using Objective-C and Apple's new programming language,

use industry tools and frameworks such as Cocoa, Xcode, UIKit, Git.

CO2 Understand and know how to use properly UIKit, asynchronous code, Core Image,

NSURL Session and JSON Map Kit and Core Location, Auto Layout, Source

Control, Core Data, Animation, and the app submission process.

CO3 Read and write programs based on Objective-C, also have a strong grasp of

Objective-C objects

CO4 Organize their code professionally using objects and blocks, prototype several

entries- level apps and try to publish on App store.

Brief Syllabus:

The objective of the course is to provide skills to develop applications for OS X and iOS. It

includes introduction to development framework Xcode. Objective-C is used as programming

language to develop the applications. Objective-C is the superset of the C programming

language and provides object-oriented capabilities and a dynamic runtime. Objective-C

inherits the syntax, primitive types, and flow control statements of C and adds syntax for

defining classes and methods.

UNIT WISE DETAILS

Unit Number: 1
Title: Introduction to IDE and SDK of iOS

App Development
No. of hours: 10

Xcode-The SDK environment, Supporting tools, Advance settings. Development Technique,

Fundamental of Object-Oriented Programming, The MVC architecture.

Unit Number: 2 Title: Objective-C No. of hours: 10

Introduction to Objective C, Primitive Data Types, Conditions, Loops, Functions, Arrays,

Pointers, Structures, Classes, Objects, Foundation, Memory Management, Inheritance,

Categories, Protocols, Predicates, Blocks, Multi-Threading.

Objects Send and Receive Messages concept, Use of Pointers to Keep Track of Objects,

Methods - Return Values.

Unit Number: 3 Title: Encapsulating Data No. of hours:10

Content Summary:

Properties of Encapsulation of an Object’s Values, Declare Public Properties for Exposed

Data, Use Accessor Methods to Get or Set Property Values, Concept of Dot Syntax, Properties

Are Backed by Instance Variables.

Dealing with Errors: Use NSError for Most Errors, Some Delegate Methods Alert You to

Errors, Some Methods Pass Errors by Reference

Unit Number: 4 Title: Developing iOS Applications No. of hours: 10

Content Summary:

iOS App Anatomy, Design Principles, creating a Basic Hello World App with interface

elements, UI View & Controller, UI Elements, Trigger Actions, Storyboard, Device

Orientations, Using Gestures, Popovers and Modal Dialogs, Creating Universal Apps, Status

Bar, Navigation Bar, Tab Bar, Content Views (e.g., Image view, Map View etc.), UI Table

View and Table View Controller, Core Data, test your App, Publishing your App.

*Self-Learning Components:

2. XCode Documentation

References:

5. https://www.tutorialspoint.com/objective_c/objective_c_quick_guide.htm

6. https://www.coursera.org/learn/introduction-to-ios-mobile-application-development

7. https://www.geeksforgeeks.org/classes-objects-in-objective-c/

Please Note:

1)Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end term exams from self-learning components.

Textbook:

1. Effective objective C 2.0, Matt Galloway, Effective software development series, Scott

Meyers.

Reference Books:

2. Programming in Objective-C (5th Edition) (Developer's Library) by Stephen G. Kochan.

3. iOS 6 Development Unleashed: Developing Mobile Applications for Apple iPhone, iPad,

and iPod Touch by Robert McGovern

Online References:

 https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/Progr

ammingWithObjectiveC/Introduction/Introduction.html

 https://www.digitalocean.com/community/tutorials/objective-c-hello-world-tutorial

https://www.tutorialspoint.com/objective_c/objective_c_quick_guide.htm
https://www.coursera.org/learn/introduction-to-ios-mobile-application-development
https://www.geeksforgeeks.org/classes-objects-in-objective-c/
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://developer.apple.com/library/archive/documentation/Cocoa/Conceptual/ProgrammingWithObjectiveC/Introduction/Introduction.html
https://www.digitalocean.com/community/tutorials/objective-c-hello-world-tutorial

Program and course outcome mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

 E
N

S
P

4
0

9
/
M

o
b

il
e

A
p

p
li

ca
ti

o
n

D
ev

el
o

p
m

en
t

u
si

n
g

 i
O

S

CO1 3 1 2 - - - - - - - - 3 2 - 3

CO2 - 3 2 - 2 - - - - - - 3 2 2 - 2

CO3 - 2 2 3 1 - - - - - - 3 - 2 - -

CO4 - 2 3 - - - - - - - 2 - - - 3

CO5 - - - - - - - - - - - - - - - -

Department: Department of Computer Science and Engineering

Course Name:

Mobile Application

Development using iOS

Lab

Course Code L-T-P Credits

ENSP459 0-0-2 1

Type of Course: Minor (Department Elective III)

Pre-requisite(s), if any: Basics of Android

Proposed Lab Experiments

Defined Course Outcomes

COs Statements

CO 1
Create iPhone apps using Objective-C and Apple's new programming

language, use industry tools and frameworks such as Cocoa, Xcode, UIKit, Git.

CO 2

Understand and know how to use properly UIKit, asynchronous code, Core

Image, NSURL Session and JSON Map Kit and Core Location, Auto Layout,

Source Control, Core Data, Animation, and the app submission process.

CO 3
Read and write programs based on Objective-C, also have a strong grasp of

Objective-C objects

CO 4
Organize their code professionally using objects and blocks, prototype several

entries- level apps and try to publish on App store.

