CO-PO Attainment

The major components of Outcome Based Education (OBE) are Course Outcome (CO) and Program Outcome (PO). Based on how well these two parts are defined and evaluated, OBE attainment is measured.

Course Outcomes (COs) are statements that specify what a learner will know or be able to do as a result of a learning activity. Outcomes are usually expressed as knowledge, skills, or attitudes. It is a measurable, observable, and specific statement that clearly indicates what a student should know and be able to do as a result of learning. It describes what students are able to demonstrate in terms of knowledge, skills and values upon completion of a course/a span of several courses.

Program Outcomes (POs) describe what a program is expected to accomplish. POs describe what students should know and be able to do at the end of the programme.

Program Specific Outcomes (PSOs) describe what the Postgraduates/graduates of a specific program should be able to do. Clear articulation of course outcomes, POs, and PSOs serves as the foundation for evaluating the effectiveness of the teaching and learning process.

The course correlation matrix shows the learning relationship (Level of Learning Achieved) between Course Outcomes and Program Outcomes of a course. This matrix strongly indicates whether the students are able to achieve the course objectives/outcomes. The matrix can be used for any course and is a good way to evaluate a course syllabus/content/structure.

Assessment Process for CO Attainment:

For the evaluation and assessment of CO's and PO's, rubrics are used. The rubrics considered here are given below:

CO Assessment Rubrics:

Direct assessment 1: refers to evaluation through internal assessments which include Mid Term Examinations Direct assessment 2: refers to evaluation through End Term Examination (ETE)

Indirect assessment: refers to the exit feedback survey taken by students/faculty/employers. The exit feedback survey must be taken up before the end of the semester. The exit survey may be based on a marking scheme (1-3) for each CO.

• The course exit survey samples are given below for student/faculty/employer

(Kindly note the respective course teacher may modify these templates according to the requirements of the course)

Sample1: Course Outcome exit survey for students

Cours	se Outcome	1(Low)	2(Moderate)	3(High)
CO1	Understand the role and applications of			
	data structure in real life			
CO2	Develop abstract data types for solving			
	the complex problems			
CO3	Understand the concepts of non-linear			
	data structures and applications			
CO4	Analyze the efficiency of algorithms			

Sample 2: Course Contents exit survey for students

Questions	1(Low)	2(Moderate)	3(High)
Quality of the Course Content			
Relevance of the textbook to this course			
Were the lectures clear/well organized and			
presented at a reasonable pace?			
Did the lectures stimulate you			
intellectually?			
Are the assignment/lab experiment			
procedures clearly explained?			

Sample3: Faculty/Employer Survey

Questions	1(Low)	2(Moderate)	3(High)
Satisfaction with the caliber of the			
graduates			
Courses are relevant to the organization's			
vision and mission			
Satisfaction with the speed at which course			
content is being adapted to meet changing			
industrial needs			
Relevant subject or discipline knowledge			
Quality of employability skills and			
attributes			
The satisfaction that graduates are learning			
the right skills			

CO Attainment Calculation of a Course:

7.1 Sample calculation- CO Mapping

Table 1: Mid Term Exam (Maximum Marks: 20)

	Question No. (1)	Question No. (2)	Question No. (3)
Roll No.	MM :05	MM :05	MM :10
Mapping of Event to CO	C01	CO1	CO2
2102080001	3	5	2
2102080002	2	5	1
2102080060	0	4	8
No. of students attempted	54	57	58
Attempted (%)			
Mapping of Event to CO1	C01	CO1	
Mapping of Event to CO2			CO2
Mapping of Event to CO3			
Mapping of Event to CO4			

Table 2:	End T	erm Exam	(Maximum	Marks:	50)
----------	-------	----------	----------	--------	-------------

