



# **K.R. MANGALAM UNIVERSITY**

## **THE COMPLETE WORLD OF EDUCATION**

### **Case Study:-Health Plus "Monitoring Wellness in our Neighbourhood"**

**Village: - Dauhla, District Gurugram,  
Haryana**

**Faculty Co-Ordinators:-**

Mr. Prashant Sharma

Ms. Sneha anand

Dr. Farheen

**Convener:-**

**Prof. (Dr.) Hema Chaudhary**

**Dean SMAS**

## Introduction

Human health and well-being are of paramount importance, as it directly impact the quality of life, longevity, and overall well-being of individuals and communities. Healthy individuals are more productive, both personally and professionally also good health allows individuals to engage fully in daily activities and pursue their goals. Poor health can lead to increased healthcare costs, reduced workforce productivity, and economic burden on families and societies. Physical health is closely linked to mental and emotional well-being. Good health reduces the risk of mental health disorders such as depression and anxiety and promotes resilience in coping with life's challenges. So, investing in health promotion and disease prevention can lead to cost savings and economic growth and promoting good health through preventive measures such as vaccinations, regular health check-ups, and lifestyle modifications can help prevent many diseases and health conditions, reducing the burden on healthcare systems and improving overall population health. In this KR Mangalam University is playing a significant role by making a positive impact on the health and well-being of their students, faculty, staff, and surrounding communities.



**Photo 1: - Health Plus Haryana Camp in K.R.M.U by SMAS in village Daulha**



With the objective of creating awareness about the good dietary habits, diabetes and lifestyle the SMAS dept of K.R. Mangalam University organized a Health Camp named as “Health Plus” for the villagers of Daulha Gurugram district on dated 30-03-24,13-04-24 and 05-06-24.

100 villagers participated in the Health Check-up camp and get their diabetes tests performed. Random Blood glucose levels were checked by the members of the SMAS. Ms. Sneha anand, Mr. Prasant Sharma, and Dr. Fahreen successfully coordinated the Camp under the guidance of Prof. Dr.Hema Chaudhary, Dean SMAS. The student volunteers from the 6th and 2nd-semester B pharm efficiently made the Health camp successful. Some of the villagers were found to be diabetic. Some of the females were found to be hypoglycemia and hyperglycemia. They were counseled by the Doctor, regarding lifestyle modification, and dietary habits in order to avoid increased Blood glucose levels. They were also advised to follow regular exercises.



**Photo 4:- Volunteers of SMAS, KRMU Play a vital role in health camp**

#### **Methodology:-**



- 1. Planning and organization:** The organized plan coordinates the health camp, including choosing a suitable location, identifying healthcare providers, and arranging for medical supplies and equipment.
- 2. Setting up the camp:** On the day of the camp, the organizers and healthcare providers arrived early to set up the necessary equipment, supplies, and signage. They also prepared registration forms and other paperwork.
- 3. Registration and intake:** Participants were registered for the health camp and provided basic information about their health history and current symptoms. This information was used by the healthcare providers to assess their needs.
- 4. Medical check-ups and consultations:** Participants then went for basic diabetes check-ups and consultations with healthcare providers, who were screened for common health problems and provided advice on healthy living.

Recommendations: Based on the findings, the following recommendations are proposed:

- 1. Health Awareness Campaigns:** Conduct regular health awareness campaigns focusing on [specific health issue] and promoting preventive measures.
- 2. Nutritional Programs:** Implement nutritional programs to address deficiencies, including community gardens, cooking workshops, and awareness sessions on balanced diets.
- 3. Lifestyle Modification Initiatives:** Introduce initiatives to promote physical activity, discourage unhealthy habits, and encourage a more health-conscious lifestyle.
- 4. Regular Health Checkups:** Advocate for the importance of regular health checkups and establish a schedule for periodic health screenings in the village.

The health checkup camp conducted by the School of Medical & Allied Sciences in Daula village had not only identified crucial health issues but also paved the way for collaborative efforts to enhance the overall health and well-being of the community. As a healthcare initiative in continuation of the results of this activity, SMAS team further conducted diabetes checkup camp along with possible treatment majors for mitigating this health issue in the residents of the village community.



**Photo 5:** Students go to the village Daulha, Sohna Road, Gurugram, Haryana For diabetes checkups of villagers.



**Photo 6:** Student measured blood glucose in health camp.



**Photo 7: Student and Faculty measured blood sugar in Health camp.**

Diabetes remains a significant health concern globally, affecting a large portion of the population, especially in rural areas with limited access to healthcare. Recognizing the gravity of the situation, the School of Medical and Allied Sciences took the initiative to organize a diabetes Camp at daulha Village. The goal was to address the prevalence of diabetes, offer on-the-spot screenings, and provide comprehensive education to empower the community in managing and preventing this health condition. The case study on the diabetes Camp provides a comprehensive exploration of a healthcare initiative aimed at addressing the pervasive issue of diabetes in a community setting. Diabetes, characterized by a deficiency of insulin levels, poses a significant public health challenge globally, particularly in resource-limited areas. This case study delves into the planning, execution, and outcomes of a diabetes Camp organized with the intent of screening, educating, and treating individuals affected by this condition. The camp's planning phase involved collaboration between healthcare professionals, community leaders, and local organizations. Comprehensive strategies were developed to ensure effective mobilization of resources, including medical personnel, diagnostic tools, and educational materials.

Identifying the target demographic was crucial, and efforts were made to reach vulnerable populations, such as pregnant women, children, and individuals with limited access to healthcare.



Diabetes, a condition characterized by a lower-than-normal concentration of insulin in the blood, is a global health concern affecting individuals of all ages. This case study focuses on diabetes in a rural village, aiming to analyze its prevalence, causes, and potential interventions. Understanding the dynamics of diabetes in such settings is crucial for developing targeted strategies to improve the health and well-being of the community.

This case study aims to serve as a valuable resource for healthcare practitioners, policymakers, and researchers working towards sustainable health improvements in rural communities facing similar challenges.

The survey findings indicate a significant correlation between diabetes and insufficient intake of iron, folic acid, and vitamin B12, highlighting the pivotal role of nutrition in combating this health issue. Parasitic infections, prevalent in the region due to water sources contaminated with agricultural runoff, contribute to the high incidence of diabetes. The lack of access to clean water and sanitation facilities exacerbates the villagers' vulnerability to these infections.



**Photo 8: Students, faculty, and medical doctors go to the village Daulha, Sohna Road, Gurugram, Haryana to take the blood sugar samples of villagers.**

#### **Objective:**

The primary objectives of the diabetes Camp were delineated as follows:



1. **Prevalence Assessment:** To determine the extent of diabetes within the daulha Village community.
2. **Community Education:** To raise awareness about diabetes, its causes, symptoms, and potential consequences.
3. **Screening and Counselling:** To conduct on-site screenings for diabetes and provide immediate guidance to individuals identified with the condition.
4. **Nutritional Empowerment:** To educate the community about the significance of a balanced diet in preventing and managing diabetes.
5. **Establishing Long-term Health Initiatives:** To create a foundation for sustained community health programs and collaborations with local healthcare providers.