Ex. No. Experiment Title Mapped

CO/COs
1 Case Study of Objective-C language. CO2

2 Case study of Windows and MAC systems CO2

3 Case Study of XCode based on MAC Systems CO2

4 Design an App for UISwitch based on Objective-C language CO1

5 Design an App for UISlider based on Objective-C language CO1

6 Design an App for UIStepper based on Objective-C language CO1

7 Write a program for creating Story Boards CO1

8 Design an App for UIAnimation based on Objective-C

language

CO1

9 Create a Simple Calculator using Objective-C Language CO1

10 Design an App for UIProgress Bar based on Objective-C

language

CO1

11 Design an App for UIDatePicker Bar based on Objective-C

language

CO1

12 Write an Objective-C program to print factorial of a given

number

CO3

13 Write an Objective-C program to print Fibonacci series CO3

14 Write an Objective-C program that displays the Phrase “Hello

World”

CO3

15 Write an Objective-C program for displaying the value of

variables

CO3

16 Write an Objective-C program for displaying the sum and

subtraction of two variables

CO3

17 Write an Objective-C program for displaying the

multiplication and division of the two variables

CO3

18 Write an Objective-C program that demonstrate control

structure of Objective-C language

CO3

19 Create a Button using Objective-C CO3

20 Write an Objective-C program to print the value of a variable

inside a text, place it in parentheses, and insert a backslash just

prior to the opening parenthesis.

CO3

21 Write an Objective-C program to print Floyd’s Triangle. CO3

22 Write an Objective-C program to print palindrome of a

number.

CO3

23 Write an Objective-C program to print pyramid. CO3

24 Write an Objective-C program to find greatest number in

between three numbers

CO3

25 Write an Objective-C program to check whether a number is

even or odd.

CO3

 Mini Project 1: Make an interactive project based on iOS App

using Objective-C Language

CO4

 Mini Project 2: Upload your iOS App in Apple AppStore and

Publish it

CO4

Department: Department of Computer Science and Engineering

Course Name:

DevOps & Automation
Course Code

L-

T-

P

Credits

ENSP411 4-

0-

0

4

Type of Course: Minor (Department Elective III)

Pre-requisite(s), if any: Nil

COs Statements

CO1 Understand the principles and benefits of DevOps, and its role in enhancing collaboration and

efficiency between development and operations teams.

CO2 Acquire hands-on experience with popular DevOps tools such as Git, Jenkins, Docker, Kubernetes,

and Ansible for implementing continuous integration, continuous delivery, and automated

deployment processes.

CO3 Demonstrate proficiency in containerization and orchestration techniques using Docker and

Kubernetes for efficient and scalable application deployment and management.

CO4 Implement configuration management and Infrastructure as Code (IaC) using Ansible and

Terraform to automate the provisioning and management of infrastructure resources.

CO5 Develop skills in monitoring, logging, and security practices in the context of DevOps, ensuring

application performance, resilience, and adherence to security best practices.

Brief Syllabus:

Throughout the subject, students will engage in hands-on exercises and projects to gain practical

experience with various DevOps tools and practices. By the end of the course, students will be well-

equipped to embrace the DevOps culture and apply automation techniques to enhance software

development, delivery, and operations processes.

UNIT WISE DETAILS

Unit Number: 1 Title: Introduction to DevOps No. of hours: 10

Content Summary:

Overview of DevOps: Definition, objectives, and benefits.

DevOps Principles: Collaboration, automation, continuous integration, continuous delivery, and

continuous deployment.

DevOps Tools: Introduction to popular DevOps tools like Git, Jenkins, Docker, Kubernetes, and

Ansible.

Version Control with Git: Branching, merging, and collaborative development using Git.

Continuous Integration (CI): Setting up CI pipelines with Jenkins for automated building and testing.

Continuous Delivery and Deployment: Implementing CD pipelines for deploying applications to

various environments.

Unit Number: 2 Title: Containerization and Orchestration No. of hours: 10

Content Summary:

Introduction to Containers: Docker and containerization concepts, Container Management: Working

with Docker containers, images, and registries, Docker Compose: Managing multi-container

applications.

Introduction to Kubernetes: Container orchestration and Kubernetes architecture, Deploying

Applications with Kubernetes: Deploying, scaling, and managing applications on Kubernetes.

Unit Number: 3
Title: Configuration Management and Infrastructure

as Code (IaC)
No. of hours: 10

Content Summary:

Introduction to Configuration Management: Need for configuration management tools.

Managing Infrastructure with Ansible: Ansible architecture and playbooks for automated configuration

management.

Infrastructure as Code (IaC) Concepts: Managing infrastructure using code, benefits of IaC.

IaC with Terraform: Infrastructure provisioning using Terraform and cloud service providers (e.g.,

AWS, Azure).

Unit Number: 4 Title: Monitoring, Logging, and Security in DevOps No. of hours:10

Content Summary:

Application Monitoring: Monitoring tools and techniques for tracking application performance and

health.

Log Management: Centralized log collection, analysis, and visualization.

Security in DevOps: Implementing security best practices in CI/CD pipelines and containerized

environments.

DevOps Culture and Collaboration: Encouraging collaboration between development and operations

teams.