	QueNo. (1)	Que No. (2)	Que No. (3)	Que No. (4)	Que No. (5)	Que No. (6)	Que No. (7)	Que No. (8)	Que No. (9)	Due No. (10)	Due No. (11)
Maximum Marks	2	2	2	2	2	5	5	5	5	10	10
Mapping of Event to CO	CO1	CO2	CO3	CO4	CO5	CO1	CO2	CO3	CO3	CO4	CO5
2102080001	2	1	2	0	2	5	4	4	0	10	7
2102080002	1	1	2	2	0	5	5	1	4	5	6
2102080058	0	2	0	0	2	3	3	5	4	3	0
2102080059	0	1	0	1	1	5	3	3	4	1	10
2102080060	0	2	1	0	2	2	2	4	2	4	5
No. of students attempted	38	52	43	41	48	60	54	61	53	45	12
Attempted (%)											
Mapping of Event to CO1	CO1					CO1					
Mapping of Event to CO2		CO2					CO2				
Mapping of Event to CO3			CO3					CO3	CO3		
Mapping of Event to CO4				CO4						CO4	
Mapping of Event to CO5					CO5						CO5

7.2 Sample calculation- CO attainment based on threshold level

Table 3. CO attainment - Continuous Internal Assessments (20 Marks)

Course Outcome		C	:01		CO2					CO3			CO4				CO5			
Student Id	Max Marks	Obtained Marks	Percentage	CO Attained (60%)	Max Marks	Obtained Marks	Percentage	CO Attained (60%)	Max Marks	Obtained Marks	Percentage	CO Attained (60%)	Max Marks	Obtained Marks	Percentage	CO Attained (60%)	Max Marks	Obtained Marks	Percentage	CO Attained (60%)
2102080001	4	3	75	YE S	4	4	100	Y ES	4	4	1 0 0	Y E S	4	4	1 0 0	Y E S	4	4	1 0 0	Y E S
2102080002	4	2	50	NO	4	4	100	Y ES	4	2	5 0	N O	4	1	2 5	N O	4	2	5 0	N O
2102080003	4	2	50	NO	4	4	100	Y ES	4	0	0	N O	4	4	1 0 0	Y E S	4	4	1 0 0	Y E S
2102080060	4	0	0	NO	4	2	50	N O	4	2	5 0	N O	4	2	5 0	N O	4	2	5 0	N O
No. of students attempted	No. of students attempted CO1		60	со	2		60	CO	03		60	CO	94		60	со	5		6 0	

No. of students scoring >= threshold (60%)	36	47	30	37	37	3 7
% of students scoring >= threshold	60	78	50	62	6 2	5 2

Table 4. CO attainment - Mid Term (20 Marks)

Course Outcome		CC)1		CO2				
Student Id	Max Marks	Obtained MarksPercent ageA		CO Attaine d	Max Marks	Max Obtained Marks Marks		CO Attaine d	
2102080001	10	8	80	YES	10	2	20	NO	
2102080059	10	4	40	NO	10	9	90	YES	
2102080060	10	8	80	YES	10	0	0	NO	
No. of students attempted				60				60	
No. of students scoring >= threshold (60%)		CO1		39		CO2		44	
% of students scoring >= threshold				65				73	

Table 5. CO attainment - End Term (50 Marks)

Course		C	CO1			C	202			C	03		CO4			CO5				
Student Id	M a x M a r k s	O bt ai ne d M ar ks	Pe rc en ta ge	C O At tai ne d	M ax M ar ks	O bt ai ne d M ar ks	Pe rc en ta ge	CO Att ain ed	M ax M ar ks	O bt ai ne d M ar ks	Pe rc en ta ge	C O A tt ai ne d	M ax M ar ks	O bt ai ne d M ar ks	P er ce nt ag e	C O A tt ai ne d	M ax M ar ks	O bt ai ne d M ar ks	Per cen tag e	CO Atta ined
2102080001	7	7	10 0	Y E S	7	5	71	YE S	12	6	50	N O	12	10	83	Y E S	12	9	75	YES
2102080059	7	5	71	Y E S	7	4	57	NO	12	7	58	N O	12	2	17	N O	12	11	92	YES
2102080060	7	2	29	N O	7	4	57	NO	12	7	58	N O	12	4	33	N O	12	7	58	NO
No. of students attempted				60				60				60				60				60
No. of students scoring >= threshold (60%)		CO	1	37		CO2		36		CO3		27		CO4		27		CO	5	48
% of students				62				60				45				45				80

scoring >=					
threshold					

COs Attainment Level: Course outcomes of all courses are assessed with the help of attainment levels are evaluated based on set attainment rubrics as per the table.