**Methodology:** The success of this diabetes Health Camp was underpinned by a thoughtful and comprehensive methodology:

**Need Assessment:** Preliminary surveys were conducted in village daulha to understand the community's existing knowledge and the specific health needs related to daulha. The emphasis on understanding the



community's existing knowledge implies recognition of the importance of building upon existing awareness and tailoring interventions accordingly. The specificity of the focus on health needs related to diabetes, suggests a targeted approach to address a particular health concern within the community. By delving into the community's understanding of diabetes, these surveys likely employed various research methods to capture insights, such as interviews, questionnaires, or observational studies. This process not only identifies gaps in knowledge but also serves as a precursor to developing informed strategies and interventions. Overall, the phrase encapsulates a thoughtful and systematic approach to addressing the health needs of the community, with a particular emphasis on diabetes, laying the groundwork for subsequent actions and initiatives based on a nuanced understanding of the community's existing knowledge and specific health needs. The village is a microcosm of interconnected lives where the well-being of individuals is intricately tied to the cycles of agricultural productivity. Despite its inherent charm, the community grapples with an undercurrent of health issues, with diabetes, emerging as a silent yet pervasive challenge. As the village seeks to flourish in the 21st century, the burden of diabetes casts a shadow on the potential for holistic growth and development. The prevalence rates reveal not just the scale of the issue but also the potential long-term consequences for the community's health and socio-economic development. Children experiencing diabetes may face developmental delays, impacting their cognitive abilities and educational attainment. In women, diabetes during pregnancy can lead to complications, affecting both maternal and fetal health. Recognizing the multifaceted nature of diabetes is crucial for devising effective strategies tailored to the unique challenges faced by the village. Parasitic infections, prevalent in the region due to water sources contaminated with agricultural runoff, contribute to the high incidence of diabetes. The lack of access to clean water and sanitation facilities exacerbates the villagers' vulnerability to these infections. Additionally, cultural practices related to dietary taboos and traditional beliefs about health contribute to suboptimal nutritional practices, further compounding the diabetes challenge.

**Table: Details of Villagers with their Insulin level in blood before pharmacological intervention**

| S. No. | NAME             | AGE | SEX | Insulin level (mg/dl) |
|--------|------------------|-----|-----|-----------------------|
| 1.     | Chander bhan     | 74  | M   | 280                   |
| 2.     | Munni devi       | 87  | F   | 189                   |
| 3.     | Dharam Vir Singh | 70  | M   | 172                   |
| 4.     | Om pal           | 72  | M   | 183                   |



|     |                |    |   |     |
|-----|----------------|----|---|-----|
| 5.  | Chedda Singh   | 88 | M | 284 |
| 6.  | Joginder Singh | 65 | M | 171 |
| 7.  | Virender       | 74 | M | 282 |
| 8.  | Ajay Singh     | 89 | M | 189 |
| 9.  | Suman Raghav   | 78 | M | 177 |
| 10. | Vimlesh Singh  | 67 | F | 280 |
| 11. | Kashmiri       | 50 | F | 189 |
| 12. | Lakshmi        | 71 | F | 279 |
| 13. | Shanta Singh   | 72 | F | 281 |
| 14  | Poonam         | 89 | F | 182 |
| 15. | Vijay          | 74 | M | 272 |
| 16  | Namak Chandra  | 73 | M | 287 |
| 17  | Anita          | 82 | F | 286 |
| 18  | Rashmi         | 72 | F | 275 |
| 19  | Roshni         | 71 | F | 184 |
| 20  | Anil           | 81 | F | 182 |
| 21  | Rajbir         | 77 | M | 279 |
| 22  | Sushil         | 70 | F | 289 |
| 23  | Jaipal         | 56 | M | 279 |
| 24  | Sumit          | 74 | M | 180 |
| 25  | Amit           | 87 | F | 289 |

**Table: Details of Villagers with their Insulin level in blood before pharmacological intervention**

| S. No. | NAME    | AGE | SEX | Insulin level (mg/dl) |
|--------|---------|-----|-----|-----------------------|
| 26.    | Deepak  | 40  | M   | 271                   |
| 27.    | Sagar   | 52  | M   | 183                   |
| 28.    | Santosh | 58  | M   | 182                   |
| 29     | Prem    | 75  | M   | 174                   |
| 30     | Babul   | 84  | M   | 285                   |
| 31     | Suresh  | 59  | M   | 182                   |



|     |            |    |   |     |
|-----|------------|----|---|-----|
| 32  | Geeta Devi | 68 | F | 171 |
| 33  | Rimjim     | 77 | F | 281 |
| 34  | Ranbir     | 80 | F | 182 |
| 35. | Radha      | 91 | F | 176 |
| 36  | Gopal      | 42 | F | 166 |
| 37  | Harshdeep  | 82 | M | 177 |
| 38  | Omprakash  | 73 | M | 172 |
| 39  | Muskan     | 71 | F | 181 |
| 40  | Bala       | 81 | F | 182 |
| 41  | Sukhbir    | 70 | M | 175 |
| 42  | Nitu       | 73 | F | 286 |
| 43  | Meena      | 80 | F | 187 |
| 44  | Poonam     | 72 | F | 175 |
| 45. | Yashveer   | 71 | F | 143 |
| 46  | Savita     | 85 | F | 133 |
| 47  | Kabil      | 76 | M | 135 |
| 48  | Kareena    | 77 | F | 156 |
| 49  | Sushmita   | 58 | F | 167 |
| 50  | Jhilmil    | 66 | F | 221 |

**Table: Details of Villagers with their Insulin level in blood before pharmacological intervention**

| S. No. | NAME          | AGE | SEX | Insulin level (mg/dl) |
|--------|---------------|-----|-----|-----------------------|
| 51.    | Kashmir       | 50  | F   | 104                   |
| 52.    | Lakshman      | 71  | F   | 123                   |
| 53.    | Shakuntala    | 72  | F   | 142                   |
| 54     | Pooja         | 89  | F   | 182                   |
| 55.    | Vijaylakshmi  | 74  | M   | 212                   |
| 56     | Naman Chandra | 73  | M   | 203                   |
| 57     | Ankita        | 82  | F   | 222                   |
| 58     | Rashid        | 72  | F   | 111                   |