*SELF-LEARNING COMPONENTS:

https://elearn.nptel.ac.in/shop/iit-workshops/completed/cicd-devops-automation-and-devsecops-

automation/

Please Note:

1)Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end term exams from self-learning components.

https://elearn.nptel.ac.in/shop/iit-workshops/completed/cicd-devops-automation-and-devsecops-automation/
https://elearn.nptel.ac.in/shop/iit-workshops/completed/cicd-devops-automation-and-devsecops-automation/

Reference Books:

1. Jez Humble and David Farley, "Continuous Delivery: Reliable Software Releases through

Build, Test, and Deployment Automation," Pearson Education, Inc., 2011.

2. Nigel Poulton, "The Kubernetes Book," Independently published, 2018.

3. Sam Newman, "Building Microservices: Designing Fine-Grained Systems," O'Reilly Media,

Inc., 2015.

4. Eberhard Wolff, "Microservices Patterns: With examples in Java," Manning Publications,

2018.

5. Yevgeniy Brikman, "Terraform: Up & Running: Writing Infrastructure as Code," O'Reilly

Media, Inc., 2017.

Program and course outcome mapping

Course Code

and Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO

10

PO1

1

PO1

2

PSO1 PSO2 PSO3 PSO

4

E
N

S
P

4
1

1
/

D
ev

O
p

s
&

A
u

to
m

a
ti

o
n

CO1 3 3 2 2 - 3 - 3 - - - 3 3 - 1 -

CO2 3 3 - 3 3 - - 3 - - - 3 2 1 - 1

CO3 3 3 2 2 3 2 2 3 - - - 3 3 - - -

CO4 - 3 2 3 3 - 2 3 2 - - 3 1 1 1 1

CO5 - 3 2 3 - - 3 3 - - - 3 - 2 - -

Department: Department of Computer Science and Engineering

Course Name:

DevOps &

Automation Lab

Course Code L-T-P Credits

ENSP461 0-0-2 1

Type of Course: Minor (Department Elective III)

Pre-requisite(s), if any:

Proposed Lab Experiments

Defined Course Outcomes

COs Course Outcomes (COs)

CO 1
Gain hands-on experience in setting up version control using Git and performing

collaborative software development with branching and merging techniques.

CO 2
Acquire practical knowledge in implementing continuous integration and continuous

deployment (CI/CD) pipelines using Jenkins, automating the build, test, and deployment

processes.

CO 3

Develop proficiency in containerization with Docker, including managing Docker

containers and images, and deploying applications on Kubernetes for efficient and scalable

orchestration.

CO 4 Demonstrate skills in infrastructure automation and configuration management using

Ansible and Terraform to provision and manage cloud resources and application

configurations.

CO 5 Understand and apply monitoring, logging, and security practices in DevOps, ensuring

application performance, resilience, and adherence to security best practices throughout the

software development lifecycle.

Ex. No. Experiment Title Mapped CO(s)

1 Setting up version control with Git CO1

2 Implementing a basic Jenkins CI/CD pipeline CO2

3 Automating application deployment with Jenkins CO2

4 Containerizing an application using Docker CO3

5 Managing Docker containers and images CO3

6 Deploying applications with Kubernetes CO3

7 Implementing Kubernetes deployment strategies CO3

8 Continuous deployment with Kubernetes CO3

9 Configuring infrastructure with Ansible CO4

10 Automating application configuration with Ansible CO4

11 Implementing Infrastructure as Code (IaC) with

Terraform

CO4

12 Creating scalable and resilient infrastructure with

Terraform

CO4

13 Monitoring application performance with Prometheus CO5

14 Logging and centralized log management CO5

15 Implementing security measures in CI/CD pipelines CO5

16 Implementing feature flags for controlled feature rollout CO5

17 Load testing and performance optimization CO5

18 Automating application tests with Selenium CO2, CO5

19 Integrating automated testing in CI/CD pipelines CO2, CO5

20 Blue-green deployment for zero-downtime updates CO3, CO5

21 Canary deployment for testing new features CO3, CO5

22 Implementing GitOps for application deployments CO3, CO5

23 Managing secrets and sensitive data securely CO5

24 Disaster recovery planning and testing CO5

25 Creating a DevOps project integrating multiple tools CO1, CO2, CO3, CO4,

CO5

1. Setting up version control with Git: Exercise: Initialize a Git repository, create branches,

perform commits, and push changes to a remote repository. Project: Collaboratively work on a

project using branching and merging techniques in Git.

2. Implementing a basic Jenkins CI/CD pipeline: Exercise: Set up a simple Jenkins pipeline to

build and test a sample application from version control. Project: Develop a complete CI/CD

pipeline that includes code building, automated testing, and deployment to a staging environment.

3. Automating application deployment with Jenkins: Exercise: Configure Jenkins to

automatically deploy the application to a test server upon successful build. Project: Implement a

full-fledged CD pipeline with Jenkins, including deployment to production after successful

testing.

4. Containerizing an application using Docker: Exercise: Dockerize a basic application and run

it in a container. Project: Containerize a multi-service application with Docker Compose for easier

deployment.

5. Managing Docker containers and images: Exercise: Explore Docker commands to manage

containers and images, such as starting, stopping, and cleaning up. Project: Implement a container

registry and manage images for different application versions.

6. Deploying applications with Kubernetes: Exercise: Set up a Kubernetes cluster and deploy a

basic application using YAML manifests. Project: Deploy a microservices-based application with

Kubernetes, configuring services and network policies.

7. Implementing Kubernetes deployment strategies: Exercise: Implement rolling updates and

rollbacks in Kubernetes. Project: Use Kubernetes deployment strategies like blue-green and

canary deployments for a real-world application.