Assessment Methods		Attainment Levels									
Mid Term Exam	Level 1	vel 1 60% of students scoring more than 60% marks.									
	Level 2	60.01-80% of students scoring more than 60% marks.									
	Level 3	80.01% of students scoring more than 60% marks.									
End Term Exam	Level 1	60% of students scoring more than 60% marks.									
	Level 2	60.01-80% of students scoring more than 60% marks.									
	Level 3	80.01% of students scoring more than 60% marks.									

Table 6. CO attainment Levels

Overall Attainment: The Final CO attainment is calculated by combining the indirect attainment and direct attainment in a ratio of 20:80. Final Value (V) = 20% Indirect Attainment + 80% Direct Attainment.

Ev	vent	M Te Ex (MN	id- erm am A 20)	End-' Ex (MN	Term am 1 50)	Average CO Attainment		Av	erage CO Atta (% Calculatio	inment on)
Course Code	Course Outcome	CO Percentage	CO Attainment Level	CO Percentage (%)	CO Attainment Level	Sum of Overall CO Attainment	Final Average (Average Co Attainment per Course)	Sum of Overall CO Attainment %	Overall CO Attainment	Final Average (Average Co Attainment per Course)
	CO1	65	2	62	2	2.00		62.62	2.00	
218/	CO2	73	2	60	2	2.00		63.81	2.00	
M	CO3			45	1	1.00	0.40	45.00	1.00	52.29
MA	CO4			45	1	1.00		45.00	1.00	
	CO5			80	3	3.00		80.00	3.00	

 Table 7. COs Attainment Level: Sample Calculation

No of students securing more than 60% marks	Mapping Level
No of students securing >=80% marks	3
No of students securing >=60% marks	2
No of students securing <=60% marks	1

CO – PO AND CO – PSO MAPPING OF COURSES:

All the courses together must cover all the POs (and PSOs). For a course we map the COs to POs through the CO-PO matrix and to PSOs through the CO-PSO matrix as shown below.

The various correlation levels are:

- "1" slightly (Low) Correlation
- "2" moderately (Medium) Correlation
- "3" substantially (High) Correlation
- "-" indicates there is no correlation between CO and PO.

Course Outcome	PO 1	PO 2	PO 3	PO 4	PO 5	PO 6	PO 7	PO 8	PO 9	PO 10	PO 11	PO 12	PSO 1	PSO 2
CO 1	2			1		3			1			1	3	
CO 2	2	3						1			1		1	
CO 3			2		3					3		2		3
CO 4				3			2		2		2			
CO 5		1	1											2
Average	2	2	1.5	2	3	3	2	1	1.5	3	1.5	1.5	2	2.5
Round off	2	2	2	2	3	3	2	1	2	3	2	2	2	3

 Table 8. Course Evaluation Matrix (Target).

Calculating PO attainment:

The PO attainment is calculated by using the predefined CO/PO matrix and the value of Final CO attainment for the subject.

Course level PO & PSO Attainment Calculation: The PO & PSO attainment for the course is calculated using the formula.

Average Co attaintment * Average Corelation

C	0 attain	iment R	latio of	Course	(x) = -		3 (Maxi	imum a	ttainm	ent val	lue)			
Table 9. (Table 9. Course Evaluation Matrix (Attained).													
Course						PO	PO	PO	PO	PO	PO	PO	PSO	PSO
	PO1	PO2	PO3	PO4	PO5		-	0	0	10		10		
Outcome						0	7	8	9	10	11	12	I	2
CO1	1.33			0.67		2.00			0.67			0.67	2.00	
CO2	1.33	2.00						0.67			0.67		0.67	
CO3			1.33		2.00					2.00		1.33		2.00
CO4				2.00			1.33		1.33		1.33			
CO5		0.67	0.67				0.00							1.33
Average	1.33	1.33	1.00	1.33	2.00	2.00	1.33	0.67	1.00	2.00	1.00	1.00	1.33	1.67
Round off														

Table 10. PO-Co attainment difference table.