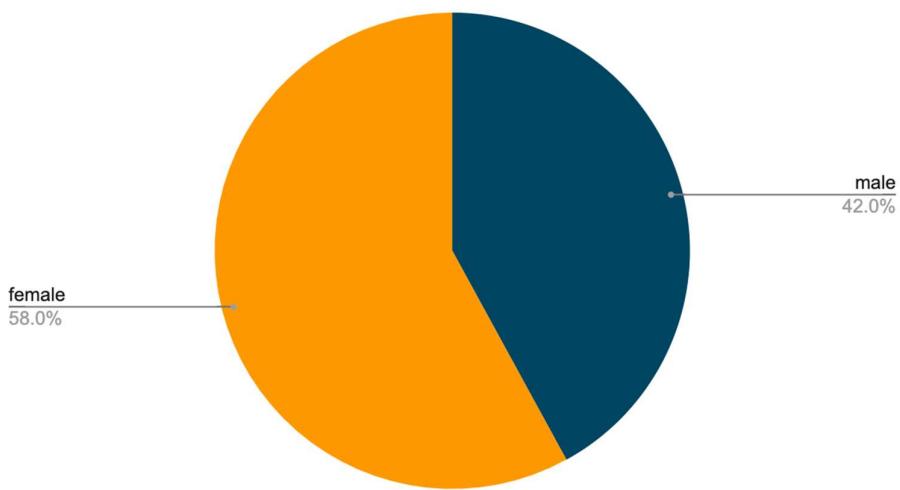
|     |               |    |   |     |
|-----|---------------|----|---|-----|
| 59  | Ritika        | 71 | F | 124 |
| 60  | Neelima       | 71 | F | 132 |
| 61. | Kashmira      | 34 | F | 146 |
| 62. | Lakshay       | 33 | M | 164 |
| 63. | Shakti        | 45 | F | 117 |
| 64  | Priya         | 29 | F | 92  |
| 65. | Vir           | 54 | M | 94  |
| 66  | Chanda Kumari | 33 | F | 110 |
| 67  | Anshul        | 42 | M | 231 |
| 68  | Riddhi        | 52 | F | 245 |
| 69  | Riti          | 71 | F | 113 |
| 70  | Ajay Singh    | 33 | M | 124 |
| 71. | Bittoo        | 45 | M | 122 |
| 72. | Laksh         | 46 | M | 163 |
| 73. | Shrishti      | 38 | F | 172 |
| 74  | Preeti        | 30 | F | 152 |
| 75. | Kirti         | 62 | F | 254 |

**Table: Details of Villagers with their Insulin level in blood before pharmacological intervention**

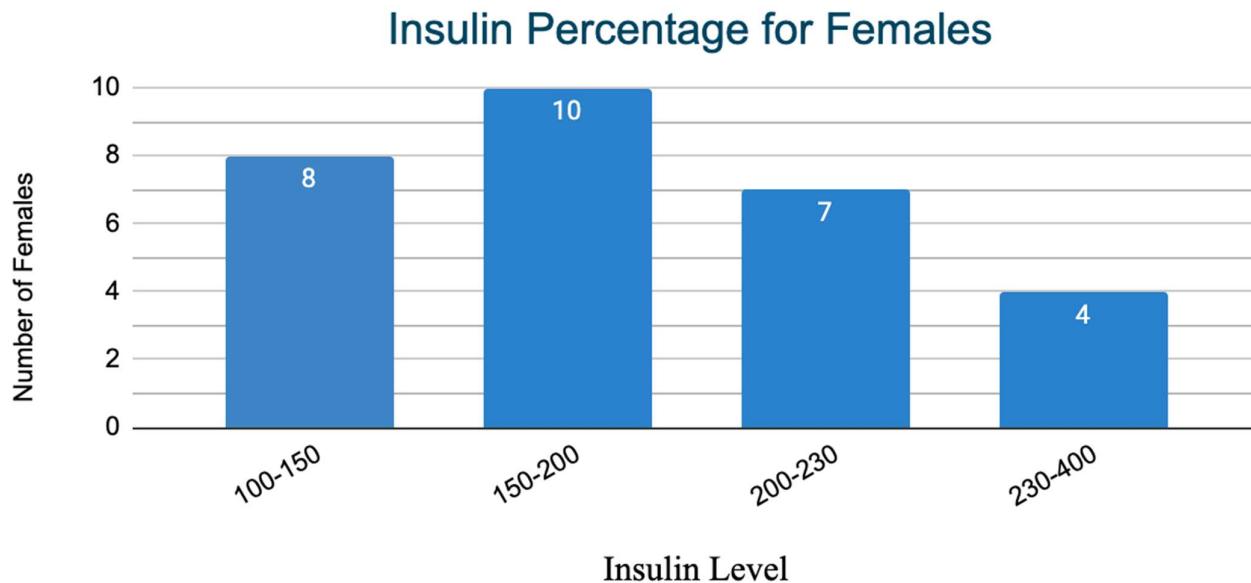
| S. No. | NAME    | AGE | SEX | Insulin level (mg/dl) |
|--------|---------|-----|-----|-----------------------|
| 76     | Naman   | 27  | M   | 202                   |
| 77     | Ankit   | 50  | M   | 124                   |
| 78     | Rahul   | 75  | M   | 134                   |
| 79     | Pappu   | 89  | M   | 150                   |
| 80     | Neeraj  | 88  | M   | 109                   |
| 81.    | Lalaram | 34  | F   | 116                   |
| 82.    | Mahek   | 63  | M   | 124                   |
| 83.    | Ompati  | 43  | F   | 137                   |
| 84     | Balwant | 49  | F   | 94                    |