8. Continuous deployment with Kubernetes: Exercise: Set up a Jenkins pipeline for continuous

deployment to Kubernetes. Project: Create an end-to-end automated CD pipeline with Jenkins

and Kubernetes.

9. Configuring infrastructure with Ansible: Exercise: Use Ansible to provision and configure

virtual machines. Project: Create a playbook to configure a complete development environment

for an application.

10. Automating application configuration with Ansible: Exercise: Create Ansible playbooks to

automate application-specific configurations. Project: Implement dynamic inventory and use

Ansible roles for better code organization.

11. Implementing Infrastructure as Code (IaC) with Terraform: Exercise: Set up a basic

Terraform configuration to create cloud resources. Project: Use Terraform to define infrastructure

for a scalable and fault-tolerant application.

12. Creating scalable and resilient infrastructure with Terraform: Exercise: Implement auto-

scaling and load balancing in Terraform. Project: Design a Terraform template for a highly

available architecture using multiple availability zones.

13. Monitoring application performance with Prometheus: Exercise: Set up Prometheus for

monitoring application metrics. Project: Create custom Prometheus metrics and use Grafana for

visualization and alerting.

14. Logging and centralized log management: Exercise: Configure centralized log collection using

tools like Fluentd or Logstash. Project: Set up ELK (Elasticsearch, Logstash, and Kibana) stack

for efficient log analysis.

15. Implementing security measures in CI/CD pipelines: Exercise: Use Jenkins plugins to

implement security checks in CI/CD pipelines. Project: Implement security scanning tools like

SonarQube and integrate them into the pipeline.

16. Implementing feature flags for controlled feature rollout: Exercise: Add feature flags to a

sample application to enable/disable specific features. Project: Implement a feature flag service

for a real-world application and manage feature rollout.

17. Load testing and performance optimization: Exercise: Use load testing tools to evaluate

application performance under heavy traffic. Project: Analyse performance bottlenecks and

optimize the application for scalability.

18. Automating application tests with Selenium: Exercise: Use Selenium WebDriver for

automating browser-based tests. Project: Develop an automated testing suite covering multiple

application features.

19. Integrating automated testing in CI/CD pipelines: Exercise: Integrate automated tests into the

Jenkins CI/CD pipeline. Project: Implement a complete testing strategy, including unit,

integration, and end-to-end tests.

20. Blue-green deployment for zero-downtime updates: Exercise: Perform blue-green deployment

for a sample application update. Project: Set up a blue-green deployment strategy for a production

application.

21. Canary deployment for testing new features: Exercise: Implement canary deployment for a

specific application feature. Project: Use canary deployment to gradually release new features to

a subset of users.

22. Implementing GitOps for application deployments: Exercise: Use GitOps principles to

manage Kubernetes manifests with Git. Project: Implement a GitOps workflow for application

deployment and configuration management.

23. Managing secrets and sensitive data securely: Exercise: Utilize Kubernetes secrets or

HashiCorp Vault to manage sensitive data. Project: Set up a secure secret management system

for a production environment.

24. Disaster recovery planning and testing: Exercise: Design a disaster recovery plan for a sample

application. Project: Test the disaster recovery plan and validate its effectiveness.

25. Creating a DevOps project integrating multiple tools: Exercise: Choose and integrate various

DevOps tools into a sample project. Project: Create an end-to-end DevOps project showcasing

the integration of tools and best practices.

Department: Department of Computer Science and Engineering

Course Name:

.NET Framework

Course Code L-T-P Credits

ENSP413 4-0-0 4

Type of Course: Minor (Department Elective III)

Pre-requisite(s), if any:

COs Statements

CO1 Understanding the fundamental concepts and components of the .NET Framework.

CO 2 Applying knowledge to design and develop applications using Windows Forms, WPF, and

ASP.NET.

CO 3 Analysing performance considerations and troubleshooting errors in the .NET Framework.

CO 4 Integrating advanced topics like .NET Core, Entity Framework, and WCF for cross-platform

development and service creation.

CO 5 Assessing security, reliability, scalability, and performance of applications developed using

the .NET Framework.

Brief Syllabus:

The ".NET Framework" syllabus covers introduction and components of .NET, programming languages,

Visual Studio, OOP, exception handling, memory management, Windows Forms/WPF, ASP.NET, web

services, .NET Core, Entity Framework, and WCF. Emphasis on practical application and development

skills for building robust and secure applications.

UNIT WISE DETAILS

Unit Number: 1 Title: Introduction to .NET Framework No. of hours: 8

Content Summary:

Overview of .NET Framework ,Introduction to the .NET platform, Evolution and history of .NET

Framework, Key components and architecture of .NET Framework, Common Language Runtime (CLR)

and Just-In-Time (JIT) compilation, Common Intermediate Language (CIL) and Intermediate Language

(IL), Programming Languages in .NET (C# as the primary language for .NET development & Visual

Basic .NET) ,Introduction to Visual Studio IDE, Installation and configuration of .NET Framework and

Visual Studio, NuGet package manager and third-party libraries

Unit Number: 2
Title: .NET Framework Fundamentals

No. of hours: 8

Object-Oriented Programming (OOP) in .NET, Classes, objects, and inheritance, Exception Handling

and Debugging, Debugging techniques and tools in Visual Studio, Logging and error reporting in .NET

applications, Memory Management and Garbage Collection, Automatic memory management in .NET,

Garbage collection concepts and algorithms, Finalizers and the Dispose pattern, Performance

considerations and best practices

Unit Number: 3
Title: Building Applications with .NET

Framework
No. of hours: 12

Windows Forms and WPF Applications, Introduction to Windows Forms and Windows Presentation

Foundation (WPF), Designing user interfaces using WinForms/WPF controls, Event-driven

programming and event handling, Data binding and data access in WinForms/WPF applications,

ASP.NET Web Development, Data access and validation in ASP.NET applications, Web Services and

RESTful APIs, Creating and consuming web services in .NET, Authentication and security

considerations in web services.