	PO1	PO2	PO3	PO4	PO5	PO6	PO7	PO8	PO9	PO10	PO11	PO12	PSO1	POS2
Target	2	2	1.5	2	3	3	2	1	1.5	3	1.5	1.5	2	2.5
Attainment	1.33	1.33	1.00	1.33	2.00	2.00	1.33	0.67	1.00	2.00	1.00	1.00	1.33	1.67
difference	0.67	0.67	0.50	0.67	1.00	1.00	0.67	0.33	0.50	1.00	0.50	0.50	0.67	0.83

8. Bloom's Taxonomy:

Bloom's Taxonomy provides an important framework to not only design curriculum and teaching methodologies but also to design appropriate examination questions belonging to various cognitive levels. Bloom's Taxonomy attempts to divide learning into three types of domains (cognitive, affective, and behavioral) and then defines the level of performance for each domain. Consciousefforts to map the curriculum and assessment to these levels can help the programs to aim for higher-level abilities which go beyond remembering or understanding, and require application, analysis, evaluation or creation are given below:

Level	Descriptor	Level of attainment
1	Remembering	Recalling from memory of previously learned material
2	Understanding	Explaining ideas or concepts
3	Applying	Using information in another familiar situation
4	Analysing	Breaking information into part to explore understandings and relationships
5	Evaluating	Justifying a decision or course of action
6	Creating	Generating new ideas, products or new ways of viewing things

According to revised Bloom's taxonomy, the level in cognitive domain are as follows:

A suggestive list of skills/ competencies to be demonstrated at each of the Bloom's (COGNITIVE)level and corresponding cues/ verbs for the examination/ test questions

1. Remember

Skil	l Demonstrated	Question Ques / Verbs for tests
•	Ability to recall of information like, facts,	List, define, describe, state, recite, recall, identify, show
	conventions, definition, jargon, technical terms,	label, tabulate, quote, name, who, when, where etc.
	classifications, categories and criteria.	
•	Ability to recall methodology and procedures,	
	abstractions, principles and theories in the field.	
•	Knowledge of dates, events, places.	
•	Mastery of subject matter.	

Sample Questions:

- 1. State Ohm's law
- 2. List the physical and chemical properties ofsilicon
- 3. Define the terms: Sensible heat, Latent heat and Total heat of evaporation
- 4. Describe the process of galvanization.
- 5. Write truth table and symbol of AND, OR, NOT, XNOR gates.
- 6. What is the difference between declaration and definition of a variable/function?

2. Understand

Skill Demonstrated	Question Ques / Verbs for tests
 Understanding information Grasp meaning Translate knowledge into new context Interpret facts, compare, contrast Order, group, infer causes Predict consequences 	Describe, explain, paraphrase, restate, associate, contrast, summarize, differentiate interpret, discuss.

Sample Questions:

- 1. Explain the importance of sustainability in Engineering design
- 2. Describe the characteristics of SCR and transistor equivalent for a SCR
- 3. How many values of the variable number must be used to completely test all branches of the following code fragment?
- 4. Discuss the effect of Make in India initiative on the Indian manufacturing Industry.
- 5. Summarize the importance of ethical code of conduct for engineering professionals

- 6. What is the meaning of base address of the array?
- 7. Differentiate between entry and exit controlled loops.

3. Apply

Skil	l Demonstrated	Question Ques / Verbs for tests
•	Use information	Calculate, predict, apply, solve, illustrate, use,
•	Use methods, concepts, laws, theories in new situations Solve problems using required skill or knowledge Demonstrating correct usage of a method or procedure.	demonstrate, determine, model, experiment, show, examine, modify.