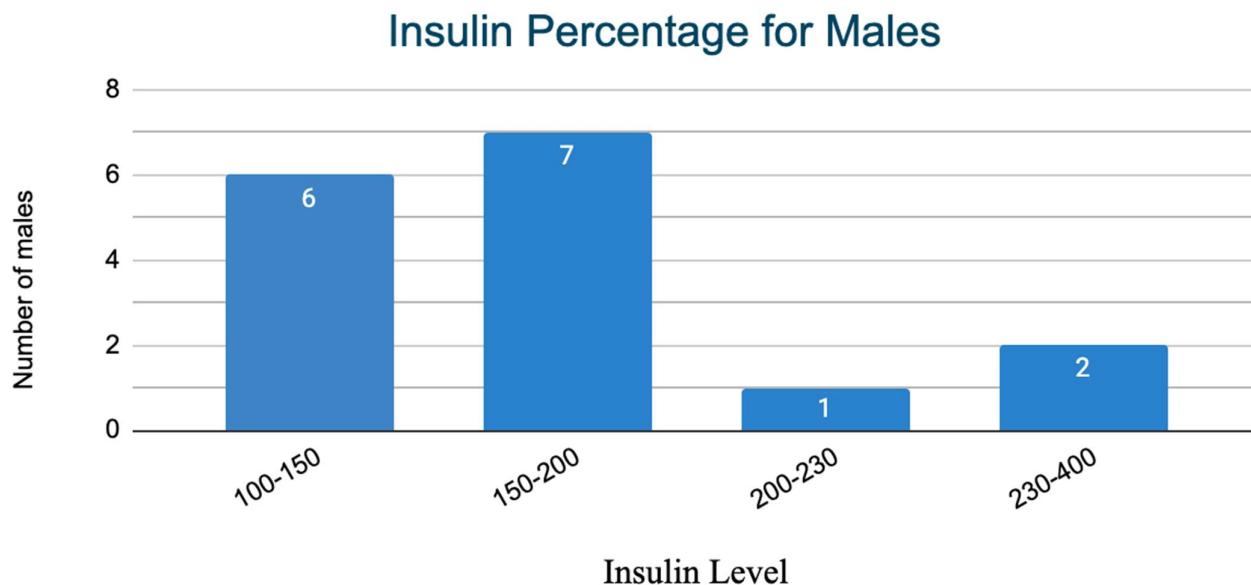
|     |               |    |   |     |
|-----|---------------|----|---|-----|
| 85. | Praveen       | 44 | M | 134 |
| 86  | Chittu        | 63 | F | 221 |
| 87  | Anjali        | 72 | M | 234 |
| 88  | Rishu         | 82 | F | 240 |
| 89  | Rajbala       | 51 | F | 134 |
| 90  | Dushyant      | 43 | M | 154 |
| 91. | Saraswati     | 74 | F | 122 |
| 92. | Sandeep       | 33 | M | 100 |
| 93. | Priyanka      | 25 | F | 106 |
| 94  | Sudarsh       | 49 | F | 99  |
| 95. | Sneha         | 54 | M | 223 |
| 96  | Surjeet Singh | 63 | F | 115 |
| 97  | Pushpa        | 82 | M | 267 |
| 98  | Jyoti         | 92 | F | 223 |
| 99  | Rajbir        | 41 | F | 124 |
| 100 | Kamlesh       | 23 | M | 112 |


**Table: Details of Villagers with their Insulin level in blood before pharmacological intervention**

| S. No. | NAME           | AGE | SEX | Insulin level (mg/dl) |
|--------|----------------|-----|-----|-----------------------|
| 101.   | Shaurya Raghav | 42  | M   | 270                   |
| 102.   | Munni          | 25  | F   | 180                   |
| 103.   | Sunita         | 77  | F   | 145                   |
| 104    | Krishan Pal    | 79  | M   | 170                   |
| 105    | Veer pal Singh | 80  | M   | 88                    |
| 106    | Manju          | 52  | M   | 102                   |
| 107    | Nirmala        | 61  | F   | 102                   |
| 108    | Laxmi          | 73  | F   | 234                   |
| 109.   | Chidda Singh   | 42  | F   | 123                   |
| 110.   | Dharamender    | 25  | M   | 122                   |
| 111.   | Ramlala        | 77  | F   | 70                    |




|     |             |    |   |     |
|-----|-------------|----|---|-----|
| 112 | Santra Devi | 79 | F | 110 |
| 113 | Om pati     | 80 | M | 108 |
| 114 | Dushyant    | 52 | M | 112 |
| 115 | Sudash      | 61 | M | 122 |
| 116 | Kamlesh     | 73 | F | 222 |
| 117 | Savitri     | 29 | F | 234 |
| 119 | Ravindra    | 50 | M | 276 |
| 120 | Sanjit      | 55 | M | 244 |


Number of Patients Tested



**Graph 1 - No. of Patient Tested**



**Graph 1 - Insulin percentage in Females before pharmacological intervention**



**Graph 2 - Insulin percentage in Males before pharmacological intervention**



**Community Collaboration:** Local leaders and community members were actively involved in the planning process to ensure cultural relevance and community acceptance. This collaborative approach recognizes that solving health challenges requires collective efforts and input from various community members, including individuals, healthcare providers, local leaders, and organizations. In the case study of diabetes, a community collaboration strategy involves bringing together different entities to work towards understanding, preventing, and addressing diabetes collectively. This approach acknowledges that the community itself plays a crucial role in identifying and implementing effective solutions because community members often possess valuable insights into local health practices, cultural nuances, and barriers to healthcare. The first step in community collaboration for diabetes might involve conducting preliminary surveys, as mentioned in your initial phrase. These surveys can engage community members to gather information on their existing knowledge about diabetes, prevalent dietary practices, and healthcare-seeking behaviors. Collaboratively collecting this data helps create a comprehensive understanding of the specific challenges related to diabetes within the community. Once data is gathered, collaboration can extend to the design and implementation of interventions. This could include educational programs on nutrition, awareness campaigns, or even community-driven initiatives to improve access to iron-rich foods. Involving the community in decision-making processes ensures that interventions are culturally sensitive, relevant, and have a higher likelihood of being accepted and adopted. Healthcare providers and organizations can collaborate with community leaders to establish sustainable healthcare practices.

This might involve setting up regular health clinics, conducting workshops, or training local healthcare workers. Collaborative efforts can also extend to addressing socio-economic factors contributing to diabetes, such as poverty or lack of access to clean water. Additionally, community collaboration fosters a sense of ownership and empowerment among community members. When individuals actively participate in identifying problems and creating solutions, there is a greater commitment to sustaining positive health outcomes. This sense of ownership can lead to the establishment of community-led support networks, peer education programs, or other initiatives that promote ongoing health and well-being. Moreover, community collaboration involves continuous communication and feedback loops. Regular forums, meetings, or focus group discussions can facilitate an exchange of information between healthcare providers and community members, ensuring that interventions remain relevant and effective over time. This dynamic and iterative process acknowledges the evolving nature of community health needs and the importance of adapting strategies accordingly.

**Screening Stations:** Dedicated stations were set up on 05/06/2024 with trained medical professionals conducting on-the-spot diabetes level tests. The designated locations or facilities where individuals undergo systematic assessments to identify and evaluate their health status, particularly regarding diabetes. These stations serve as critical components in healthcare initiatives aimed at early detection, intervention, and management of diabetes within a community or population. The primary objective of screening stations in the case of diabetes is to identify individuals who may be at risk or already affected by this condition. Diabetes, characterized by a deficiency of insulin in the blood, can have various causes, including nutritional deficiencies, chronic diseases, or genetic factors. Early detection through screening is essential for timely intervention, preventing complications, and promoting overall health and well-being. Screening stations typically employ simple and cost-effective methods to assess individuals for signs of diabetes. Common screening tools include glucometer to measure insulin levels, and other relevant indicators. These tests are often non-invasive and can be performed quickly, making screening stations efficient in reaching a large



number of individuals within a community. Community-based screening stations are especially relevant in the context of diabetes, as they enable a proactive approach to public health. By strategically locating these stations in accessible areas, such as community centers, schools, or local healthcare facilities, healthcare providers can reach a diverse demographic and identify individuals who may not otherwise seek medical attention. In a case study, the implementation of screening stations could involve collaboration between healthcare professionals, community organizations, and local authorities. Community engagement is crucial to encourage individuals to participate in the screening process. Education and awareness campaigns might precede the establishment of screening stations to inform the community about the importance of diabetes screening, its implications, and the potential benefits of early detection. Moreover, screening stations offer an opportunity for health education and promotion. Individuals who undergo screening can receive information about the causes of diabetes, dietary recommendations, and lifestyle modifications to improve their overall health. This educational component contributes to empowering individuals to make informed decisions about their well-being and take preventive measures.