Unit Number: 4
Title: Advanced Topics in .NET

Framework
No. of hours: 12

Content Summary:

.NET Core and Cross-Platform Development, Introduction to .NET Core and its advantages, Building

cross-platform applications with .NET Core, Deploying and hosting .NET Core applications, Entity

Framework and Database Connectivity, Overview of Entity Framework and Object-Relational Mapping

(ORM), Creating and manipulating databases with Entity Framework, Querying data using LINQ

(Language Integrated Query), Handling database migrations and versioning, Windows Communication

Foundation (WCF), Introduction to WCF and service-oriented architecture (SOA), Creating and

consuming WCF services, Message exchange patterns and bindings in WCF, Security and reliability in

WCF applications

*Self-Learning Components:

1. Online Tutorials and Documentation: Direct students to the official Microsoft documentation for

.NET Framework, which provides comprehensive guides and resources. Microsoft .NET

Documentation

2. Hands-on Coding Exercises: Assign coding exercises from platforms like LeetCode or

HackerRank that focus on implementing concepts of .NET Framework. LeetCode HackerRank

3. Project-Based Learning: Encourage students to work on small projects using different aspects of

the .NET Framework. Provide examples of project ideas and resources like GitHub repositories

for inspiration. GitHub

Please Note:

1)Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end term exams from self-learning components.

Reference/Text Books:

1. "Mastering C# and .NET Framework" by Jayantha Dhanapala

2. "Pro C# and .NET Framework" by Andrew Troelsen

3. ".NET Framework Programming with C#" by G. Shankar

4. ".NET Programming: Concepts and Practice" by Atul Kumar

https://docs.microsoft.com/en-us/dotnet/
https://docs.microsoft.com/en-us/dotnet/
https://leetcode.com/
https://www.hackerrank.com/
https://github.com/

Program and course outcome mapping

Course

Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

E
N

S
P

4
1

3
/

.N
E

T

F
ra

m
e

w
o

rk

CO1 3 3 - - 2 - - - - 1 - 3 3 3 - -

CO2 1 3 3 1 - - - - 2 - 3 1 3 1

CO3 1 3 2 1 - - - - 1 - 3 2 1 - 1

CO4 - - 3 1 2 - - - - - - 3 - 1 - 1

CO5 - 2 3 - 2 - - - - 1 - 3 1 2 - -

Department: Department of Computer Science and Engineering

Course Name:

.NET Framework Lab

Course Code L-T-P Credits

ENSP463 0-0-2 1

Type of Course: Minor (Department Elective III)

Pre-requisite(s), if any: Nil

Proposed Lab Experiments

Defined Course Outcomes

COs Statements

CO 1
Gain a thorough understanding of the core concepts and components of the .NET

Framework.

CO 2
Apply .NET Framework knowledge to design and develop applications, solving

programming problems effectively.

CO 3
Analyze and troubleshoot .NET applications, using debugging techniques and optimizing

performance.

CO 4
Integrate advanced .NET topics like .NET Core, Entity Framework, and WCF to create

cross-platform applications, work with databases, and build services.

Ex. No Experiment Title Mapped CO/COs

1 Installing and setting up the .NET Framework, Visual Studio IDE,

and NuGet package manager

CO1

2 Creating a basic console application in C# or Visual Basic.NET

and running it in Visual Studio.

CO1

3 Write a program to display "Hello World" using C#. CO2

4 Create a Windows Forms application to design a simple

calculator.

CO2

5 Develop a console application to perform basic arithmetic

operations

CO2

6 Create a class hierarchy to represent different types of vehicles. CO2

7 Implement inheritance and polymorphism concepts in a C#

program.

CO2

8 Design a Windows Forms application to manage student records. CO3

9 Create a WPF application to build a simple photo gallery. CO3

10 Develop a web application to display and manage a list of books

using ASP.NET..

CO3

11 Implement form validation and data access in an ASP.NET

application.

CO3

12 Build a RESTful API using ASP.NET Web API to perform

CRUD operations on a database.

CO3

13 Create a client application to consume a web service and display

the retrieved data.

CO2

14 Implement a cross-platform application using .NET Core. CO3

15 Develop a database-driven application using Entity Framework

for data manipulation.

CO3

16 Design and implement a WCF service to provide secure

communication between client and server.

CO4

17 Connect a .NET application to a database using ADO.NET and

retrieve data.

CO3

18 Use LINQ (Language Integrated Query) to perform data querying

and manipulation operations.

CO3

19 Deploy a .NET application to a web server or a cloud platform. CO4

20 Configure and manage the hosting environment for a .NET

application.

CO4

21 Use debugging techniques and tools in Visual Studio to identify

and fix bugs in a program.

CO2

22 Create a program to demonstrate the automatic memory

management feature in .NET.