Sample Questions:

1. Model and realize the following behaviors usingdiodes with minimum number of digital inputs.

(i) Turning on of a burglar alarm only during night timewhen the locker door is

opened.

(ii) Providing access to an account if either date of birth or registered mobile number or both are correct.

(iii) Updating the parking slot empty light in the basement of a shopping mall.

2. One of the resource persons needs to address a huge crowd (nearly 400 members) in the auditorium. A system is to be designed in such a way that everybody attending the session shouldbe able to hear properly and clearly without any disturbance. Identify the suitable circuit to boostthe voice signal and explain its functionality in brief. 3. A ladder 5.0 m long rests on a horizontal ground & leans against a smooth vertical wall at an angle20 with the vertical. The weight of the ladder is 900 N and acts at its middle. The ladder is at the point of sliding, when a man weighing 750 N stands on a rung 1.5 m from the bottom of the ladder. Calculate the coefficient of friction between the ladder & the floor.

4. Write an algorithm to implement a stack using queue.

5. A CPU generates 32-bit virtual addresses. The page size is 4 KB. The processor has a translation look aside buffer (TLB) which can hold a total of 128-page table entries and is 4-way set associative. What is the minimum size of the TLB tag?

4. Analyze

Skil	l Demonstrated	Question Ques / Verbs for tests
•	Break down a complex problem into parts.	Classify, outline, break, down, categorize, analyse,
•	Identify the relationships and interaction between the different parts of complex problem.	diagram, illustrate, infer, select.

Sample Questions:

1. A class of 10 students consists of 5 males and 5 females. We intend to train a model based on their past scores to predict the future score. The average score of females is 60 whereas that of male is 80. The overall average of the class is 70. Give two ways of predicting the score and analyses them for fitting model.

2. Suppose that we want to select between two prediction models, M1 and M2. We have performed10 rounds of 10-fold cross-validation on each model, whereas the same data partitioning in round one is used for both M1 and M2. The error rates obtained for M1 are 30.5, 32.2, 20.7, 20.6, 31.0, 41.0, 27.7, 26.0, 21.5, 26.0. The error rates for M2 are 22.4, 14.5, 22.4, 19.6, 20.7, 20.4, 22.1, 19.4, 16.2, 35.0. Comment on whether one model is significantly better than the other considering a significance level of 1%.

3. Return statement can only be used to return a single value. Can multiple values be returned from a function? Justify your answer.

5. Evaluate

Skill Demonstrated	Question Ques / Verbs for tests
Compare and discriminate between ideas	Assess, decide, choose, rank, grade, test, measure,
 Assess value of theories, presentations 	defend, recommend, convince, select, judge, support,
 Make choice based on reasoned argument 	conclude, argue, justify, compare, summarize, evaluate.
Verify value of evidence	
Recognize subjectivity	
Use of define criteria for judgments.	

6. Create

Skill Demonstrated	Question Ques / Verbs for tests							
•Use old ideas to create new ones	Design, formulate, build, invent, create, compose,							
•Combine parts to make (new) whole, Generalize	generate, derive, modify, develop, integrate.							
from given facts relate								
•Knowledge from several areas								
Predict, draw conclusions								

Both higher order cognitive skills 'Evaluate' and 'Create' are difficult to assess in time-limited examinations. These need to be assessed in variety of student works like projects, open ended problem-solving exercises etc.

Typical examples of problem statements or need statements which need higher order abilities to solve are given below

Sample Problem / Need statements:

Automatic tethering of milking machine to theudder of a cow. A milk diary wants to automate the milking process. The milking process involves attaching the milking cups to the teats. Design asystem for the same.
 An electric vehicle uses Lion batteries. The batteries have to be charged and get dischargedduring use. The batteries require continuous monitoring during charging and discharging so thatthey remain healthy and yield a long life. Design a system to monitor and manage the health of the batteries.