The data collected at screening stations can also inform public health initiatives and guide policymakers in developing targeted interventions. For instance, if a particular demographic group shows a higher prevalence of diabetes, resources can be directed towards tailored interventions, such as nutritional supplementation programs, educational campaigns, or improved access to healthcare services. Continuous monitoring and follow-up are integral to the effectiveness of screening stations. Individuals identified with diabetes or those at risk may be referred for further diagnostic tests and medical consultation. Follow-up mechanisms ensure that individuals receive appropriate care, treatment, and support to manage diabetes effectively.

**Educational Workshops:** Interactive workshops were organized to disseminate information on diabetes, covering its causes, symptoms, and preventive measures. The organized sessions are designed to provide information, raise awareness, and impart knowledge about diabetes, its causes, prevention, and management. These workshops serve as a crucial component of public health initiatives aimed at empowering communities to understand, prevent, and address diabetes effectively. The primary objective of educational workshops in the case of diabetes is to disseminate accurate and relevant information to the target audience, which may include individuals, families, or communities. Diabetes Educational workshops aim to increase awareness about these causes, the signs and symptoms of diabetes, and the importance of early detection and intervention. Community engagement is a key aspect of educational workshops. By involving the community in the learning process, these workshops can be tailored to the specific needs, cultural context, and literacy levels of the target audience. Interactive sessions, discussions, and visual aids are often employed to enhance understanding and retention of crucial information.

The content of educational workshops may cover a range of topics related to diabetes, including dietary practices for improving iron intake, the importance of a balanced diet, the role of vitamin supplements, and lifestyle modifications to reduce the risk of diabetes.



Workshops may also address misconceptions or cultural beliefs that could impact healthcare-seeking behaviours related to diabetes. Furthermore, educational workshops provide a platform for healthcare professionals, nutritionists, and community leaders to share expertise and answer questions. This interactive exchange fosters a collaborative learning environment and promotes a sense of ownership and responsibility within the community. Individuals who attend these workshops are not just passive recipients of information; they become active participants in their own health and well-being. In a case study, the implementation of educational workshops could involve partnerships between healthcare organizations, local community leaders, and educational institutions. Workshops may be conducted in various settings, including schools, community centres, or healthcare facilities, to reach a broad and diverse audience. The success of educational workshops is often measured by changes in knowledge, attitudes, and behaviours within the community. Pre- and post-workshop assessments can gauge the effectiveness of the sessions, and feedback from participants can guide future improvements. Long-term success is also contingent on the sustainability of educational efforts, which may involve ongoing workshops, the development of educational materials, and the integration of diabetes education into existing community programs.

**Nutritional Counselling:** Experienced dietitians and nutritionists provided personalized guidance on dietary habits and nutrition for individuals identified with diabetes. The specialized form of guidance provided by healthcare professionals to individuals or communities to address and prevent diabetes through dietary modifications and nutritional strategies. This personalized and educational approach aims to optimize nutritional intake, particularly focusing on essential nutrients like iron, vitamin B12, and folate, crucial for insulin. The primary goal of nutritional counseling in the case of diabetes is to assess, educate, and guide individuals towards making informed dietary choices that promote optimal iron absorption and overall nutritional health. Diabetes, often caused by insufficient iron intake or poor absorption, can be effectively managed and prevented through dietary changes. Nutritional counseling sessions typically begin with an assessment of an individual's dietary habits, medical history, and potential risk factors for diabetes. Healthcare professionals, such as dietitians or nutritionists, work collaboratively with individuals to identify areas of nutritional deficiency and tailor dietary recommendations to meet specific needs. Iron-rich foods, such as lean meats, poultry, fish, legumes, and green leafy vegetables, are often emphasized during nutritional advising for diabetes. Additionally, counseling may include guidance on enhancing iron absorption, such as pairing iron-rich foods with sources of vitamin C, avoiding inhibitors like excessive tea or coffee consumption during meals, and addressing potential dietary restrictions or preferences. Nutritional counseling is particularly



beneficial in cases where individuals have specific dietary challenges or restrictions, such as vegetarian or vegan diets, which may require careful planning to ensure adequate iron intake. By providing personalized recommendations, counseling addresses the unique nutritional needs of each individual, increasing the likelihood of successful adherence to dietary changes. Educational materials, such as pamphlets or visual aids, may complement counseling sessions to reinforce key messages and make the information more accessible.

These materials can be culturally sensitive and adapted to the literacy levels of the target audience, ensuring that the information is effectively communicated. Follow-up sessions are integral to the success of nutritional counseling. Regular check-ins allow healthcare professionals to monitor progress, address challenges, and provide ongoing support. This continuous engagement helps individuals sustain positive dietary changes and contributes to long-term health benefits. The impact of nutritional counseling in addressing diabetes extends beyond the individual level. By promoting healthy eating practices within communities, these interventions contribute to broader public health goals. Successful nutritional counseling initiatives may lead to a reduction in the prevalence of diabetes, improved overall health outcomes, and a better understanding of the link between nutrition and well-being.

**Content:** The content of the diabetes camp was meticulously designed to address various facets of diabetes :

#### **Understanding diabetes :**

Diabetes is a chronic medical condition characterized by high levels of glucose (sugar) in the blood. It occurs when the body either doesn't produce enough insulin or can't effectively use the insulin it produces. Insulin is a hormone produced by the pancreas that helps regulate blood glucose levels.

#### **Symptoms of Diabetes**

Common symptoms include:

- Frequent urination
- Excessive thirst and hunger
- Unexplained weight loss
- Fatigue
- Blurred vision
- Slow-healing sores or frequent infections
- Tingling or numbness in the hands or feet (in type 2 diabetes)

#### **Complications of Diabetes**

If not well-managed, diabetes can lead to severe complications, such as:

- Cardiovascular disease: Increased risk of heart attack, stroke, and atherosclerosis.



- Neuropathy: Nerve damage, especially in the legs and feet, which can lead to amputation.
- Nephropathy: Kidney damage leading to kidney failure.
- Retinopathy: Eye damage that can lead to blindness.
- Foot damage: Due to poor blood flow and nerve damage, leading to infections and amputations.
- Skin conditions: Increased susceptibility to bacterial and fungal infections.