CO4

23 Implement a program to analyze and optimize memory usage in a

.NET application.

CO2

24 Develop a WCF service to perform CRUD operations on a

database.

CO4

25 Design a client application to consume the WCF service and

display the retrieved data.

CO4

Department: Department of Computer Science and Engineering

Course Name:

New-Age

programming

languages

Course Code L-T-P Credits

ENSP415 4-0-0 4

Type of Course: Minor (Department Elective III)

COs Statements

CO1 Understand the fundamental principles and paradigms of modern programming

languages, including functional programming, object-oriented programming, and

concurrent programming.

CO2 Develop proficiency in using the syntax, data structures, and control flow constructs of

each language (GO, F#, Clojure, and Kotlin) to solve programming problems.

CO3 Explore the unique features and strengths of each language, such as Go's focus on

concurrency, F#'s functional programming capabilities, Clojure's emphasis on

immutability and simplicity, and Kotlin's interoperability with existing Java code.

CO4 Apply the languages' respective development tools, such as Go's gofmt and go vet, F#'s

F# Interactive (FSI), Clojure's Leiningen or Boot, and Kotlin's integrated development

environment (IDE) support, to improve code quality and productivity.

CO5 Design and implement projects that integrate multiple programming languages, using

appropriate inter-language communication mechanisms and libraries (e.g., Go and

Kotlin interacting via REST APIs, F# and Clojure communicating via message queue

Brief Syllabus:

New-Age programming languages (GO, F#, Clojure, Kotlin) provides an introduction to the concepts

and applications of modern programming languages. It explores the features and benefits of GO, F#,

Clojure, and Kotlin, and develop practical skills in programming using these languages. The course

will cover language syntax, data types, control structures, functional programming concepts,

concurrency, and integration with other technologies.

UNIT WISE DETAILS

Unit Number: 1
Title: GO programming

Language
No. of hours: 10

Content Summary:

Overview of GO, F#, Clojure, and Kotlin, Comparison with traditional programming languages,

Installation and setup of development environment, Introduction to GO syntax and data types, Control

structures, Functions and packages in GO, Arrays, slices, and maps in GO, Structs and custom data

types, Pointers and memory management, Concurrency and parallelism in GO, Error Handling,

Concurrent Programming in GO, Advanced GO Concepts- Function closures and anonymous

functions, Reflection and type introspection, Testing and benchmarking in GO, Writing concurrent

and parallel programs.

Unit Number: 2
Title: F# Programming

Language
No. of hours: 10

Content Summary:

Introduction to F# syntax and functional programming concepts, Data Types, Variables, Operators,

Decision Making, Loops, Functions, Strings, Options, Immutable data types and pattern matching,

Higher-order functions and currying, Asynchronous and parallel programming in F#, Object-Oriented

Programming with F#, Database access with F#, Querying and manipulating data using F#, Integration

with relational and NoSQL databases

Unit Number: 3
Title: Introduction to Clojure

Programming
No. of hours: 10

Content Summary:

Overview of Clojure and its features, Setting up the development environment, Basic syntax and data

structures in Clojure, Functional Programming in Clojure, Immutable data and pure functions, Higher-

order functions and recursion, Collections and sequence operations in Clojure, De-structuring and

pattern matching, Macros and metaprogramming in Clojure, Concurrency models in Clojure,

Asynchronous programming with core. async, Parallel programming with reducers and p-map,

Interacting with Java libraries and APIs, Java interoperability in Clojure, Working with Java

collections and objects, Web Development with Clojure, Building web applications using Clojure and

Ring, Database access and persistence in Clojure, Error Handling and Testing: Exception handling

and error management in Clojure, Testing strategies and frameworks in Clojure, Data Manipulation

and Transformation: Data manipulation with Clojure's sequence functions, Data transformation with

transducers, Data-driven development with data literals and data readers

Unit Number: 4
Title: Introduction to Kotlin

Programming
No. of hours: 10

Content Summary:

Overview of Kotlin and its advantages, Setting up the development environment, Basic syntax and

data types in Kotlin, Conditional statements and loops, Function declarations and parameters, Lambda

expressions and higher-order functions, Object-Oriented Programming in Kotlin: Classes, objects,

and inheritance, Properties and access modifiers, Interfaces and abstract classes, Understanding

nullable and non-nullable types, Safe calls and the Elvis operator, Type inference and smart casting,

Collections and Functional Programming: Working with lists, sets, and maps in Kotlin, Collection

operations and transformations, Introduction to functional programming concepts in Kotlin, Creating

extension functions in Kotlin, Using DSLs for domain-specific problems, Builder pattern and DSL

implementation.

*Self-Learning Components:

3. Web programming with GO

4. F# for Data Science and Machine Learning:

5. Metaprogramming and DSLs in Clojure:

6. Android App Development with Kotlin:

References:

1. Building Modern Web Applications with Go (Golang) by Udemy

2. https://www.jetbrains.com/academy/

3. https://www.classcentral.com/subject/f-sharp

4. https://www.classcentral.com/subject/clojure

Please Note:

1)Students are supposed to learn the components on self-basis

2) At least 5-10 % syllabus will be asked in end term exams from self-learning components.

https://www.jetbrains.com/academy/
https://www.classcentral.com/subject/f-sharp

Reference Books:

6. The Go Programming Language, Alan A. A. Donovan and Brian W. Kernighan, Addison-

Wesley Professional.

7. An Introduction to Programming in Go, Caleb Doxsey, CreateSpace Independent Publishing.

8. Real-World Functional Programming: With Examples in F# and C#, Tomas Petricek and Jon

Skeet, Manning.

9. Programming F# 3.0: A Comprehensive Guide for Writing Simple Code to Solve Complex

Problems, Chris Smith, O'Reilly Media.

10. Getting Clojure: Build Your Functional Skills One Idea at a Time, Russ Olsen, O′Reilly.

11. The Joy of Clojure, Michael Fogus and Chris Houser, Manning Publication.

12. Atomic Kotlin, Bruce Eckel and Svetlana Isakova, Mindview LLC.

13. Kotlin in Action, Dmitry Jemerov and Svetlana Isakova, Manning Publication.

Online References:

1. https://gobyexample.com/ [

2. https://golang.org/doc/

3. https://www.youtube.com/playlist?list=PLlxmoA0rQ-LwgK1JsnMsakYNACYGa1cjR

4. https://kotlinlang.org/docs/home.html

5. https://docs.microsoft.com/en-us/dotnet/fsharp/

6. https://www.udemy.com/course/learning-functional-programming-with-f/

7. https://clojure.org/guides/getting_started

Program and course outcome mapping

Course

Code and

Title

PO PO1 PO2 PO3 PO4 PO5 PO6 PO7 PO8 PO9 PO10 PO11 PO12 PSO1 PSO2 PSO3 PSO4

E
N

S
P

4
1

5
/

N
ew

-

A
g

e
p

ro
g

ra
m

m
in

g

la
n

g
u

a
g

es

CO1 2 2 - - 2 - - - - 2 1 3 3 - - 3

CO2 2 2 - - 2 - - - - 2 2 3 3 2 - -

CO3 2 2 - 3 - - - - - - 3 - 2 - 3

CO4 - - - - 3 - - - - 3 1 2 - 2 - 3

CO5 - - - - 2 - - - 2 - 3 - 2 2 2

https://gobyexample.com/
https://clojure.org/guides/getting_started

Department: Department of Computer Science and Engineering

Course Name:

New Age

Programming

languages Lab

Course Code L-T-P Credits

ENSP465 0-0-2 1

Type of Course: Minor (Department Elective III)

Pre-requisite(s), if any: Nil

Course Outcomes (CO)

COs Statements

CO1 Understand the fundamental principles and paradigms of modern programming

languages.

CO2 Develop proficiency in using the syntax, data structures, and control flow constructs

of each language.

CO3
Explore the unique features and strengths of each language, such as Go's focus on

concurrency, F#'s functional programming capabilities, Clojure's emphasis on

immutability and simplicity, and Kotlin's interoperability with existing Java code.

CO4 Apply the languages' respective development tools and best practices.

CO5 Design and implement projects that utilize the strengths of each language to tackle

complex problems or tasks.

Proposed Lab Experiments

Ex.

No

Experiment Title Mapped

CO/COs

Practical on GO Programming Language

1 Write a program that takes user input and performs basic calculations

(e.g., addition, subtraction, multiplication) using different data types like

integers and floats. Use control structures like if statements and loops to

handle different scenarios and validate user input.

CO2

2 Create a package that contains multiple functions to perform common

tasks, such as string manipulation or mathematical operations. Use these

functions in a separate program to demonstrate their functionality and

reusability.

CO1

3 Implement a program that stores a collection of elements using arrays.

Perform operations like adding, removing, or updating elements

CO2

4 Define a struct Person with the following members: name, age, job and

salary. Create methods associated with the struct to read data in structure

and print data.

CO4

5 Develop a program that utilizes pointers to modify and manipulate data

in memory. Explore concepts like referencing, dereferencing, and

memory allocation/deallocation.

CO2

6 Write a program that demonstrates the use of Go routines and channels

to achieve concurrent execution of tasks.

CO3

7 Create a program that handles various error scenarios and provides

appropriate error messages or responses. Write unit tests for critical

functions and verify their correctness using Go's testing package.

CO5

8 Mini Project: Task Manager Application in Go

Create a task manager application using the Go programming language.

The application should allow users to manage their tasks by adding,

updating, and deleting tasks. The tasks should have attributes such as

title, description, due date, and status (e.g., "in progress", "completed").

CO5

Practicals on F# Programming Language

9

a

.

WAP to read marks of 4subjects and calculate the Percentage of student

and find the result according to given conditions

60>=1st Division

60<&& 50>= 2nd Division

50<&& 40>=3rd Division

40<=fail.

CO2

b

.

WAP to accept an integer and check whether it is prime or not.

10 a

.

Write a function that takes a string as input and returns the reverse of

the string. Also check if a given string is a palindrome

CO2

b

.

Create a function that takes a string as input and performs the

following transformations:

i. If the string contains only alphabetic characters, convert it to

uppercase.

ii. If the string contains only numeric characters, convert it to an

integer and double its value.

iii. If the string contains a mix of alphabetic and numeric

characters, return it as is.

c

.

Design a function that validates an email address based on specific

rules, such as the presence of an '@' symbol and a valid domain name.

Use pattern matching to check if the input string matches the

expected email format.

12 Implement a program that performs various operations on lists using

higher-order functions (define a list of integers or strings). Write pure

functions that demonstrate the map, filter, reduce/fold operations.