## **Management and Prevention**

### **Management:**

- Blood Sugar Monitoring: Regular monitoring of blood glucose levels.
- Medications: Insulin for type 1 diabetes; oral medications and sometimes insulin for type 2 diabetes.
- Diet: Healthy eating that focuses on low-glycemic-index foods, balanced nutrients, and portion control.
- Exercise: Regular physical activity to help control blood glucose levels and maintain a healthy weight.
- Regular Check-ups: Monitoring for complications through regular medical check-ups.

### **Prevention:**

- **Type 1 Diabetes:** Currently, there is no known way to prevent type 1 diabetes.
- **Type 2 Diabetes:** Preventable through maintaining a healthy weight, engaging in regular physical activity, eating a balanced diet, and avoiding tobacco use.

Understanding diabetes and its management is crucial for preventing complications and maintaining a high quality of life for those affected by the condition.

**Access to Healthcare:** Information on local healthcare facilities and the significance of regular health check-ups for overall well-being. the availability, affordability, and utilization of healthcare services and resources for the prevention, diagnosis, and management of diabetes within a specific community or population. This multifaceted concept encompasses various factors, including physical accessibility, financial barriers, healthcare infrastructure, and community engagement. The availability of healthcare services is a fundamental component of access to healthcare. In the case of diabetes , this includes facilities offering diagnostic tests, medical consultations, and treatment options. A case study would examine the distribution of healthcare facilities within the community, assessing whether there are areas with limited access and identifying potential disparities in healthcare resource allocation. Physical accessibility is a critical aspect, as the geographical proximity of healthcare facilities influences an individual's ability to seek timely care. The case study might investigate the distance individuals have to travel to reach healthcare centers, considering the impact of transportation infrastructure on access. Barriers such as lack of transportation options or remote living conditions could affect the community's ability to access necessary healthcare services.



Financial barriers, including the cost of healthcare services, medications, and diagnostic tests, are significant factors influencing access to care. The case study would assess the community's socioeconomic status and its implications for healthcare affordability.

It might explore whether financial constraints disproportionately affect certain demographic groups within the community, potentially hindering their ability to seek necessary healthcare for diabetes. Health insurance coverage and social support programs could play a role in mitigating financial barriers. The case study would examine the prevalence of health insurance within the community and assess its effectiveness in facilitating access to diabetes-related healthcare services. Additionally, it might explore community awareness and utilization of available social support programs aimed at improving healthcare affordability. The quality and capacity of healthcare infrastructure are vital considerations in evaluating access to healthcare for diabetes. Adequate staffing, diagnostic equipment, and medical supplies contribute to the effectiveness of healthcare facilities. The case study might assess the community's perceptions of healthcare quality, wait times for services, and overall satisfaction with the available healthcare infrastructure. Community engagement also plays a role in determining access to healthcare. A case study would explore whether cultural beliefs, language barriers, or mistrust in healthcare systems impact the community's willingness to seek medical attention for diabetes. Community outreach and culturally sensitive healthcare practices could be integral components of addressing these barriers. The study might also investigate the role of community health workers or outreach programs in bridging gaps in access to healthcare. These initiatives can play a crucial role in reaching underserved populations, providing education, and facilitating connections to healthcare services. The impact of technology on access to healthcare is another dimension to consider. Telehealth services, mobile health applications, or other digital tools can potentially enhance healthcare accessibility. The case study would explore the utilization of such technologies within the community, considering factors like digital literacy and technological infrastructure.

#### **Data Analysis:**

Data analysis of the diabetes Camp revealed insightful patterns: a prevalence rate of %, demographic-specific trends, and areas of higher vulnerability. This information guides future interventions and underscores the camp's effectiveness in uncovering crucial health insights within the dauhla Village community.

**Table: Details of Villagers with their Insulin level in blood After pharmacological intervention**

| S. No. | NAME | AGE | SEX | Insulin level |
|--------|------|-----|-----|---------------|
|--------|------|-----|-----|---------------|



|     |                  |    |   | (mg/dl) |
|-----|------------------|----|---|---------|
| 1.  | Chander bhan     | 74 | M | 277     |
| 2   | Munni devi       | 87 | F | 183     |
| 3.  | Dharam Vir Singh | 70 | M | 169     |
| 4.  | Om pal           | 72 | M | 181     |
| 5.  | Chedda Singh     | 88 | M | 280     |
| 6.  | Joginder Singh   | 65 | M | 165     |
| 7.  | Virender         | 74 | M | 284     |
| 8.  | Ajay Singh       | 89 | M | 180     |
| 9.  | Suman Raghav     | 78 | M | 173     |
| 10. | Vimlesh Singh    | 67 | F | 268     |
| 11. | Kashmiri         | 50 | F | 156     |
| 12. | Lakshmi          | 71 | F | 244     |
| 13. | Shanta Singh     | 72 | F | 282     |
| 14  | Poonam           | 89 | F | 185     |
| 15. | Vijay            | 74 | M | 271     |
| 16  | Namak Chandra    | 73 | M | 282     |
| 17  | Anita            | 82 | F | 281     |
| 18  | Rashmi           | 72 | F | 265     |
| 19  | Roshni           | 71 | F | 184     |
| 20  | Anil             | 81 | F | 172     |
| 21  | Rajbir           | 77 | M | 249     |
| 22  | Sushil           | 70 | F | 269     |
| 23  | Jaipal           | 56 | M | 179     |
| 24  | Sumit            | 74 | M | 160     |
| 25  | Amit             | 87 | F | 239     |

**Table: Details of Villagers with their Insulin level in blood After pharmacological intervention**

| S. No. | NAME | AGE | SEX | Insulin level (mg/dl) |
|--------|------|-----|-----|-----------------------|
|        |      |     |     |                       |



|     |            |    |   |     |
|-----|------------|----|---|-----|
| 26. | Deepak     | 40 | M | 251 |
| 27. | Sagar      | 52 | M | 143 |
| 28. | Santosh    | 58 | M | 122 |
| 29  | Prem       | 75 | M | 114 |
| 30  | Babul      | 84 | M | 255 |
| 31  | Suresh     | 59 | M | 132 |
| 32  | Geeta Devi | 68 | F | 121 |
| 33  | Rimjim     | 77 | F | 251 |
| 34  | Ranbir     | 80 | F | 132 |
| 35. | Radha      | 91 | F | 176 |
| 36  | Gopal      | 42 | F | 236 |
| 37  | Harshdeep  | 82 | M | 167 |
| 38  | Omprakash  | 73 | M | 112 |
| 39  | Muskan     | 71 | F | 151 |
| 40  | Bala       | 81 | F | 132 |
| 41  | Sukhbir    | 70 | M | 175 |
| 42  | Nitu       | 73 | F | 285 |
| 43  | Meena      | 80 | F | 183 |
| 44  | Poonam     | 72 | F | 172 |
| 45. | Yashveer   | 71 | F | 133 |
| 46  | Savita     | 85 | F | 123 |
| 47  | Kabil      | 76 | M | 115 |
| 48  | Kareena    | 77 | F | 126 |
| 49  | Sushmita   | 58 | F | 137 |
| 50  | Jhilmil    | 66 | F | 221 |

**Table: Details of Villagers with their Insulin level in blood After pharmacological intervention**

| S. No. | NAME     | AGE | SEX | Insulin level (mg/dl) |
|--------|----------|-----|-----|-----------------------|
| 51.    | Kashmir  | 50  | F   | 134                   |
| 52.    | Lakshman | 71  | F   | 223                   |



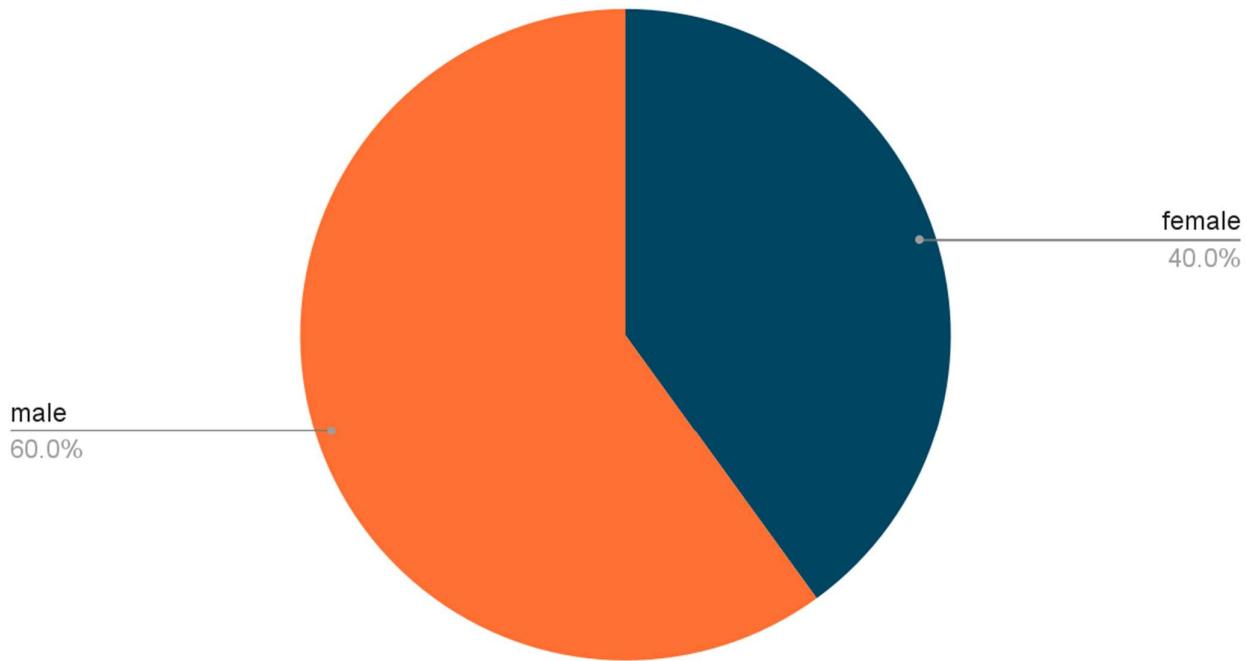
|     |               |    |   |     |
|-----|---------------|----|---|-----|
| 53. | Shakuntala    | 72 | F | 134 |
| 54  | Pooja         | 89 | F | 145 |
| 55. | Vijaylakshmi  | 74 | M | 231 |
| 56  | Naman Chandra | 73 | M | 234 |
| 57  | Ankita        | 82 | F | 211 |
| 58  | Rashid        | 72 | F | 112 |
| 59  | Ritika        | 71 | F | 124 |
| 60  | Neelima       | 71 | F | 137 |
| 61. | Kashmira      | 34 | F | 145 |
| 62. | Lakshay       | 33 | M | 164 |
| 63. | Shakti        | 45 | F | 113 |
| 64  | Priya         | 29 | F | 93  |
| 65. | Vir           | 54 | M | 112 |
| 66  | Chanda Kumari | 33 | F | 115 |
| 67  | Anshul        | 42 | M | 222 |
| 68  | Riddhi        | 52 | F | 256 |
| 69  | Riti          | 71 | F | 133 |
| 70  | Ajay Singh    | 33 | M | 134 |
| 71. | Bittoo        | 45 | M | 112 |
| 72. | Laksh         | 46 | M | 123 |
| 73. | Shrishti      | 38 | F | 122 |
| 74  | Preeti        | 30 | F | 112 |
| 75. | Kirti         | 62 | F | 224 |

**Table: Details of Villagers with their Insulin level in blood After pharmacological intervention**

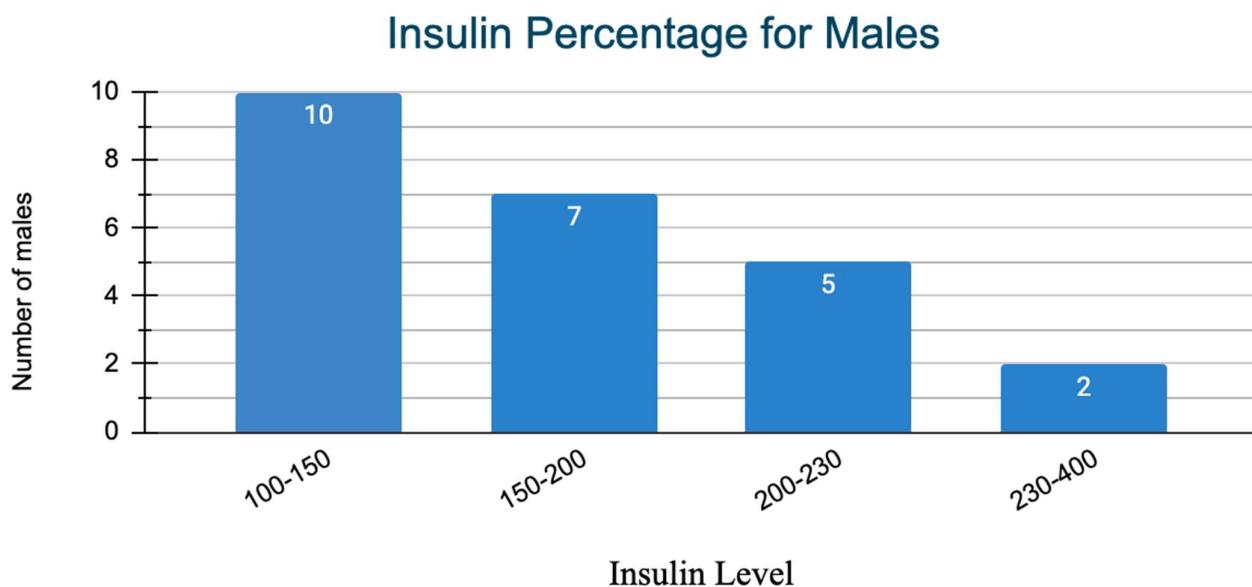
| S. No. | NAME  | AGE | SEX | Insulin level (mg/dl) |
|--------|-------|-----|-----|-----------------------|
| 76     | Naman | 27  | M   | 202                   |
| 77     | Ankit | 50  | M   | 124                   |
| 78     | Rahul | 75  | M   | 134                   |
| 79     | Pappu | 89  | M   | 150                   |