CO1

13 Implement a program that performs multiple I/O-bound or

computationally intensive tasks concurrently using F#'s asynchronous

workflows and parallel programming constructs.

CO3

14 Create a program that demonstrates the object-oriented programming

(OOP) capabilities of F#. Define classes, objects, and inheritance

hierarchies using F#'s OOP syntax.

CO3

15 Create a program that demonstrates the following tasks:

i. Establish a connection to both the relational and NoSQL

databases using appropriate database drivers or libraries.

ii. Perform basic CRUD operations (Create, Read, Update, Delete)

on the databases.

CO4

16 Mini Project: Employee Management System

Create an Employee Management System using the F# programming

language and a relational database. The system should allow users to

perform CRUD (Create, Read, Update, Delete) operations on employee

records stored in the database. It should provide functionality to add new

employees, retrieve employee information, update employee details, and

delete employee records.

CO5

Practicals on Clojure Programming Language

17 Write a program that demonstrates the basic syntax and data structures in

Clojure, such as lists, vectors, maps, and sets.

CO1

18 Write functions that manipulate and transform sequences using

operations such as map, filter, reduce, and take.

CO2

19 Implement a program that showcases asynchronous programming using

the core.async library.

CO3

20 Write code that calls Java methods, creates Java objects, and works with

Java collections and objects from Clojure.

CO4

21 Develop a web application using Clojure and the Ring library. Set up

routes, handle HTTP requests and responses, and render dynamic

content.

CO5

22 Write functions that interact with the database, perform CRUD

operations, and handle transactions.

CO5

23 Implement error handling mechanisms, such as exception handling and

error management, in Clojure.

CO4

24 Mini Project: Blogging Platform with Clojure

Create a Blogging Platform using the Clojure programming language.

The platform should allow users to create and publish blog posts, manage

user accounts, and provide functionality for reading and commenting on

blog posts. It should utilize a relational database for data storage and

retrieval.

CO5

Practicals on Kotlin Programming Language

25 19 WAP for print following o/p

 Hello Kotlin!!!

CO2

20 WAP to take employee’s basic salary, dept_code and

experience. Calculate bonus according to following criteria

i. dept_code = 101 && exp <= 2 bonus = 3%

ii. dept_code = 102 && exp <= 4 bonus = 5%

iii. dept_code = 103 && exp <= 7 bonus = 8%

21 WAP to accept an integer and display average of digit.

26 Write a program in Kotlin that demonstrates various aspects of function

declarations, parameters, and higher-order functions.

a. Implement a function that takes two integer parameters and

returns their sum.

b. Create a function that has default parameter values for an optional

third parameter, which is a string representing a greeting. If no

greeting is provided, the function should use a default greeting.

c. Explore named parameters by creating a function that takes

multiple parameters and demonstrate how to call the function by

specifying the parameter names explicitly.

d. Implement a variable-length argument function that takes a

variable number of integers and calculates their average.

e. Utilize a higher-order function by creating a function that accepts

a lambda expression as a parameter. The lambda should take an

integer parameter and return the square of that integer.

CO2

27 WAP to create a class Student with data members’ rollno, student name,

course and percentage and member functions to accept and display the

details of student.

a. Implement properties, methods, and constructors in classes.

b. Explore access modifiers and visibility scopes in Kotlin.

CO1

28 Implement a program that demonstrates the declaration and usage of

nullable and non-nullable variables. Utilize safe calls (?.) and the Elvis

operator (?:) to handle nullable values and provide alternative values or

perform fallback actions.

CO3

29 WAP to implement various collections like lists, sets, and maps in Kotlin

and perform common operations on them. Use collection functions and

transformations such as map, filter, and reduce to manipulate data.

CO2

30 Implement a DSL for a domain-specific problem, showcasing Kotlin's

expressive syntax and extension functions.

CO5

31 Implement a program that demonstrates the creation and usage of

extension functions in Kotlin (Choose a specific class or data type, such

as String). For example, you can create an extension function that counts

the number of vowels in a string or reverses the string.

CO3

32 Mini Project: Quiz App

Build a quiz application that presents users with multiple-choice

questions on various topics. Users can select their answers, and the app

provides instant feedback on correctness. Keep track of the user's score

and display the result at the end of the quiz. Include features like a timer,

score calculation, and a database of questions.

CO5

131

ANY OTHER INSTRUCTIONS:

NOTICES: All notices for the course will be displayed on A-Block, 2nd Floor Notice Board.

GLOSSARY AND NOTES

Programme Outcomes: POs are statements that describe what the students graduating from

any of the educational Programmes of the institution should be able to do on completion.

Programme Specific Outcomes: PSOs are statements that describe what the graduates of a

specific educational Programme should be able to do on completion.

Course Outcomes: COs are statements that describe what students should be able to do on

completion of the course.

Program Articulation Matrix: Program articulation matrix gives the correlation among CO

& PO and CO & PSO. The strength of correlation is interpreted in three levels: weakly

mapped (1), moderately mapped (2), strongly mapped (3).

*Teaching –Learning Methods: Teaching –Learning Methods may include Lecture/Group

Discussion/Presentation/Case-study/Demonstration using simulation or a tool/ Interview/

Quiz/Debate/Project/Field Project/Experiment etc.

**Mode of Evaluation: Mode of Evaluation may include

Assignment/Quiz/Test/Interview/Peer Review/Report/Presentation/Open Book

Test/Evaluated Discussion Forum etc.