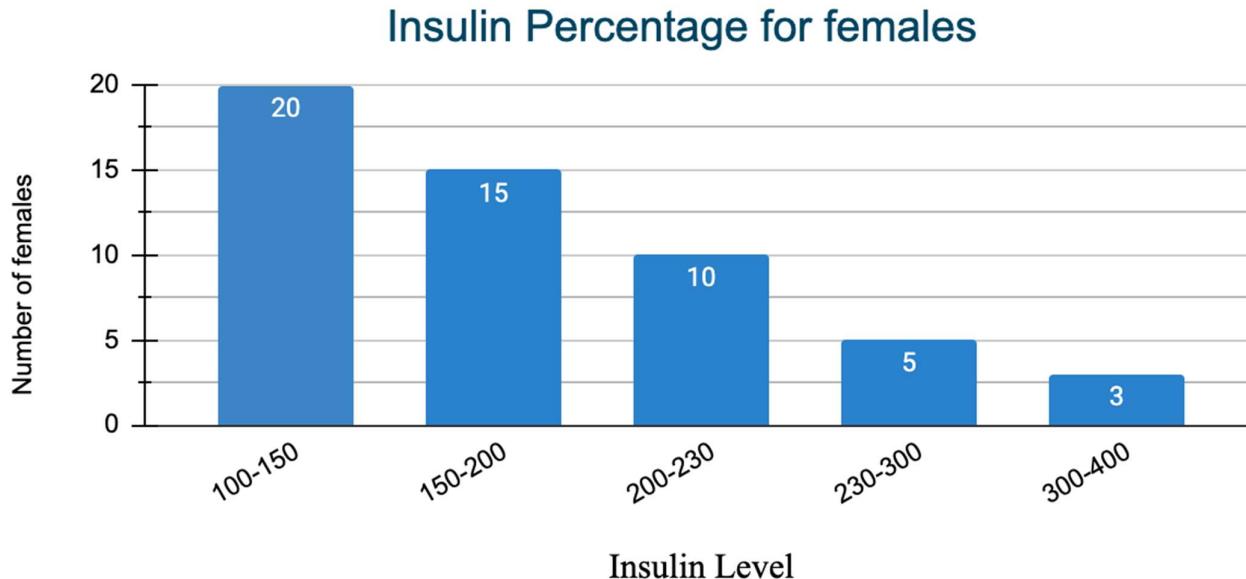
|     |               |    |   |     |
|-----|---------------|----|---|-----|
| 80  | Neeraj        | 88 | M | 109 |
| 81. | Lalaram       | 34 | F | 116 |
| 82. | Mahek         | 63 | M | 124 |
| 83. | Ompati        | 43 | F | 137 |
| 84  | Balwant       | 49 | F | 94  |
| 85. | Praveen       | 44 | M | 134 |
| 86  | Chittu        | 63 | F | 221 |
| 87  | Anjali        | 72 | M | 234 |
| 88  | Rishu         | 82 | F | 240 |
| 89  | Rajbala       | 51 | F | 134 |
| 90  | Dushyant      | 43 | M | 154 |
| 91. | Saraswati     | 74 | F | 122 |
| 92. | Sandeep       | 33 | M | 100 |
| 93. | Priyanka      | 25 | F | 206 |
| 94  | Sudarsh       | 49 | F | 229 |
| 95. | Sneha         | 54 | M | 213 |
| 96  | Surjeet Singh | 63 | F | 125 |
| 97  | Pushpa        | 82 | M | 237 |
| 98  | Jyoti         | 92 | F | 223 |
| 99  | Rajbir        | 41 | F | 134 |
| 100 | Kamlesh       | 23 | M | 112 |


**Table: Details of Villagers with their Insulin level in blood After pharmacological intervention**

| S. No. | NAME           | AGE | SEX | Insulin level (mg/dl) |
|--------|----------------|-----|-----|-----------------------|
| 101.   | Shaurya Raghav | 42  | M   | 270                   |
| 102.   | Munni          | 25  | F   | 180                   |
| 103.   | Sunita         | 77  | F   | 145                   |
| 104    | Krishan Pal    | 79  | M   | 170                   |




|      |                |    |   |     |
|------|----------------|----|---|-----|
| 105  | Veer pal Singh | 80 | M | 88  |
| 106  | Manju          | 52 | M | 102 |
| 107  | Nirmala        | 61 | F | 102 |
| 108  | Laxmi          | 73 | F | 234 |
| 109. | Chidda Singh   | 42 | F | 123 |
| 110. | Dharamender    | 25 | M | 122 |
| 111. | Ramlala        | 77 | F | 222 |
| 112  | Santra Devi    | 79 | F | 112 |
| 113  | Om pati        | 80 | M | 128 |
| 114  | Dushyant       | 52 | M | 122 |
| 115  | Sudash         | 61 | M | 121 |
| 116  | Kamlesh        | 73 | F | 221 |
| 117  | Savitri        | 29 | F | 233 |
| 119  | Ravindra       | 50 | M | 232 |
| 120  | Sanjit         | 55 | M | 232 |


## Number of Patient Performed Test



Graph 1 - No. of Patient Tested



**Graph 1 - Insulin percentage in Males After pharmacological intervention**



**Graph 2 - Insulin percentage in Females After pharmacological intervention**

**Conclusion:** The diabetes Case Study at dauhla Village, orchestrated by the School of Medical and Allied Sciences, stands as a testament to the positive impact that well-planned community health initiatives can have. By combining screenings with educational outreach, the camp not only addressed the immediate health needs of the community but also laid the groundwork for sustained health improvements. The collaborative approach, involving local leaders and community members, fostered a sense of ownership and engagement, contributing to the success of the initiative. The case study serves as a valuable reference for future community health programs, highlighting the importance of tailored approaches and comprehensive strategies in addressing prevalent health issues. In conclusion, the case study on the diabetes Camp illustrates the effectiveness of community-centered healthcare interventions in addressing prevalent health challenges. By combining medical screenings, education, and community engagement, the camp emerged as a model for integrated healthcare delivery. This study underscores the significance of proactive measures in combating public health issues and highlights the transformative potential of community-based initiatives in fostering sustainable health outcomes.